首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细菌非编码小RNA (Small non-coding RNA)是一类长度为40个~500个核苷酸,在基因组中被转录但是不编码蛋白质的一类RNA分子,简称sRNA[1].最新研究表明,sRNA作为新发现的基因调节子,可促进病原菌快速调整自身的基因表达和生理特征,在适当的时候表达毒力基因,并在宿主强加的细胞内环境中生存,以适应变化的环境.在病原菌的致病性上发挥十分重要的调控作用[2].sRNA广泛存在于各种细菌包括病原菌的染色体中,有些存在于质粒中.与mRNA、tRNA、rRNA不同,大多数sRNA位于两个编码蛋白基因之间的非编码区(Intergenic region,IGR),即开放阅读框架(Open readingframe,ORF)之间,根据sRNA的转录方向,可分为顺式编码和反式编码的反义RNA.还有一些sRNA是从mRNA的5′或3′非翻译区域剪切下来的[3].sRNA作为一种有效的调节分子可执行多种调控功能,例如sRNA可直接感应温度、pH值、氧气浓度和营养条件等环境信号,通过位于同一转录单位的编码序列上游的调控区域调节下游编码序列的翻译起始[ 4].多种病原菌如大肠杆菌、沙门氏菌、霍乱弧菌、金黄色葡萄球菌、单核细胞增生性李氏杆菌、铜绿假单胞菌、枯草芽孢杆菌中均发现许多与致病调控相关的sRNA[5].根据国内外病原菌sRNA的研究,本文对病原菌sRNA调控基因表达的机制及其在病原菌致病过程中的作用做一概述.  相似文献   

2.
<正>一些非编码RNA(Non-coding RNA,ncRNA)如siRNA和miRNA等的发现,拓展了人们对ncRNA的认识。Small RNA(sRNA)作为ncRNA的一类,能够调控细菌多种代谢过程,使细菌能够适应环境的改变~([1])。6sRNA是细菌中发现的第一个sRNA,该sRNA于1967年在对大肠杆菌(E.coli)中全部RNA标记后发现的一类高丰度的短链RNA~([2])。到目前为止,已在多种细菌中发现了sRNA~([3]),其中在大肠杆菌中累计发现了超过100个sRNA~([4])。对sRNA的研究,可揭示细菌基因转录后的表达调控机制,有  相似文献   

3.
细菌非编码小RNA(sRNA)是原核生物中新发现的基因表达调控因子,可在转录后水平调节基因的表达。沙门菌是sRNA研究的模式菌,研究者利用生物信息学预测技术、全基因组分析技术和高通量RNA测序技术,至少发现70余种沙门菌sRNA。它们通过感应温度,pH值,渗透压或氧分压等环境信号,利用碱基互补方式与靶标mRNA结合,调控靶标mRNA的翻译、降解或稳定性。通常一种sRNA有多个靶基因或靶位点,可调节多种基因的表达,在沙门菌营养物质代谢、外膜蛋白合成、群体感应和毒力表达等诸多生命过程中发挥重要的调控作用。  相似文献   

4.
布鲁菌病是一种危害严重的人兽共患病,威胁着畜牧业的发展和人类的公共卫生安全。作为布鲁菌病的病原,布鲁菌能够耐受宿主体内的各种杀菌机制并持续的生存。细菌的sRNA在基因组中被转录,但绝大多数sRNA并不编码蛋白质。sRNA通过碱基配对与mRNA结合,影响mRNA的稳定性或翻译,从而调控细菌代谢、群体感应、环境应激及细菌毒力基因表达等生物过程。通过sRNA调控毒力相关基因表达,使布鲁菌可以耐受多种胞内应激环境。目前为止,仅有少数布鲁菌sRNA的功能得到了较全面的研究,论文对这些sRNA的研究进展进行综述。  相似文献   

