首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits, is a regulated quarantine pathogen in the European Union, listed as an A2 pest by the European and Mediterranean Plant Protection Organization (EPPO). Because detection and identification of this pathogen is key for its management and to ensure the production of pest free propagation material, it should be based on reliable tests, in particular when dealing with symptomless material. The current EPPO diagnostic Standard (PM 7/64) does not provide specific molecular methods for detection of this pest. The present paper summarizes the results of a test‐performance study (TPS) to validate, at a national level, a detection procedure for this bacterium. A working group was established in order to evaluate the performance criteria for tests included in the current EPPO Standard, and for a conventional PCR. On the basis of the obtained performance criteria, a diagnostic procedure was elaborated and then applied to perform an inter‐laboratory comparison. Screening tests for the detection of the bacterium on symptomless plant material based on IF and/or PCR were proposed, in parallel with isolation on agar media. For identification two methods were suggested: a molecular test or IF. This paper reports on the results of the TPS and proposes a flow diagram for the detection and identification of X. arboricola pv. pruni.  相似文献   

2.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

3.
Xanthomonas arboricola pv. juglandis is the causal agent of walnut blight, one of the most important and widespread diseases of Persian (English) walnut (Juglans regiaL.), causing severe damage to leaves, twigs and nuts. To investigate the genomic variability of X. arboricolapv. juglandis, 66 isolates obtained from different countries (England, France, Italy, The Netherlands, Romania, Spain, USA, and New Zealand) were analysed using the Amplified Fragment Length Polymorphism (AFLP) technique. EcoRI and MseI were used as restriction endonucleases. Primers with a core sequence including endonuclease recognition sites and a 3prime-terminal cytosine selective base for MseI primer, or no selective base for EcoRI primer, were used. Data were analysed by means of a multiple correspondence analysis. A total of 76 amplified polymorphic DNA fragments were used to compute relationships among isolates. The AFLP profiles of X. arboricola pv. juglandis isolates appeared to be reliably distinguishable from X. arboricola pv. pruni and X. arboricola pv. corylina, and from other Xanthomonas species, i.e. X. campestris pv. campestris, X. fragariae, X. hortorum, X. axonopodis pv. vesicatoria. Though this pathogen is associated with one single host genus, a high level of genomic diversity was found. This diversity might be partly explained by the geographic origin. Nevertheless, isolates with different patterns were collected within one country, and similar molecular patterns were found in isolates collected at different sites. However, genetic diversity might be influenced by exchanging vegetative material from different countries. Mixing of X. arboricola pv. juglandis isolates might have partly concealed the influence of the geographic location from which the bacteria were isolated.  相似文献   

4.
Molecular diagnostics of plant pathogens are crucial to prevent disease spread and to enhance food quality and security. A comparative genomics approach using genomes of different Xanthomonas species and pathovars was applied to identify highly specific targets in the genome of Xanthomonas fragariae, the causal agent of angular leaf spot of strawberry, listed under quarantine regulations in Europe. A reliable and sensitive loop‐mediated isothermal amplification (LAMP) assay was designed using a unique marker, providing a highly specific and rapid detection technique, convenient for on‐site detection. Specificity of the designed assay was tested on 37 strains from a culture collection of X. fragariae, 82 strains of other Xanthomonas species and pathovars and 11 strains of other bacterial genera isolated from strawberry leaves. A detection limit of 102 fg was achieved, approximating to 20 genome copies per reaction. When performing analyses with crude plant material, a consistent lower detection efficiency of 102 CFU mL?1 was achieved. The LAMP assay designed in this study was adapted to work on crude plant material without any prior extensive extraction steps or incubation period; moreover, it does not require advanced analytical knowledge or a fully equipped laboratory. Results were produced within 7–20 min, depending on the pathogen concentration, thus providing a high‐throughput and user‐friendly method for detection and screening of plant material in support of quarantine regulations.  相似文献   

