首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to investigate the combined effect of several dietary contents of vitamin E and polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid (DHA), on growth, survival, biochemical composition and tissue morphology of sea bass along early development. A feeding experiment was conducted in sea bass larvae using five different diets with the same proximate composition and different ratios of DHA concentrated fish oil [10, 30 and 50 g kg?1 dry weight (DW)] and vitamin E (α‐tocopherol acetate) (1500 and 3000 mg kg?1 DW). DHA was readily deposited in fish tissues and associated with higher sea bass mortalities probably because of increased peroxidation risks. Besides, the elevation of dietary DHA contents up to 5% severely increased the incidence of muscular lesions and the presence of ceroid pigment within hepatocytes. However, elevation of dietary vitamin E levels markedly reduced the incidence of these symptoms in sea bass, increasing the tissue content in several PUFA and improving growth and stress resistance. Moreover, when sea bass was fed diets containing high vitamin E levels, fish showed a significant improvement in growth when dietary DHA was raised from 1% to 3%. Therefore, in sea bass larvae, a ratio of 30 g kg?1 DHA and 3000 mg kg?1 vitamin E seems to be adequate to achieve a good larval performance and to avoid muscular lesions.  相似文献   

2.
Together with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), arachidonic acid (ARA) is being considered to be an essential fatty acid in marine fish larval diets. The objective of the present study was to determine the importance of dietary ARA levels for larval European sea bass performance, when EPA and DHA are also present in the diet. Eighteen‐day‐old larvae were fed, for 14 days, gelatine‐based microdiets containing the following ARA levels: 0.3%, 0.6% or 1.2%. Elevation of dietary ARA up to 1.2% showed a positive correlation with larval survival and a significant improvement in the specific growth rates, body weight and total length. Arachidonic acid was efficiently incorporated into larval lipids, even at a higher proportion than that in the diets. Increased accumulation of ARA did not affect the incorporation of DHA or EPA from the diet into larval total lipids. A significant positive correlation was found between dietary ARA levels and survival after handling stress, indicating the importance of this fatty acid in sea bass larvae response to acute stressors. The results show the importance of ARA for sea bass larvae, but higher dietary levels should be tested to determine whether there is a negative effect of ARA in sea bass as reported for other species.  相似文献   

3.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

4.
This study aimed to evaluate the effects of enriched Artemia by fish and soybean oils supplemented with vitamin E on growth performance, lipid peroxidation, lipase activity and fatty acid composition of Persian sturgeon (Acipenser persicus) larvae. For this purpose, five experimental diets including non‐enriched Artemia (control diet), Artemia enriched with soybean oil supplemented with 15% and 30% vitamin E (S15 and S30 diets) and fish oil supplemented with 15% and 30% vitamin E (F15 and F30 diets) were used. The larvae were fed to apparent satiation four times per day for 22 days. The results indicated that fish fed enriched Artemia had no significant differences compared with those fed non‐enriched Artemia in terms of growth and survival, but increase in vitamin E levels from 15 to 30% improved growth performance of larvae. Vitamin E content in fish fed S15 and S30 diets was significantly higher. Fish fed non‐enriched Artemia had significantly higher thiobarbituric acid and lower lipase activity. The highest HUFA and n‐3/n‐6 ratio were observed in fish fed F15 and F30 diets. Our results demonstrated that fish oil can completely replace with soybean oil in larval diets. Therefore, using S30 diet is recommended for feeding of Persian sturgeon larvae.  相似文献   

