首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Big vein disease of lettuce (Lactuca sativa) is an economically important disease transmitted through soil by Olpidium virulentus, and has occurred in most production areas worldwide. The disease is assumed to be caused by Mirafiori lettuce big‐vein virus (MiLBVV). To understand the dynamics of the virus and its vector, MiLBVV and O. virulentus were directly detected in soil. DNA and RNA were extracted from 5 g soil using a bead beating method, followed by purification using adsorption to a column. Detection and quantification were performed using real‐time PCR and a TaqMan probe that was prepared based on the CP region of MiLBVV and the rDNA‐ITS region of O. virulentus, respectively. Furthermore, using a visual assessment of the incidence rate of big vein disease on lettuce in agricultural fields, the Ct values of MiLBVV and O. virulentus from soil were also determined using real‐time PCR. The results showed that MiLBVV concentrations in the soil were high in the field, as also determined by a visual assessment of the incidence rate of big vein disease on lettuce. However, the amount of O. virulentus in soil was not directly correlated with the incidence of MiLBVV. From these results, it is suggested that the risk of lettuce crops developing big vein disease can be estimated using an index of the amount of MiLBVV in the soil.  相似文献   

2.
The potential role of 10 frequently occurring weed species found amongst Spanish lettuce crops as host plants for the two viruses associated with the lettuce big-vein disease, Lettuce big-vein associated virus (LBVaV) and Mirafiori lettuce big-vein virus (MLBVV), was studied. The results showed that both viruses can infect naturally growing Sonchus oleraceus (common sowthistle) plants, the unique susceptible species detected among the analysed weeds. The sequences of the coat protein (CP) genes of the LBVaV and MLBVV isolates recovered from S. oleraceus plants were determined. Phylogenetic studies revealed a very close relationship between the CP sequences from these weed isolates and those from Spanish lettuce. Moreover, we showed that S. oleraceus can act as a source of lettuce infection by means of Olpidium brassicae, the vector fungus of both viruses.  相似文献   

3.
One of the economically important diseases of lettuce is lettuce big-vein disease (LBVD), which leads to severe yield losses. LBVD is associated with a complex of two viruses, Lettuce big-vein associated virus (LBVaV) and Mirafiori lettuce big-vein virus (MLBVV). These viruses are transmitted by motile zoospores of Olpidium spp. fungi, which persist in the soil for decades through resting spores. In greenhouse and field experiments, this study tested whether changing plant and soil temperatures together with fungicide application would have a significant effect on controlling LBVD in lettuce. Soil fumigation with metam sodium was not effective at controlling the disease, as opposed to treatment with chloropicrin and methyl bromide. Moreover, the fungicides carbendazim and fluazinam were effective in reducing the incidence of Olpidium virulentus. Nevertheless, control of the fungal vector did not seem to be sufficient to control the disease due to the transition ability of the virus under low vector abundance. Crop covers, which affect the favourable environmental conditions for the viruses by lowering soil temperature and raising air temperature, reduced the disease symptoms. Combining fungicides with crop cover had a synergistic effect on reducing disease symptoms, thus providing a sustainable solution for LBVD.  相似文献   

4.
Mirafiori lettuce big-vein virus (MLBVV) and Lettuce big-vein associated virus (LBVaV) are found in association with big-vein disease of lettuce. Discrimination between the two viruses is critical for elucidating the etiology of big-vein disease. Using specific antibodies to MLBVV and LBVaV for western blotting and exploiting differences between MLBVV and LBVaV in host reaction of cucumber and temperature dependence in lettuce, we separated the two viruses by transfering each virus from doubly infected lettuce plants to cucumber or lettuce plants. A virus-free fungal isolate was allowed to acquire the two viruses individually or together. To confirm the separation, zoospores from MLBVV-, LBVaV-, and dually infected lettuce plants were used for serial inoculations of lettuce seedlings 12 successive times. Lettuce seedlings were infected at each transfer either with MLBVV alone, LBVaV alone, or both viruses together, depending on the virus carried by the vector. Lettuce seedlings infected with MLBVV alone developed the big-vein symptoms, while those infected with LBVaV alone developed no symptoms. In field surveys, MLBVV was consistently detected in lettuce plants from big-vein-affected fields, whereas LBVaV was detected in lettuce plants not only from big-vein-affected fields but also from big-vein-free fields. LBVaV occurred widely at high rates in winter-spring lettuce-growing regions irrespective of the presence of MLBVV and, hence, of the presence of the big-vein disease.  相似文献   