5.
The aim of this study was to develop a rapid, sensitive and reliable field‐based assay for detection of the quarantine pathogen Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the most destructive and economically important bacterial disease of kiwifruit. A comparative genomic approach was used on the publicly available Psa genomic data to select unique target regions for the development of two loop‐mediated isothermal amplification (LAMP) assays able to detect Psa and to discriminate strains belonging to the highly virulent and globally spreading Psa biovar 3. Both LAMP assays showed specificity in accordance with their target and were able to detect reliably 125 CFU per reaction in less than 30 min. The developed assays were able to detect the presence of Psa in naturally infected kiwifruit material with and without symptoms, thus increasing the potential of the LAMP assays for phytosanitary use.  相似文献   

6.
A new bacterial disease of Persian (English) walnut (Juglans regia) has been observed in France. This disease, called vertical oozing canker (VOC), is characterized by vertical cankers on trunks and branches of affected walnut trees with oozing exudates. To determine the aetiology of the disease, a study was carried out in 79 walnut orchards and nurseries located in southeastern and southwestern France. Bacterial analysis from diseased samples yielded 36 strains identified as Xanthomonas arboricola and 32 strains identified as Brenneria nigrifluens on the basis of biochemical tests. The causal agent of VOC was identified as X. arboricola by pathogenicity tests on walnut. Fluorescent amplified fragment length polymorphism (F‐AFLP) was carried out on 36 strains of Xarboricola collected in this study, 24 strains of X. arboricola pv. juglandis isolated from walnut blight symptoms and one strain of X. arboricola pv. corylina included as an outgroup. Based on cluster analysis of F‐AFLP data, most X. arboricola strains responsible for main VOC outbreaks showed a high degree of similarity, forming a cluster clearly separate from strains of X. arboricola pv. juglandis isolated from walnut blight symptoms. It is suggested that VOC is caused by a distinct genetic lineage within the pathovar juglandis of X. arboricola that is also able to cause classical bacterial blight symptoms on walnut leaves and fruits.  相似文献   

7.
Leaves and fruits of walnut trees exhibiting symptoms of bacterial blight were collected from six locations in Poland. Isolations on agar media resulted in 18 bacterial isolates with colony morphology resembling that of the Xanthomonas genus. PCR using X1 and X2 primers specific for Xanthomonas confirmed that all isolates belonged to this genus. In pathogenicity tests on unripe walnut fruits, all isolates caused typical black necrotic lesions covering almost the entire pericarp. Results of selected phenotypic tests indicated that characteristics of all isolates were the same as described for the type strain of Xanthomonas arboricola pv. juglandis. Genetic analyses (PCR MP, ERIC‐, BOX‐PCR and MLSA) showed similarities between the studied isolates and the reference strain of X. arboricola pv. juglandis CFBP 7179 originating from France. However, reference strains I‐391 from Portugal and LMG 746 from the UK were different. MLSA analysis of partial sequences of the fyuA, gyrB and rpoD genes of studied isolates and respective sequences from GenBank of pathotype strains of other pathovars of X. arboricola showed that the X. arboricola pv. juglandis isolates consisted of different phylogenetic lineages. An incongruence among MLSA gene phylogenies and traces of intergenic recombination events were proved. These data suggest that the sequence analysis of several housekeeping genes is necessary for proper identification of X. arboricola pathovars.  相似文献   

8.
The population dynamics of Xanthomonas arboricola pv. pruni (Xap) and X. citri subsp. citri (Xcc) was assessed on over three dozen plant species/genotypes under field and greenhouse conditions. Both Xap and Xcc multiplied on red nightshade, black nightshade, bindweed, Chenopodium, common bean and wheat up to 20 days post‐inoculation (dpi) under greenhouse conditions. A high bacterial growth rate was observed on all (alfalfa, bindweed, Chenopodium, field mustard, millet and prickly lettuce) but one (liquorice) plant species tested under field conditions. Xap successfully proliferated on both lemon and sweet lemon up to 140 dpi, attaining a population density even higher than that of Xcc. The latter showed an increased growth rate on GxN, GF677, Ghisella 6 and Mariana 2624 rootstocks up to 140 dpi. While Xap and Xcc did not grow on pomegranate and common fig, they had a steady population growth on apple and pear plants up to 140 dpi, although the final population sizes were smaller than those observed on lemon and sweet lemon plants. The results suggest that a large number of non‐host plant species could support epiphytic populations of Xap or Xcc, which may have implications for plant disease epidemiology.  相似文献   