5.
The objectives of this study were to determine the effects of the dietary docosahexaenoic acid (DHA) to arachidonic acid (ARA) ratio on the survival, growth, hypersaline stress resistance and tissue composition of black sea bass larvae raised from first feeding to metamorphic stages. Larvae were fed enriched rotifers Brachionus rotundiformis and Artemia nauplii containing two levels of DHA (0% and 10% total fatty acids=TFA) in conjunction with three levels of ARA (0%, 3% and 6% TFA). On d24ph, larvae fed the 10:6 (DHA:ARA) treatment showed significantly (P<0.05) higher survival (62.3%) than larvae fed 0:0 (DHA:ARA) (27.4%). Notochord length and dry weight were also significantly (P<0.05) greater in the 10:6 (DHA:ARA) treatment (8.65 mm, 2.14 mg) than in the 0:0 (DHA:ARA) (7.7 mm, 1.65 mg) treatment. During hypersaline (65 g L−1) challenge, no significant differences (P>0.05) were observed in the median survival time (ST50) between larvae fed 10% DHA (ST50=25.6 min) and larvae fed 0% DHA (ST50=18.2 min). The results suggested that black sea bass larvae fed prey containing 10% DHA with increasing ARA within the range of 0–6% showed improved growth and survival from first feeding through metamorphic stages.  相似文献   

6.
We evaluated the effects of dietary vitamin E concentration and source on production performance and immunocompetency of sunshine bass, Morone chrysops  ×  Morone saxatilis , following stress and disease challenge. Four diets were formulated to contain requisite levels (1×) or five times (5×) the vitamin E requirement of sunshine bass as met by synthetic vitamin E (SYNE) or natural source vitamin E (NSVE). Each diet was fed to juvenile sunshine bass for 8 wk prior to experimental challenges. Replicate tanks within each dietary treatment were challenged with stressor exposure (chasing with dip net), incidental Flavobacterium columnare exposure, or both; control groups were not challenged. Pathogen and/or stressor exposure largely resulted in significant reductions in immunological performance. Although significant independent dietary effects were not observed among immunological parameters, suppression of complement and macrophage respiratory burst activities was numerically lower within the 5× NSVE treatment. Production performance was largely unaffected by dietary vitamin E source or level. Fillet α-tocopherol concentration was significantly higher among fish fed the 5× diets (40.7/41.6 vs. 12.2/14.5 μg/g dry tissue for 1× diets); however, the dietary concentration required to achieve these levels was lower for NSVE. Although super-requirement levels of either source of vitamin E were apparently beneficial, NSVE was effective at ∼50% lower supplementation levels.  相似文献   

7.
Despite the interest of meagre (Argyrosomus regius) as a fast‐growing candidate for Mediterranean aquaculture diversification, there is a lack of information on nutrition along larval development. Importance of highly unsaturated fatty acids (HUFA) and the antioxidant vitamins E and vitamin C has not been investigated yet in this species. Six diets with two levels of HUFA (0.4% and 3% dw), two of vitamin E (1500 and 3000 mg kg?1) and two of vitamin C (1800 and 3600 mg kg?1) were fed to 15 dah meagre larvae. Larval growth in total length and dry body weight was significantly lowest in larvae fed diet 0.4/150/180 and showed few lipid droplets in enterocytes and hepatocytes and lower HUFA contents than the initial larvae. Increase in dietary HUFA up to 3%, significantly improved larval growth and lipid absorption and deposition. Besides, among fish fed 3% HUFA, increase in vitamin E and vitamin C significantly improved body weight, as well as total lipid, 22:6n‐3 and n‐3 fatty acids contents in the larvae. Thus, the results showed that 0.4% dietary HUFA is not enough to cover the essential fatty acid requirements of larval meagre and a high HUFA requirement in weaning diets is foreseen for this species. Besides, the results also pointed out the importance of dietary vitamin E and C to protect these essential fatty acids from oxidation, increase their contents in the larvae and promote growth, suggesting high vitamin E and C requirements in meagre larvae (higher than 1500 and 1800 mg kg?1 for vitamin E and vitamin C respectively).  相似文献   