5.
Potato tuber necrosis in the form of spraing symptoms is caused by infection with Potato mop‐top virus (PMTV) or Tobacco rattle virus (TRV); spraing has become more important in the Swedish potato crop production. In this study, the presence in Sweden of three potato‐infecting viruses associated with necrotic symptoms in tubers was demonstrated: PMTV, TRV and Tobacco necrosis virus (TNV). This study shows that both PMTV and TRV are frequent in Swedish potato fields. PMTV was found in all Swedish counties, except the two most northern ones. TRV was present at several locations in southern and up to the central parts of Sweden. Both viruses were found further north than observed in earlier surveys. PMTV and TRV were analysed in tubers with spraing symptoms and it was not possible to decide visually if the symptoms were caused by either PMTV or TRV. Furthermore, a high occurrence of symptomless tuber infections was observed for several potato cultivars. A unique observation from this study was a mixed infection of both PMTV and TRV in tubers of cv. Berber, where no visual differences on symptom development were detectable for these tubers compared to single infections. During the survey, tubers of cv. Melody were found to display necrotic symptoms in the skin that are characteristic for the ABC disease. This suggested infection by TNV, which also could be confirmed.  相似文献   

6.
Wild and cultivated Fragaria chiloensis ssp. chiloensis (Fcc) plants were collected at different locations in southern Chile in order to determine the current viral status of this native strawberry. The following aphidborne viruses (ABVs): Strawberry mild yellow edge virus (SMYEV), Strawberry mottle virus (SMoV), Strawberry crinkle virus (SCV) and Strawberry vein banding virus (SVBV), were found in wild and cultivated Fcc plants, but severe symptoms were not associated with viral infection. Furthermore, partial gene sequences of these ABV isolates were determined and displayed a high degree of conservation with virus isolates reported previously. In addition, partial gene sequences of SCV and SVBV from southernmost South American populations of Fcc are described for the first time. High‐throughput parallel sequencing (Illumina) of double‐stranded RNA was used to provide viral profiles of Fcc from different locations. Although strong evidence of novel viruses affecting Fcc was not found, it was confirmed that ABVs are the most frequent viruses affecting this subspecies. The information provided will help in the development of high‐quality molecular tools for virus detection and control in Fcc.  相似文献   

7.
Two important sources of Capsicum annuum (bell pepper) resistance were evaluated for their response to inoculation with two isolates of Tobacco etch virus strain NW (TEV‐NW, genus Potyvirus). The resistant cultivars were CA4 and Dempsey, which contain the pvr1 and pvr12 resistance genes, respectively. TEV‐NW was maintained by mechanical passage in the susceptible pepper cultivar Early Calwonder and Nicotiana tabacum cv. Kentucky 14. In initial experiments, the TEV‐NW isolate maintained in Early Calwonder infected two of seven CA4 plants; however, none of the CA4 plants inoculated with the TEV‐NW isolate maintained in Kentucky 14 were infected. The infected CA4 plants had low virus titres in non‐inoculated leaves and did not develop visible symptoms. When the infected CA4 plants were used as inoculum of additional CA4 plants, all newly inoculated plants became infected, developed systemic symptoms and accumulated virus in non‐inoculated leaves more quickly than the originally infected CA4 plants. This new NW isolate, referred to as NW‐CA4, was shown to overcome the resistances expressed by both CA4 (pvr1) and Dempsey (pvr12). The potyviral VPg is believed to be the determinant for pvr1 and pvr12 resistance genes, both of which are eIF4E‐encoding genes. The VPg amino acid sequence for NW‐CA4 was determined and compared with that of NW isolates and different TEV strains. No amino acid variation was identified that explained the infectivity of NW‐CA4 in CA4 and Dempsey plants.  相似文献   