9.
A loop‐mediated isothermal amplification (LAMP) assay for detection of Meloidogyne enterolobii (Me‐LAMP) was developed based on the sequences of the 5S ribosomal DNA (5S rDNA) and intergenic spacer 2 (IGS2) segment. The LAMP amplification was achieved at 65°C isothermal conditions within 1–1·5 h. Its amplicons were confirmed using gel electrophoresis, SacI enzyme analysis, lateral flow dipstick (LFD) assay, and visual inspection through SYBR Green I and calcein staining. The results demonstrated that the Me‐LAMP was able to specifically detect M. enterolobii populations from different geographical origins, with a detection limit of about 10 fg M. enterolobii genomic DNA, which was 10–100 times more sensitive than conventional PCR. In addition, the applicability of LAMP to field detection was confirmed following its successful performance in detecting the pest on root and soil samples. The Me‐LAMP assay possessed the characteristics of simplicity, sensitivity and specificity, and is a promising and practical molecular tool for M. enterolobii diagnosis in pest quarantine and field surveys.  相似文献   

10.
Bacterial spot disease of stone fruits, caused by Xanthomonas arboricola pv. pruni, is of high economic importance in the major stone-fruit-producing areas worldwide. A better understanding of disease epidemiology can be valuable in developing disease management strategies. The effects of weather variables (temperature and wet/dry period) on epiphytic growth of X. arboricola pv. pruni on Prunus leaves were analyzed, and the relationship between inoculum density and temperature on disease development was determined and modeled. The information generated in this study, performed under controlled environmental conditions, will be useful to develop a forecasting system for X. arboricola pv. pruni. Optimal temperature for growth of epiphytic populations ranged from 20 to 30 °C under leaf wetness. In contrast, multiplication of epiphytic populations was not only interrupted under low relative humidity (RH) (< 40%) at 25 °C, but also resulted in cell inactivation, with only 0.001% initial cells recovered after 72 h incubation. A significant effect of inoculum density on disease severity was observed and 106 CFU/ml was determined as the minimal infective dose for X. arboricola pv. pruni on Prunus. Infections occurred at temperatures from 15 to 35 °C, but incubation at 25 and 30 °C gave the shortest incubation periods (7.7 and 5.9 days respectively). A model for predicting disease symptom development was generated and successfully evaluated, based on the relationship between disease severity and the accumulated heat expressed in cumulative degree day (CDD). Incubation periods of 150, 175 and 280 CDD were required for 5, 10 and 50% of disease severity, respectively.  相似文献   