8.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

9.
This is the first comprehensive study on the effect of dietary polyunsaturated fatty acid (PUFA) levels on the expression of fatty acid elongase 5 (AJELOVL5), PUFA composition, and growth in juvenile sea cucumbers. The specific growth rate (SGRw) was improved in n‐3 PUFA‐rich diets compared to low n‐3 PUFA diets. AJELOVL5 expression was apparently upregulated in juveniles fed lower PUFA diets relative to higher PUFA diets, with higher expression in the body wall and respiratory tree of juveniles fed diets without ɑ‐linolenic acid (ALA, 18:3n‐3) compared to juveniles fed higher ALA level diets; similar results were also detected in juveniles fed diets with lower eicosapentaenoic acid (EPA, 20:5n‐3), docosahexaenoic acid (DHA, 22:6n‐3), and none of ALA, EPA, or DHA respectively. The concentrations of ALA, EPA, and DHA in tissues were positively related to the content of dietary corresponding PUFA, with higher ALA content in juveniles fed diet ALA12.71 than in the ALA7.46 and ALA0 groups. Similar results were also obtained in sea cucumber fed diets enriched with either EPA or DHA. Interestingly, considerable levels of EPA and DHA were found in the tissues of juveniles fed diets of CK0 and DHA0, with no specific input of EPA or DHA, showing that the sea cucumber was capable of biosynthesizing EPA and DHA from their corresponding precursors as ALA and linoleic acid (LA, 18:2n‐6).  相似文献   

10.
This study was conducted to investigate the effects of maternal inherited immunity acquired from crustacean‐enhanced diets on the vitality and profitability of sea bass offspring. Newly hatched larvae produced from three groups of broodstock were evaluated. The broodstock were fed (a) a basal diet (BD), (b) a Palaemon‐supplemented diet (PSD), and (c) an Artemia‐supplemented diet (ASD) for 42 days. A total of 400,000 larvae at 3 days posthatch (DPH) produced from each treatment were stocked in larval rearing tanks at 40 larvae/L for 42 days. Survival (%) was improved by 37 and 9.96% in the groups fed ASD and PSD compared with the control group. The growth, swim bladder (%), and condition factor all significantly (p ≤ 0.05) improved in the postlarvae produced from broodstock enhanced with crustacean diets. Compared with the BD group, the serum lysozyme activities of the fish groups fed ASD and PSD increased by 45.6 and 11.7%, respectively. Sea bass fry (90DPH) produced from broodstock fed ASD showed the best tolerance to salinity/temperature stress tests. Furthermore, the profitability improved in ASD and PSD compared with the BD group. In conclusion, sea bass broodstock enhanced with Artemia biomass produced offspring of superior quality with less cost and greater profit margins.  相似文献   

11.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

12.
This study aimed to evaluate the effect of enriching Artemia nauplii with vitamin C (ascorbyl-6 palmitate) or vitamin E (α-tocopherol acetate), 20% w/w, together with a mixture of concentrated eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) on the growth, survival, and stress resistance of fresh water walleye Stizostedion vitreum larvae. Either cod liver oil (CLO) or EPA/DHA ethyl esters concentrate was used as lipid sources in the Artemia enrichment. Walleye larvae were fed ad libitum for 40 days. At day 40, submersion in salt water (25 g L−1) was performed to evaluate larvae resistance to stress. EPA and DHA levels in walleye juveniles fed EPA/DHA-enriched Artemia increased significantly, by an average of 650% compared with fish fed non-enriched Artemia . A significant increase was found for vitamins C (71.8 ± 1.0 and 42.7 ± 1.2 μg g−1 wet weight (WW)) and E (17.0 ± 3.7 and 6.5 ± 0.9 μg g−1WW) concentrations in fish fed enriched and unenriched Artemia , respectively. Growth was comparable throughout treatments, whereas survival was significantly higher in fish fed CLO-enriched Artemia nauplii compared with fish fed Artemia nauplii enriched with EPA/DHA concentrate. The addition of vitamin C increased fish survival by 1.4-fold compared with fish fed Artemia enriched with only EPA/DHA concentrate. The survival of the latter was similar to control fish ( Artemia without enrichment). The supplementation of vitamin E did not affect fish survival significantly. Stress tests revealed that the resistance of walleye larvae to salinity changes increased when Artemia enrichment was supplemented with vitamin C. However, walleye larvae fed CLO-enriched Artemia had the best performances in the stress test.  相似文献   