8.
Several potyviruses affect lettuce (Lactuca sativa) and chicory (Cichorium spp.) crops worldwide and are important constraints for production because of the direct losses that they induce and/or because of their seed transmission. Here, the molecular and biological properties are described of two potyviruses that were recently isolated from lettuce plants showing mosaic or strong necrotic symptoms in an experimental field in southeastern France. The first potyvirus belongs to the species Endive necrotic mosaic virus and is present in a large number of wild plant species, especially Tragopogon pratensis. It is unable to infect lettuce cultivars with a resistance to Turnip mosaic virus that is present in many European cultivars and probably conferred by the Tu gene. The second potyvirus belongs to the tentative species lettuce Italian necrotic virus and was not observed in wild plants. It infected all tested lettuce cultivars. Wild accessions of Lactuca serriola, Lactuca saligna, Lactuca virosa and Lactuca perennis were identified as resistant to one or the other potyvirus and could be used for resistance breeding in lettuce. No resistance against these two potyviruses was observed in the tested Cichorium endivia cultivars. In contrast, all tested Cichorium intybus cultivars or accessions were resistant.  相似文献   

9.
Ring necrosis is a serious disease of lettuce (Lactuca sativa) with often coalescing necrotic rings and ring-like patterns on middle leaves of plants or groups of plants in glasshouses during winter. Affected leaves may decay and plants rapidly become unmarketable. The disease was shown to be soil-borne and transmitted by the zoospores ofOlpidium brassicae. Symptoms in lettuce do not appear before seven weeks after inoculation via the soil. Additives to the inoculum and chilling of source leaves, inoculum buffer and utensils enabled mechanical transmission of a pathogenic agent toChenopodium quinoa, C. amaranticolor, Nicotiana benthamiana, N. clevelandii, N. hesperis, andN. occidentalis but not to lettuce. TheChenopodium spp. reacted with local lesions, infection was symptomless inN. clevelandii and mostly so inN. benthamiana, butN. hesperis andN. occidentalis reacted with leaf spotting and plant stunting. With zoospores of an originally pathogen-free fungus culture further cultivated on the roots of cuttings from sap-inoculated plants ofN. clevelandii andN. occidentalis, the agent could be transferred back to lettuce and the symptoms of ring necrosis be reproduced. The agent biologically resembles those of lettuce big-vein (LBV) and freesia leaf necrosis and the tobacco stunt virus. In lettuce it often occurs together with LBV virus but differs in longer incubation period, type of symptoms and symptom appearance only during winter. It could be separated from a mixture with LBV virus by serial transfer always selecting plants without LBV symptoms. So far cultural hygiene, including soil disinfection addressing the vector, is the main means of control.  相似文献   

10.
Lettuce corky root (CR) is caused by bacteria in the genera Rhizorhapis, Sphingobium, Sphingopyxis and Rhizorhabdus of the family Sphingomonadaceae. Members of this family are common rhizosphere bacteria, some pathogenic to lettuce. Sixty‐eight non‐pathogenic isolates of bacteria obtained from lettuce roots were tested for control of CR caused by Rhizorhapis suberifaciens CA1T and FL1, and Sphingobium mellinum WI4T. In two initial screenings, 10 isolates significantly reduced CR induced by one or more pathogenic strains on lettuce seedlings in vermiculite, while seven non‐pathogenic isolates provided significant CR control in natural or sterilized field soil. Rhizorhapis suberifaciens FL11 was effective at controlling all pathogenic strains, but most effective against R. suberifaciens CA1T. The other selected isolates controlled only pathogenic strains belonging to their own genus. In a greenhouse experiment, a soil drench with selected biocontrol agents (R. suberifaciens FL11, Sphingomonas sp. NY3 and S. mellinum CA16) controlled CR better than seed treatments or application of alginate pellets. In microplots infested with R. suberifaciens CA1T, seed treatment with R. suberifaciens FL11 provided complete control and a soil drench with FL11 significantly reduced the disease. Pathogenicity tests with FL11 on 23 plant species in 10 families resulted in slight yellowing on roots of lettuce and close relatives; similar yellowing appeared on some roots of non‐inoculated lettuce plants. This research showed that biocontrol agents can be genus‐specific. Only one isolate, FL11, provided more general control of various pathogenic strains causing CR even in field soil in pots and microplots.  相似文献   