11.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

12.
Pyrenopeziza brassicae (anamorph Cylindrosporium concentricum) is an ascomycete fungus that causes light leaf spot (LLS) disease of brassicas. It has recently become the most important pathogen of winter oilseed rape (Brassica napus) crops in the UK. The pathogen is spread by both asexual splash‐dispersed conidia and sexual wind‐dispersed ascospores. Such inoculum can be detected with existing qualitative and quantitative PCR diagnostics, but these require time‐consuming laboratory‐based processing. This study describes two loop‐mediated isothermal amplification (LAMP) assays, targeting internal transcribed spacer (ITS) or β‐tubulin DNA sequences, for fast and specific detection of P. brassicae isolates from a broad geographical range (throughout Europe and Oceania) and multiple brassica host species (B. napus, B. oleracea and B. rapa). Neither assay detected closely related Oculimacula or Rhynchosporium isolates, or other commonly occurring oilseed rape fungal pathogens. Both LAMP assays could consistently detect DNA amounts equivalent to 100 P. brassicae conidia per sample within 30 minutes, although the β‐tubulin assay was more rapid. Reproducible standard curves were obtained using a P. brassicae DNA dilution series (100 ng–10 pg), enabling quantitative estimation of amounts of pathogen DNA in environmental samples. In planta application of the β‐tubulin sequence‐based LAMP assay to individual oilseed rape leaves collected from the field found no statistically significant difference in the amount of pathogen DNA present in parts of leaves either with or without visible LLS symptoms. The P. brassicae LAMP assays described here could have multiple applications, including detection of symptomless host infection and automated real‐time monitoring of pathogen inoculum.  相似文献   

13.
Xanthomonas campestris pv. musacearum (Xcm) is the causal agent of banana xanthomonas wilt, a major threat to banana production in eastern and central Africa. The pathogen is present in very high levels within infected plants and can be transmitted by a broad range of mechanisms; therefore early specific detection is vital for effective disease management. In this study, a polyclonal antibody (pAb) was developed and deployed in a lateral flow device (LFD) format to allow rapid in‐field detection of Xcm. Published Xcm PCR assays were also independently assessed: only two assays gave specific amplification of Xcm, whilst others cross‐reacted with non‐target Xanthomonas species. Pure cultures of Xcm were used to immunize a rabbit, the IgG antibodies purified from the serum and the resulting polyclonal antibodies tested using ELISA and LFD. Testing against a wide range of bacterial species showed the pAb detected all strains of Xcm, representing isolates from seven countries and the known genetic diversity of Xcm. The pAb also detected the closely related Xanthomonas axonopodis pv. vasculorum (Xav), primarily a sugarcane pathogen. Detection was successful in both naturally and experimentally infected banana plants, and the LFD limit of detection was 105 cells mL?1. Whilst the pAb is not fully specific for Xcm, Xav has never been found in banana. Therefore the LFD can be used as a first‐line screening tool to detect Xcm in the field. Testing by LFD requires no equipment, can be performed by non‐scientists and is cost‐effective. Therefore this LFD provides a vital tool to aid in the management and control of Xcm.  相似文献   

14.
Polyphasic analysis exposed important heterogeneity between bacterial strains catalogued as Xanthomonas arboricola pv. fragariae (Xaf) from different culture collections. Two draft whole‐genome sequences revealed pathogenicity related genes of the type‐three secretion system in strain LMG 19146, whereas none were found in the Xaf pathotype strain LMG 19145. Also, considerable sequence divergence was observed in the phylogenetic marker genes gyrB, rpoD, dnaK and fyuA. Further study of 16 Xaf culture‐collection strains showed that co‐classification is not justified. Partial 16S rRNA gene and gyrB sequencing demonstrated that 12 strains belonged to X. arboricola, but that they did not form one homogeneous group within the species. The four remaining strains were identified as Xanthomonas fragariae and Xanthomonas sp. All sequence‐based identifications were confirmed by MALDI‐TOF MS fingerprinting. Also, the pathogenicity genes hrcQ and avrBs2 were detected in only three of the 12 analysed X. arboricola strains. The X. arboricola and Xanthomonas sp. strains showed pectolytic activity, and upon inoculation in strawberry none of the strains reproduced the leaf blight symptoms reported for Xaf. This study demonstrates that (i) no clear criteria exist for the identification of strains as Xaf, (ii) the name Xaf is currently used for a genetically diverse assortment of strains, and (iii) the species X. arboricola holds many undetermined plant‐associated bacteria besides the described pathovars.  相似文献   