13.
Five diets having the same proximate composition but containingdifferent types of supplemental oils, singly or in combination, were used forgrowing sea bass from 95 g to about 200 g in smallseacages. The oils tested were olive oil, soybean oil and fish oil. The dietsformulated contained EPA and DHA levels ranging from 0.88 to 1.35% of the diet.Growth parameters and fish body composition were not significantly affected bythe type of oil used. The same was generally apparent for liver andhematological characteristics. The content of phospholipids in EPA and DHA washighest in the livers of fish fed diets supplemented with fish oil. A positivecorrelation was found between dietary and liver n-6 PUFA. Histological sectionsindicated extended pathological symptoms (intensive liver degeneration andhemorrhages, changes in the gill structure) in the fish receiving dietssupplemented only with plant oils. These symptoms existed but to a smallerfrequency and degree in livers of fish fed diets supplemented with plant andfish oil, while were not apparent in those fed the fish oil diet.  相似文献   

14.
A 12‐week feeding trial was conducted to evaluate the effects of fish oil replacement by soybean oil, on lipid distribution and liver histology of two commercially important finfish species: rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax). Sea bass (16.2 ± 0.5 g; mean ± SD) and rainbow trout (52.1 ± 0.5 g) juveniles were fed one of three isonitrogenous (500 g kg?1 CP) and isoenergetic (19 kJ g?1) diets, containing 0% (control, diet A), 25% (diet B) and 50% (diet C) soybean oil. At the end of the experiment, lipid deposition was evaluated in muscle, liver and viscera. Cholesterol and triglycerides levels were also determined in plasma. Tissue total, neutral and polar lipid composition (g kg?1 total lipids) showed no significant differences within species, regardless the dietary treatment. The same trend was observed for plasma parameters (P > 0.05). Viscera were the preferential tissue of lipid deposition, with 252–276 and 469–513 g kg?1 total lipid content in trout and sea bass, respectively. Dietary fish oil replacement had no effect on either hepatic lipid droplets accumulation or degree and pattern of vacuolization in the observed liver sections. These data suggest that both sea bass and trout can be fed diets containing up to 50% soybean oil without adverse effects on tissue lipid composition or liver histology.  相似文献   

15.
Five diets having the same proximate composition but containingdifferent types of supplemental oils, singly or in combination, were used forgrowing sea bass from 95 g to about 200 g in smallseacages. The oils tested were olive oil, soybean oil and fish oil. The dietsformulated contained EPA and DHA levels ranging from 0.88 to 1.35% of the diet.Growth parameters and fish body composition were not significantly affected bythe type of oil used. The same was generally apparent for liver andhematological characteristics. The content of phospholipids in EPA and DHA washighest in the livers of fish fed diets supplemented with fish oil. A positivecorrelation was found between dietary and liver n-6 PUFA. Histological sectionsindicated extended pathological symptoms (intensive liver degeneration andhemorrhages, changes in the gill structure) in the fish receiving dietssupplemented only with plant oils. These symptoms existed but to a smallerfrequency and degree in livers of fish fed diets supplemented with plant andfish oil, while were not apparent in those fed the fish oil diet.  相似文献   

16.
This study was conducted to evaluate the dietary α‐tocopherol (vitamin E) requirement in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.48 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semi‐purified experimental diets with average protein and crude lipid levels (dry matter) of 29.7 ± 0.36% and 4.39 ± 0.23% (mean ± SD), respectively were formulated to contain 0 (E4), 15 (E12), 30 (E23), 60 (E44), 120 (E77) and 600 (E378) mg α‐tocopherol/kg diet, supplied as dl‐α‐tocopheryl acetate. Diets were analyzed for α‐tocopherol content by HPLC and the α‐tocopherol levels were 4.01, 12.4, 23.1, 44.3, 77.4 and 378 mg α‐tocopherol/kg diet for E4, E12, E23, E44, E77 and E378 diets, respectively. Casein and defatted fish meal were used as the protein sources in the diets while wheat flour was the carbohydrate source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of the 14‐week feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of sea cucumbers fed on E23, E44, E77 and E378 diets were significantly (P < 0.05) higher than those of animals fed on E4 and E12 diets. However, there were no significant differences in WG, SGR and FE among sea cucumbers fed on E23, E44, E77 and E378 diets or among those fed on E4 and E12 diets. Survival of sea cucumbers fed on E44, E77 and E378 diets were significantly higher than those of animals fed on E4, E12 and E23 diets. However, there were no significant differences among sea cucumbers fed on E4, E12 and E23 diets or among those fed on E44 and E77 diets. Whole‐body vitamin E concentration increased with α‐tocopherol content of the diets. Broken line analysis of WG showed an optimum dietary α‐tocopherol requirement of 41 mg α‐tocopherol/kg diet in sea cucumber. These results indicated that the optimum dietary α‐tocopherol requirement in sea cucumber in the form of dl‐α‐tocopheryl acetate could be higher than 23.1 mg α‐tocopherol/kg diet but lower than 44 mg α‐tocopherol/kg diet.  相似文献   