11.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

12.
Tomato leaf curl New Delhi virus (ToLCNDV; family Geminiviridae, genus Begomovirus) is an emerging virus in horticulture crops in Asia, and has recently been introduced in Spain, Tunisia and Italy. No betasatellite DNA was detected in infected tomato and zucchini squash samples from Spain, and agroinoculated viral DNA‐A and DNA‐B were sufficient to reproduce symptoms in plants of both crop species. Infected tomato and zucchini squash plants also served as inoculum sources for efficient transmission either mechanically or using Bemisia tabaci whiteflies. Cucumber, melon, watermelon, zucchini squash, tomato, eggplant and pepper, but not common bean, were readily infected using viruliferous whiteflies and expressed symptoms 8–15 days post‐inoculation. New full‐length sequences from zucchini squash and tomato indicated a high genetic homogeneity (>99% sequence identity) in the ToLCNDV populations in Spain, pointing to a single recent introduction event.  相似文献   

13.
Cannas are tropical and subtropical flowering perennial plants. The genus contains many species but most commercially grown cultivars are interspecific hybrids selected for their attractive foliage and flowers. Canna production is so lucrative that there are farmers and nurseries dedicated solely to its production. The specific issue that the canna industry faces is virus diseases. In this study, rhizomes of 24 canna cultivars were gathered and diagnostics conducted to detect Bean yellow mosaic virus (BYMV, Potyvirus), Canna yellow mottle virus (CaYMV, Badnavirus), Canna yellow streak virus (CaYSV, Potyvirus), Cucumber mosaic virus (CMV, Cucumovirus) and Tomato aspermy virus (TAV, Cucumovirus). Visual assessment of disease symptoms and diagnostic tests were carried out to identify the prevalent diseases and describe the symptoms that are associated with virus infection. BYMV, CaYMV and CaYSV caused severe mosaic and necrosis either in the leaf lamina or veins of infected leaves. Potyvirus infection suppressed red colouration in the foliage of some varieties. CaYMV and CaYSV often appeared in the same plant, suggesting they might represent a viral complex. CMV and TAV were rarely seen in these populations. Interestingly, CaYMV but not CaYSV could be mechanically inoculated to Phaseolus vulgaris plants.  相似文献   

14.
The effect of plant age at the time of inoculation on the severity of bacterial wilt and canker disease caused by Clavibacter michiganensis subsp. michiganensis (Cmm) was examined in six greenhouse experiments. The period during which inoculations led to wilt and death of tomato plants was defined. This period, designated ‘window of vulnerability’, ranged from transplanting to the 17‐ to 18‐leaf stage. Plants inoculated after this period expressed disease symptoms but did not wilt or die. No significant changes in disease incidence were observed when leaves of different ages were inoculated. Yield accumulation was significantly reduced in plants inoculated within the window of vulnerability compared with those inoculated after this period. Expression of virulence genes, viz. celA, encoding a secreted cellulase, and the serine protease‐encoding pat‐1, chpC and ppaA, was induced during the early stages after inoculation in plants inoculated within the window of vulnerability. Differences in Cmm population between plants inoculated within and outside of this period were insignificant after the first week post‐inoculation, indicating that differences in disease severity, yield loss and expression of virulence determinants are not correlated with Cmm population level. Results suggest that implementation of precautionary measures during the window of vulnerability to avoid secondary spread of Cmm will have a season‐long effect on plant mortality and may minimize, or even prevent, yield losses.  相似文献   

15.
16.
Decline of newly planted, grafted grapevines is a serious viticultural problem worldwide. In the Riverina (New South Wales, Australia), characteristic symptoms include low fruit yields, very short shoots and severely stunted roots with black, sunken, necrotic lesions. To determine the cause, roots and wood tissue from affected plants in 20 vineyards (Vitis vinifera cv. Chardonnay grafted to V. champini cv. Ramsey rootstock) were assayed for microbial pathogens. Ilyonectria spp. (I. macrodidyma or I. liriodendra, producers of phytotoxin brefeldin A, BFA, and cause of black foot disease of grapevines) and Botryosphaeriaceae spp. (predominantly Diplodia seriata) were isolated from rootstocks of 100 and 95% of the plants, respectively. Togninia minima and Phaeomoniella chlamydospora (cause of grapevine Petri disease) were isolated from 13 and 7% of affected plants, respectively. All Ramsey rootstock stems of grafted plants sampled from a supplier nursery were infected with Ilyonectria spp. and D. seriata. Diplodia seriata, but not Ilyonectria spp., was also isolated from 25% of canes sampled from the rootstock source block. Root inoculation of potted, disease‐free Chardonnay plants with Ilyonectria isolates from diseased vineyards caused typical disease symptoms, while co‐inoculation with Botryosphaeriaceae spp. increased disease severity. This is the first study to show that a major cause of young grapevine decline can be sequential infection by Botryosphaeriaceae from rootstock cuttings and Ilyonectria spp. from nursery soil. Although the Petri disease fungi were less common in young declining grafted grapevines in the Riverina, they are likely to contribute to the decline of surviving plants as they mature.  相似文献   