5.
细菌在不同生境中增殖并适应不断变化环境的能力依赖于基因的快速表达和严格调节。在自然环境中,细菌经常遭遇温度、营养、酸碱度、铁离子浓度等条件的改变,为其生存和增殖带来巨大挑战和压力。为适应环境,细菌自身进化出一系列机制感应环境变化,并通过调整基因表达和蛋白活性来适应这些变化[1]。细菌sRNA是一类在基因组中可被转录但不被翻译成蛋白质的RNA分子。与蛋白质调控系统不同,当细菌遭遇不同环境胁迫时,sRNA可与DNA结合,抑制基因转录;或识别并结合靶标mRNA后将其降解,抑制mRNA翻译;或直接与相应蛋白结合,影响蛋白质活性,快速应答环境变化。  相似文献   

6.
非编码小RNA(small non-coding RNA,sRNA)是一类基因组中被转录但不翻译成蛋白质的RNA分子,可在转录后水平调控基因表达。与蛋白质介导的调控系统不同,当细菌遇到不利的生长环境时,sRNA介导的调控可对环境变化做出快速应答。沙门菌RyhB-1和RyhB-2是两种相似性较高的sRNA,通过碱基互补配对方式,在调控因子作用下共同或单独调控靶基因表达。铁匮乏时,RyhB-1和RyhB-2可促进沙门菌摄取铁元素、限制胞内非必需含铁蛋白生成以及加快铁硫蛋白的储存,是沙门菌在转录后水平调控铁稳态的主要元件。此外,当沙门菌遭遇氧化应激、缺氧或酸性环境等不利环境胁迫时,RyhB可分别控制活性氧自由基的生成、平衡硝酸盐等无机物稳态、调节细菌运动性以及沙门菌毒力等应对环境变化。本文就沙门菌RyhB生理特征及其调控机制和功能进行阐述,以期为后续沙门菌RyhB的研究提供指导信息。  相似文献   

7.
单增李氏杆菌是一种人畜共患的革兰氏阳性细菌。该细菌作为实验模型在研究细菌适应性免疫和毒力因子等方面取得诸多成就。最近,应用新技术在单增李氏杆菌的基因组中已发现数百个非编码RNA(ncRNAs),揭示了其复杂的转录机制。反义RNA是目的基因互补链的非编码RNA序列。本文,对反义RNA在单增李氏杆菌中的作用机制和功能进行简要综述,这有助于更深层次的理解RNA介导的基因调控,为诊断技术及抗菌药的研发提供方向。  相似文献   

8.
<正>miRNA是一种内生的、长度约18~25个核苷酸的小RNA,为小分子非编码单链RNA,广泛参与基因转录后水平的调控。miRNA并不直接编码蛋白,能够在转录水平与靶mRNA的特定序列发生结合,通过降解靶mRNA或抑制翻译从而发挥调控作用。研究表明,miRNA参与调节各种生命活动,包括细胞的分化、增殖、凋亡、激素的分泌、新陈代谢、肿瘤的发生发展等[1-2]。研究发现,miRNA在肺炎  相似文献   

9.
环状RNA(circRNA)是一种内源性非编码RNA。近年来,研究者们运用多组学相结合的方法开展了大量研究,发现环状RNA在mRNA转录过程中具有潜在的调控作用。文章简述了环状RNA的研究历程,介绍了环状RNA的形成过程,阐述了环状RNA的功能作用,综述了环状RNA在小鼠、畜禽中的研究进展,并展望了环状RNA的研究方向。  相似文献   

10.
长链非编码RNA(long noncoding RNA,lncRNA)是一类转录本长度大于200个核苷酸(nt)的非编码RNA,其可被转录但通常没有编码潜能,不能翻译成为蛋白质,故早期被认为是基因组转录过程中形成的副产物.近年在生殖领域随着二代测序技术的发展,已发现lncRNA可在转录、转录后修饰、翻译、翻译后修饰及表...  相似文献   

11.
miRNAS在禽流感病毒感染家禽中的调控作用   总被引:1,自引:1,他引:0  
miRNAs是一种单链非编码长度约为19~23bp的RNA分子,miRNAs对基因表达的调控主要依赖于不同机制的转录后加工,包括对目的mRNA直接剪切、阻止转录、对转录进行上调等.人们发现miRNAs是调节病毒发病机理的重要影响因子.  相似文献   

