共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
3.
4.
Tomoaki Morishita Ryusuke Hatano Roman V. Desyatkin 《Soil Science and Plant Nutrition》2013,59(3):369-377
Abstract Quartz and mica contents were determined as a function of particle size of soils over quartz and mica-free basalts in northwestern Kyushu and San-in. The contents of both minerals were much higher in the surface soil horizons than in the lower horizons. Quartz particle size distribution (predominantly 2 to 53 μm) and surface morphology (chip or shard, not euhedral) which are similar to those in the north central Pacific pelagic sediments and Hawaiian soils, indicated that quartz is added as aerosolic dust and loess carried by the circumpolar Westerly Winds from Asian semi-arid and arid regions. Close proximity to the eolian sources was deduced by somewhat coarser texture of the present soil quartz. Lower surface soil quartz content, relative to that in the Hawaiian soils was interpreted as indicating a younger landscape age caused by intensive denudation. The covariant relation between the quartz and miea eontents of soils may suggest that at least a portion of the micaceous minerals and quartz in Ando soils of Japan also has a tropospheric origin. 相似文献
5.
The mineralization of native soil organic matter and the simultaneous diffusion of zero NH+4 and NO?3 to a solution sink of zero N concentration was analysed experimentally and theoretically for a fine sandy loam soil. Experimentally, the NH4 and NO3 ions produced in an incubated unsaturated soil column were allowed to diffuse through a sintered glass plate into a stirred solution sink. The distribution of NH+4 and NO?3 in the soil column was measured after various incubation times. The rate of ammonification was measured directly during incubation and the rate of nitrification modelled from nitrifier growth kinetics. A Freundlich equation was used to describe the equilibrium between soluble and exchangeable NH+4 in the soil. Terms for the microbial transformation of N and the adsorption-desorption of NH+4 were combined with diffusion equations which were solved numerically using finite difference methods. The model constructed was used to predict the NH+4 and NO?3 con-centration distributions in the soil column, and good agreement was obtained between the experimental and predicted concentration profiles. The use of the model for predicting the diffusive flux of mineral N to the outer surfaces of soil peds, where it is vulnerable to leaching, was demonstrated. 相似文献
6.
7.
8.
Rong YANG Chaopu TI Feiyue LI Meihua DENG Xiaoyuan YAN 《Soil Science and Plant Nutrition》2010,56(1):86-94
To evaluate the atmospheric load of reactive gaseous nitrogen in the fast-developing Eastern China region, we compiled inventories of nitrous oxide (N2 O), nitrogen oxide (NOx ) and ammonia (NH3 ) emissions from a typical rural catchment in Jiangsu province, China, situated at the lower reach of the Yangtze River. We considered emissions from synthetic N fertilizer, human and livestock excreta, decomposition of crop residue returned to cropland and residue burning, soil background and household energy consumption. The results showed that, for the 45.5 km2 catchment, the annual reactive gaseous emission was 279 ton N, of which 7% was N2 O, 16% was NOx and 77% was NH3 . Synthetic N fertilizer application was the dominant source of N2 O and NH3 emissions and crop residue burning was the dominant source of NOx emission. Sixty-seven percent of the total reactive gaseous N was emitted from croplands, but on a per unit area basis, NOx and NH3 emissions in residential areas were higher than in croplands, probably as a result of household crop residue burning and extensive human and livestock excreta management systems. Emission per capita was estimated to be 18.2 kg N year−1 in the rural catchment, and emission per unit area was 56.9 kg N ha−1 year−1 for NH3 + NOx , which supports the observed high atmospheric N deposition in the catchment. Apparently, efficient use of N fertilizer and biological utilization of crop straw are important measures to reduce reactive gases emissions in this rural catchment. 相似文献
9.