15.
A protocol using real‐time polymerase chain reaction (PCR) for the direct detection and quantification of Plasmodiophora brassicae in soil samples was developed and used on naturally and artificially infested soil samples containing different concentrations of P. brassicae. Species‐specific primers and a TaqMan fluorogenic probe were designed to amplify a small region of P. brassicae ribosomal DNA. Total genomic DNA was extracted and purified from soil samples using commercial kits. The amount of pathogen DNA was quantified using a standard curve generated by including reactions containing different amounts of a plasmid carrying the P. brassicae target sequence. The PCR assay was optimized to give high amplification efficiency and three to four copies of the target DNA sequence were detected. Regression analysis showed that the standard curve was linear over at least six orders of magnitude (R2 > 0·99) and that the amplification efficiency was >92%. The detection limit in soil samples corresponded to 500 resting spores g?1 soil. The intersample reproducibility was similar to, or higher than, that of assays for other pathogens quantified in soil samples. Bait plants were used to validate the real‐time PCR assay. The protocol developed was used to investigate the spatial distribution of P. brassicae DNA in different fields and a significant difference was found between in‐field sampling points. The reproducibility of soil sampling was evaluated and showed no significant differences for samples with low levels of inoculum, whereas at higher levels differences occurred. Indicator kriging was used for mapping the probability of detecting P. brassicae within a 2‐ha area of a field. A threshold level of 5 fg plasmid DNA g?1 soil, corresponding to approximately 3 × 103P. brassicae resting spores g?1 soil, is suggested for growing resistant cultivars. The results provide a robust and reliable technique for predicting the risk of disease development and for assessing the distribution of disease within fields.  相似文献   

16.
Midrib rot is an emerging disease in greenhouse production of lettuce caused by Pseudomonas cichorii, and probably introduced through contaminated irrigation water. Concentrations of 100 CFU mL?1 are enough to induce the typical midrib rot symptoms. A sensitive real‐time PCR assay was developed, based on a 90‐bp amplicon from the pathogenicity gene cluster hrcRST and a Taqman Minor Groove Binding probe. Specificity of the assay was tested with 39 P. cichorii strains, including the type strain, and 89 strains from 83 other Pseudomonas species. The relationship between detection signals and P. cichorii DNA concentrations was linear over 6‐logs. Detection threshold with excellent reproducibility was 500 fg of DNA or about 70 genome copies. Sample preparation and DNA isolation were optimized to allow detection in 1 L water samples. The assay was first evaluated with greenhouse irrigation water spiked with serial dilutions of P. cichorii. The calculated cell numbers obtained with real‐time PCR were 10‐fold lower than plate counts of actual spiked cells. However, the assay consistently detected 100 CFU per reaction, corresponding to the detection of 1 CFU mL?1 of irrigation water, which is well below the concentration needed for midrib rot infection. Finally, the assay proved to be valuable for detecting infective P. cichorii concentrations in the irrigation water of a commercial lettuce production greenhouse.  相似文献   

17.
A specific and rapid diagnostic tool has been developed to detect Xanthomonas campestris pv. musacearum, the causal agent of bacterial wilt of banana. PCR primers were developed from intergenic regions of X. campestris pv. musacearum following its partial sequence. A total of 48 primers were tested for specificity to X. campestris pv. musacearum strains collected from various regions in Uganda. These were also tested for specificity against related Xanthomonas species from the vasicola group, Xanthomonas species pathogenic to other crops, and against those existing saprophytically on banana plants. Seven primer sets (Xcm12, Xcm35, Xcm36, Xcm38, Xcm44, Xcm47 and Xcm48) were found to be very specific to X. campestris pv. musacearum. These primer sets directed the amplification of the expected product for all 52 strains of X. campestris pv. musacearum collected from different locations in Uganda. No amplification products were obtained with unrelated phytopathogenic bacteria or endophytic/epiphytic bacteria from banana. A detection limit of 103 CFU mL?1 corresponding to about four cells per PCR reaction was observed when X. campestris pv. musacearum cells were used for all the seven primer sets. The DNA samples from symptomless plant tissues also tested positive with primer set Xcm38. The specific PCR method described here is a valuable diagnostic tool which can be used to detect the pathogen at early stages of infection and monitor disease.  相似文献   