17.
18.
This study evaluates the effects of dietary mannan oligosaccharides (MOS) on growth, tissue composition, fatty acid profiles and liver morphology of European sea bass (Dicentrarchus labrax) fed diets containing either soybean oil (SBO; SBOMOS) or fish oil (FO; FOMOS) as unique oil source for 8 weeks. Results showed that MOS supplementation enhanced specific growth rate, regardless of the oil source used, and that dietary oil source reduced fish length, regardless of dietary MOS supplementation. Dietary MOS favoured lipid accumulation in muscle and anterior intestine when supplemented in FO‐based diets compared to fish fed SBO diet and reduces it in liver in relation to lower hepatocyte area, particularly in fish fed SBOMOS diet. Dietary MOS favoured liver and not muscular ∑n‐3 PUFA, DHA, EPA and ARA deposition, when combined with FO but not when included in SBO‐based diets. Thus, MOS dietary supplementation favours fish performance and helps to minimize the side effects derived from high dietary SBO supplementation on liver lipid accumulation and hepatocyte vacuolization, which could be of especial interest on long‐term feeding trials; however, the effects on favoured deposition ∑n‐3 PUFA are limited to FO‐based diets.  相似文献   

19.
The inclusion of phytogenics in fish feed is a promising strategy to compensate for the negative performance effects of replacing fishmeal (FM) with vegetable sources. The present work assessed the interactive effects of different dietary FM levels (22.5 and 10% of formulation) and the supplementation of a commercial blend of anise, citrus, and oregano essential oils (Digestarom PEP M.G.E 150) on European sea bass, Dicentrarchus labrax growth performance, nutrient utilization, gut morphology, antioxidant status, and immunological response over a 60‐day growth trial. Results showed decreased growth and protein efficiency ratio and increased feed conversion ratio with a low dietary FM level. In contrast, supplementation of the phytogenic product demonstrated improved performance and nutrient utilization together with increased protein and energy retention. Supplementation with the plant essential oils fully compensated for the negative intestinal changes observed in sea bass fed a low‐FM diet but showed little improvement in fish immunological response, except for the 30% increase in lysozyme activity observed in fish fed the low FM‐supplemented diet compared to those fed the standard high‐FM diet. Overall, this study supports the use of this phytogenic product in low‐FM diets as a possible tool to decrease feed costs associated with FM without compromising fish performance, nutrient utilization, and health.  相似文献   

20.
A feeding trial was conducted to determine the effect of dietary vitamin E supplementation on growth, liver lipid peroxidation and liver and muscle vitamin E level of soft‐shelled turtle, Pelodiscus sinensis. Eight experimental diets analysed to contain 0–457 IU vitamin E kg?1 were fed to juvenile soft‐shelled turtle of 4.8 g initial body weight for 12 weeks. Weight gain (WG) of the turtles fed the diet containing no vitamin E was significantly lower than those fed diets containing 83–457 IU vitamin E kg?1 (P<0.05). Feed conversion ratio and protein efficiency ratio showed similar trends to that of WG. No significant difference (P>0.05) was found in whole‐body composition among turtles fed the different diets. Dietary vitamin E requirement using WG as the response and estimated using the broken‐line regression model is approximately 88 IU kg?1. Liver and muscle vitamin E content increased when dietary vitamin E level increased. Ascorbate‐induced lipid peroxidation in liver tissue of turtles fed diets containing 0 and 17 IU vitamin E kg?1 was significantly (P<0.05) greater than those fed diets containing high vitamin E (≥35 IU kg?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号