H. STANJEK J. W. E. FASSBINDER H. VALI H. WÄGELE W. GRAF 《European Journal of Soil Science》1994,45(2):97-103
The occurrence of greigite (Fe3S4) in soils is reported for the first time. It forms irregularly-shaped aggregations within plant cells in the Gr2 horizon of a gley soil developed from colluvial material. Greigite was identified by X-ray diffraction and magnetic measurements and was investigated by optical and transmission electron microscopy. Biogenic formation is proposed, based on the elongated shape of single greigite crystals, and sulphur isotope analyses, which showed a depletion in 34S relative to the soil-water sulphate. The cell-edge length of 0.98639±0.00003 nm is significantly smaller than values reported for sedimentary greigite. The mean coherence length of 27 nm agrees with TEM observations and indicates that the single greigite crystals lie in the superparamagnetic region. However, the fine aggregates show magnetically single-domain behaviour. Greigite is the only carrier of a stable magnetic remanence in the soil profile studied. 相似文献
10.
The emission of CO2 from Galician (NW Spain) forest, grassland and cropped soils was studied in a laboratory experiment, at different temperatures (10-35 °C) and at moisture contents of 100% and 160% of the field capacity (FC) of each soil (the latter value corresponds to saturated conditions, and represents between 120% and 140% of the water holding capacity, depending on the soil). In the forest soil, respiration in the flooded samples at all temperatures was lower than that at 100% field capacity. In the agricultural (grassland and cropped) soils the emission was higher (particularly at the highest incubation temperatures) in the soils wetted to 160% of the field capacity than in those wetted to 100% of the field capacity. In all cases the emission followed first order kinetics and the mineralization constants increased exponentially with temperature. In the forest soil, the Q10 values were almost the same in the soils incubated at the two moisture contents. The grassland and cropped soils displayed different responses, as the Q10 values were higher in the soils at 160% than in those at 100% of field capacity. In addition, and particularly at the highest temperatures, the rate of respiration increased sharply 9 and 17 days after the start of the incubation in the grassland and in the cropped soil, respectively. The above-mentioned anomalous response of the grassland and cropped soils under flooding conditions may be related to the agricultural use of the soils and possibly to the intense use of organic fertilizers in these soils (more than 150 kg N ha−1 year−1 added as cattle slurry or manure, respectively, in the grassland and cropped soils). The observed increase in respiration may either be related to the development of thermophilic facultative anaerobic microbes or to the formation during the incubation period of a readily metabolizable substrate, possibly originating from the remains of organic fertilizers, made accessible by physicochemical processes that occurred during incubation under conditions of high moisture. 相似文献
11.
Effects of agricultural land-use change and forest fire on N2 O emission from tropical peatlands, Central Kalimantan, Indonesia 总被引:1,自引:0,他引:1
Fumiaki TAKAKAI Tomoaki MORISHITA Yasuyuki HASHIDOKO Untung DARUNG Kanta KURAMOCHI Salampak DOHONG Suwido H. LIMIN Ryusuke HATANO 《Soil Science and Plant Nutrition》2006,52(5):662-674
12.
Tjaša Danev?i? Bla? Stres David Stopar Janez Hacin 《Soil biology & biochemistry》2010,42(9):1437-1446
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O. 相似文献
13.
14.
15.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites. 相似文献
16.