12.
布鲁菌病(布病)是一种严重的人兽共患病。作为布病的病原,布鲁菌能够耐受宿主体内的各种杀菌机制并持续的生存。当布鲁菌侵入宿主体内后,必须适应抗体免疫的环境,而这依赖于布鲁菌对自身基因表达的巧妙调控。Hfq蛋白是一个RNA伴侣分子,对于介导sRNA的转录后调控发挥着重要的作用。在多种细菌中,对Hfq蛋白的功能都进行了深入的研究,目前已经发现该蛋白与细菌基因的表达调控、细菌对多种应激环境的适应能力以及致病菌的毒力均有着密切的关系。论文对Hfq蛋白的结构,对sRNA的调控功能,特别是布鲁菌Hfq蛋白调控功能的研究现状及在布病疫苗研发中的应用进行系统的介绍,为布鲁菌基因的表达调控和布病防控技术的研究提供参考。  相似文献   

13.
结核分枝杆菌引起的结核病仍然是全球危害最严重的疾病之一,由于结核分枝杆菌耐药性增强和艾滋病蔓延,结核病又有卷土重来之势。非编码RNA(non-coding RNA,nc RNA)具有基因调控作用。结核分枝杆菌相关的非编码RNA分为细菌体内的s RNA(small RNA)和宿主体内的非编码RNA两大类,其中现已发现结核分枝杆菌内有5’和3’端非编码RNA、反义转录产物、基因间s RNA等多种nc RNA,其多以与靶基因碱基互补影响靶基因表达。宿主细胞内有微小RNA和长非编码RNA,这两类非编码RNA功能与作用机制不尽相同。微小RNA作用机制与细菌内s RNA类似,其中mi R-155等是研究的热点;长非编码RNA的研究才刚刚兴起,其功能比微小RNA更加广泛,将会成为未来的热门研究领域。研究这两大类非编码RNA对于理解结核分枝杆菌在宿主细胞中的存活机制及致病机理以帮助研发新型疫苗、药物诊断方法等有着非常重要的意义。  相似文献   

14.
微RNA(miRNA)是一类长约22 nt的非编码小RNA分子,通过与靶基因mRNA特定位点结合,在转录后水平引起该mRNA的降解或抑制蛋白质合成。大量研究显示,脂肪细胞分化过程受miRNA的调节,在前体脂肪细胞分化为成熟的脂肪细胞过程中具有多种功能。深入了解miRNA在脂肪细胞分化过程中的作用有助于探索脂肪形成的分子机制,以及发现脂类代谢性疾病的潜在治疗靶点。  相似文献   

15.
microRNA(miRNA)是一类广泛存在于多细胞动物中的进化保守的大小为18~25nt的非编码小分子RNA,可以通过与靶基因mRNA的非编码区(3′UTR)结合导致mRNA降解,或阻断mRNA翻译而调节基因表达。let-7是在线虫中发现的具有转录后调节功能的小分子RNA,具有高度的保守性,研究发现,let-7参与动物个体多个器官组织的发育过程。作者综述了近年来let-7参与调控脑、神经系统、心肺系统和肌肉发育等组织器官的研究成果,初步阐述了let-7调控组织器官发育的作用机制,以期为进一步探索let-7在动物体内的功能奠定基础。  相似文献   

16.
在哺乳动物基因组中,绝大多数被转录成为非编码RNA(non-coding RNA,ncRNA),其中,长链非编码RNA(long non-coding RNA,lncRNA)是数目最多的,也是功能最复杂的一类非编码RNA。研究表明,长链非编码RNA可以从染色质水平、转录和转录后水平对基因的表达进行调控。长链非编码RNA在剂量补偿效应、基因组印记、细胞分化和组织形成等多个方面发挥着重要作用。在此将着重介绍长链非编码RNA的概念、作用机制及其在家畜方面的应用,最后对长链非编码RNA在家畜育种方面的应用进行展望。  相似文献   