17.
The prevalence of viruses in pepper crops grown in open fields in the different agro‐ecological zones (AEZs) of Côte d'Ivoire was surveyed. Pepper veinal mottle virus (PVMV; genus Potyvirus) and Cucumber mosaic virus (CMV; genus Cucumovirus) were the most frequent viruses among those surveyed, while tobamoviruses (genus Tobamovirus) were detected at low frequency. PVMV showed a high heterogeneity across AEZs, which may be related to climatic, ecological or agronomical conditions, whereas CMV was more homogeneously distributed. The molecular diversity of CMV and PVMV were analysed from partial genome sequences. Despite the low number of CMV isolates characterized, two molecular groups were revealed, one corresponding to subgroup IA and the other to reassortants between subgroups IA and IB. RNAs 1 and 3 of the reassortants clustered with the IB subgroup of CMV isolates, whereas their RNA 2 clustered with the IA subgroup. Importantly, RNA 1 of CMV isolates of the IB subgroup has been shown to be responsible for adaptation to pepper resistance. The diversity of PVMV in the VPg‐ and coat protein‐coding regions revealed multiple clades. The central part of the VPg showed a high level of amino acid diversity and evidence of positive selection, which may be a signature of adaptation to plant recessive resistance. As a consequence, for efficient deployment of resistant pepper cultivars, it would be desirable to examine the occurrence of virulent isolates in the CMV or PVMV populations in Côte d'Ivoire and to follow their evolution as the resistance becomes more widely deployed.  相似文献   

18.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

19.
Fusarium pseudograminearum, F. culmorum and F. graminearum are the most important fusarium crown rot (FCR) causal agents. They have the common ability to biosynthesize deoxynivalenol (DON). To elucidate the behaviour of each of the three species, a comparative study was carried out to investigate symptom progression, fungal systemic growth and translocation of DON following stem base inoculation of soft wheat. FCR symptoms were mainly localized in the inoculated area, which extended up to the second node for all inoculated species. Only the most aggressive strains caused symptoms up to the third node. Real‐time quantitative PCR showed that fungal colonization reached the third node for all the tested species, but a low percentage of plants showed colonization above the third node following inoculation with the most aggressive strains. Fungal growth was detected in symptomless tissues but none of the three species was able to colonize as far as the head tissues. However, even if the pathogens were not detected in the heads, DON was detected in head tissues of the plants inoculated with the most aggressive strains. These results demonstrate that F. pseudograminearum, F. culmorum and F. graminearum, under the same experimental conditions, follow a similar pattern of symptom progression, fungal colonization and DON translocation after stem base infection. Differences in the extent of symptoms, fungal colonization and mycotoxin distribution were mainly attributable to strain aggressiveness. These findings provide comparative information on the events following infection of the stem base of wheat by three of the most important FCR casual agents.  相似文献   

20.
Potato mop‐top virus (PMTV) causes necrotic flecks inside and on tubers in temperate countries. In South America, these symptoms have not been observed, although the presence of the virus has been confirmed in the Andes and in Central America. To characterize PMTV isolates from the Andes, soil samples were taken from the main potato‐producing regions in Colombia and virus was recovered by planting Nicotiana benthamiana as bait plants. The complete genomes of five isolates were sequenced and three of the isolates were inoculated to four different indicator plants. Based on sequence comparisons, three types of RNA‐CP (RNA2) and RNA‐TGB (RNA3) were found. The isolates from the centre of the country (CO3 and CO4) were similar to isolates from Europe. The genomes of CO1, CO2 and CO5 differ from other PMTV isolates, placing them in a separate clade in phylogenetic trees. The three Colombian isolates (CO1, CO2 and CO5) only induced slightly different symptoms in the indicator plants. However, the isolate from the northwest of the country (CO1) induced stronger symptoms in N. benthamiana including severe stunting. A correlation between the genotype of the isolates and the symptoms they induced on indicator plants was not found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号