C. Kechavarzi Q. Dawson P. B. Leeds-Harrison J. Szatyowicz & T. Gnatowski 《Soil Use and Management》2007,23(4):359-367
The rate of oxidation of peat soils is highly seasonal and varies with temperature and soil moisture content. Large variations in soil moisture content result in wet–dry cycles that can enhance peat degradation. Water‐table management plays a crucial role in controlling and damping the effect of these environmental factors. However, maintaining high ditch water levels in fields bounded by ditches does not guarantee a high field groundwater level. The effect of installing subsurface irrigation at different spacings on water table elevation was studied in a low‐lying peat grassland. The water table elevation data were compared against values predicted with a water balance model. In addition, greenhouse experiments were carried out on undisturbed soil core samples collected from the peat grassland as well as a low‐lying peatland under intensive arable faming to measure CO2 evolution under different water regimes. The field data from the peat grassland suggest that sub‐irrigation spacing as low as 10 m is necessary during summer periods to maintain groundwater levels similar to those in the ditches. Over the same period of observation, the difference in water level between the ditches and the non‐irrigated fields is as high as 0.7 m. Modelled outputs are in good correlation with the field observations, and demonstrate that simple water balance models can provide an effective tool to study the effect of water management practices and potential changes in subsurface conditions, climate and land use on water‐table levels. The measurement of CO2 emission from undisturbed peat soil columns shows that the rate of oxidation of soil organic matter from peat soils is highly seasonal and that drainage exacerbates the rate of peat mineralization. 相似文献
17.
An emission inventory concerning volatile organic compounds (VOC) and their emission profile linked to their sources in Sweden has been undertaken. The inventory has been used in model simulations to predict the ozone formation from different emission source categories in Sweden. The studies have been carried out using the IVL photochemical trajectory model for two types of air masses which describes clean and polluted air. In Sweden mobile sources contribute to 45 % by mass of the total national VOC emissions, 58 % of the NOx emissions and to at least 43 % of the ozone formation from national sources. In general, the ozone formation in Sweden is more dependent and sensitive to emissions of NOx rather than VOC. 相似文献
18.
19.
Kinetic equations are developed for a system in which a column of reduced soil is exposed to oxygen at one end. The equations are combined in a simulation model in which they are solved by finite-difference methods. The model predicts the consequent diffusion of oxygen into the column; the diffusion of ferrous iron towards the oxidation zone; the rate of formation and concentration profile of the ferric hydroxide formed; and the diffusion by acid-base transfer of the acidity produced in the oxidation reaction. A sensitivity analysis of the model, in which runs were made for a wide range of input parameters, showed that for most combinations of parameters, in water-saturated soil, substantial amounts of iron are transferred towards the air-exposed surface, leading to a well-defined zone of ferric hydroxide accumulation. The profile of total iron in this zone is often banded. The pH in the zone falls by at least two units. A small amount of air-filled pore space increases the depth of the oxidation front dramatically. The model indicates that coupled iron oxidation and diffusion reactions, which are very widespread in natural soils, may be understood quantitatively. 相似文献
20.
Abstract. Artificial urine containing 20.2 g N per patch of 0.2 m2 was applied in May and September to permanent grassland swards of a long‐term experiment in the western uplands of Germany (location Rengen/Eifel), which were fertilized with 0, 120, 240, 360 kg N ha?1 yr?1 given as calcium ammonium nitrate. The effect on N2O fluxes measured regularly during a 357‐day period with the closed‐chamber technique were as follows. (1) N2O emission varied widely among the fertilized control areas without urine, and when a threshold water‐filled pore space >60% was exceeded, the greater the topsoil nitrate content the greater the flux from the individual urine patches on the fertilized swards. (2) After urine application in May, 1.4–4.2% of the applied urine‐N was lost as N2O from the fertilized swards; and after urine application in September, 0.3–0.9% of the applied urine‐N was lost. The primary influence on N2O flux from urine patches was the date of simulated grazing, N‐fertilization rate being a secondary influence. (3) The large differences in N2O emissions between unfertilized and fertilized swards after May‐applied urine contrasted with only small differences after urine applied in September, indicating an interaction between time of urine application and N‐fertilizer rate. (4) The estimated annual N2O emissions were in the range 0.6–1.6 kg N2O‐N per livestock unit, or 1.4, 3.6, 4.1 and 5.1 kg N2O‐N ha?1 from the 0–360 kg ha?1 of fertilizer‐N. The study demonstrated that date of grazing and N‐fertilizer application could influence the N2O emission from urine patches to such an extent that both factors should be considered in detailed large‐scale estimations of N2O fluxes from grazed grassland. 相似文献