17.
近年来抗菌药物的广泛使用,导致细菌耐药性问题日益严重,耐药菌所致的感染给人类健康及畜禽生产带来巨大威胁,随着高通量测序技术的迅速发展,细菌转录组学的研究可帮助人们探究细菌耐药前后发生差异表达的基因以及筛选出具有调控作用的非编码RNA。本文以细菌耐药性的产生机制和调控机制为出发点,从转录组水平探讨耐药细菌中外排泵系统、二元调控系统、代谢途径相关基因的差异表达情况和非编码RNA对细菌外排泵系统、细胞膜通透性和生物被膜的调控机制,以期为细菌耐药性研究奠定基础。  相似文献   

18.
为了筛选与单增李斯特菌(LM)生物被膜形成相关的非编码小RNA(sRNA),并初步探索sRNA及其靶基因生物学功能,本研究通过高通量测序和实时荧光定量PCR比较LM浮游菌和生物被膜形成不同时段sRNA的差异情况,筛选与LM生物被膜形成相关的sRNA;预测sRNA的靶基因及分析其可能参与生物被膜形成的调节通路。结果表明:与LM浮游菌相比,预测到38个新的sRNA,其中sRNA00085、sRNA00019、sRNA00058在LM生物被膜形成中显著上调,sRNA00054、sRNA00081、sRNA00111显著下调;3个上调sRNA和3个下调sRNA的靶基因可能参与碳代谢、不同环境中微生物代谢、核糖体、糖代谢、氨酰基-tRNA生物合成及脂肪酸代谢6条调控通路,是潜在的LM生物被膜调控因子。研究结果为深入研究LM生物被膜sRNA调控机制提供了理论依据。  相似文献   

19.
RNA干扰是将双链RNA导入细胞引起特异基因mRNA降解的一种细胞反应过程,涉及多种蛋白质共同参与。此干扰机制可在转录、转录后和翻译水平上实现。转录水平上的干扰机制是通过对靶基因染色质结构的改变,使其基因转录受限,导致表达系统的关闭。翻译水平上的干扰机制,是通过抑制相应mRNA的翻译,使相应的蛋白质表达受阻。转录后水平则包括siRNA形成阶段和扩增循环阶段。siRNA形成阶段即外源性或内源性dsRNA通过Argonaute家族基因编码的蛋白质的识别,进一步诱导双链RNA与Dicer结合。扩增循环阶段即特异性siRNA与靶mR-NA结合后,没有被活性酶切割、降解;而是以siRNA中的一条链为引物,以靶mRNA为模板,在RNA依赖的RNA聚合酶的作用下,延伸形成新的双链RNA,被Dicer内切酶或相关酶切割为新的21 nt~23 nt siRNA。随着RNA干扰技术的不断进步,RNA干扰可广泛地应用到抗病毒,肿瘤治疗,药物靶点筛选以及免疫性疾病治疗等方面。  相似文献   

20.
sRNA伴侣蛋白Hfq敲除条件下沙门菌的转录组分析   总被引:1,自引:0,他引:1  
为探明沙门菌(Salmonella)在sRNA伴侣蛋白Hfq敲除条件下转录组变化情况。本试验采用HiSeq测序平台对沙门菌LT2菌株及其Hfq敲除株进行高通量测序,通过DESeq2差异分析方法筛选敲除sRNA伴侣蛋白Hfq条件下的差异表达基因,对其进行生物信息学GO功能显著性富集分析和Pathway显著性富集分析。结果显示,对照组和试验组分别得到12 753 534条、8 254 308条Clean Reads。通过DESeq2差异分析获得差异基因1 055个,其中表达上调基因516个,表达下调基因539个。GO功能显著性富集分析表明显著差异表达基因主要富集在钴胺素代谢过程、钴胺素生物合成过程、碳水化合物代谢过程等生物过程中。Pathway显著性富集分析表明显著差异表达基因富集到细菌趋化性、丙酸代谢和碳代谢等11个信号通路中。结果表明,本试验应用RNA-seq技术丰富了sRNA伴侣蛋白Hfq调控基因数量,筛选出20个受伴侣蛋白Hfq调控的显著差异表达基因,其中4个基因功能及编码蛋白未知,注释了差异表达基因的生物学功能及信号通路,推断Hfq在细菌对数期主要通过影响营养提供和趋化性等途径,继而影响细菌的正常生理活动,为Hfq协同sRNA的调控机理研究及sRNA靶基因的筛选奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号