18.
The socio-economic impact of Fusarium odoratissimum, which is colloquially called tropical race 4 (TR4), is escalating as this fungal pathogen spreads to new banana-growing areas. Hence, the development of simple, reliable and rapid detection technologies is indispensable for implementing quarantine measures. Here, a versatile loop-mediated isothermal amplification (LAMP) assay has been developed that is applicable under field and laboratory conditions. DNA markers unique to TR4 isolates were obtained by diversity arrays technology sequencing (DArTseq), a genotyping by sequencing technology that was conducted on 27 genotypes, comprising 24 previously reported vegetative compatibility groups (VCGs) and three TR4 isolates. The developed LAMP TR4 assay was successfully tested using 22 TR4 isolates and 45 non-target fungal and bacterial isolates, as well as on infected plants under greenhouse and field conditions. The detection limit was 1 pg µL−1 pure TR4 DNA or 102 copies plasmid-localized TR4 unique sequence (SeqA) per reaction, which was not affected by background DNA in complex samples. The LAMP TR4 assay offers a powerful tool for the routine and unambiguous identification of banana plants infected with TR4, contributing to advanced diagnosis in field situations and monitoring of fusarium wilt.  相似文献   

19.
Xanthomonas campestris pathovars are widely distributed throughout the globe and have a broad host range, causing severe economic losses in the food and ornamental crucifers markets. Using an approach based on multilocus sequence typing, phylogenetic diversity and population structure of a set of 75 Portuguese and other Xanthomonas campestris isolates from several cruciferous hosts were assessed. Although this population displayed a major clonal structure, neighbour‐net phylogenetic analysis highlighted the presence of recombinational events that may have driven the ecological specialization of X. campestris with different host ranges within the Brassicaceae family. A high level of genetic diversity within and among X. campestris pathovars was also revealed, through the establishment of 46 sequence types (STs). This approach provided a snapshot of the global X. campestris population structure in cruciferous host plants, correlating the existing pathovars with three distinct genetic lineages. Phylogenetic relationships between the founder genotype and remaining isolates that constitute the X. campestris pv. campestris population were further clarified using goeBURST algorithm. Identification of an intermediate link between X. campestris pv. campestris and X. campestris pv. raphani provided new insights into the mechanisms driving the differentiation of both pathovars. Wide geographic distribution of allelic variants suggests that evolution of X. campestris as a seedborne pathogen was not shaped by natural barriers. However, as Portuguese isolates encompass 26 unique STs and this country is an important centre of domestication of Brassica oleracea crops, a strong case is made for its role as a diversification reservoir, most probably through host–pathogen coevolution.  相似文献   

20.
Fusarium wilt caused by Fusarium commune is a major limiting factor for Chinese water chestnut (Eleocharis dulcis) production in China. A SYBR Green I real‐time quantitative polymerase chain reaction (qPCR) assay was developed based on the mitochondrial small subunit rDNA of F. commune. Assay specificity of the FO1/FO2 primer set was tested on 41 fungal isolates, and only a single PCR band of c. 178 bp from F. commune was amplified. The detection limits of the assay were 1 fg μL?1 pure F. commune genomic DNA, 1 pg μL?1 F. commune genomic DNA mixed with host plant genomic DNA (0·5 ng μL?1), and 1000 conidia/g soil (artificially inoculated). The amount of F. commune DNA in stem tissues detected by qPCR was significantly correlated with the disease severity (DS) ratings; however, the qPCR assay showed no significant positive correlation between spore densities in soil of different fusarium wilt DS groupings and the DS ratings. The qPCR assay was further applied to 76 soil samples collected from commercial fields of E. dulcis during the 2011 and 2012 growing seasons. The spore density of F. commune detected was positively correlated with disease index in the 2012 growing season but not in 2011. The qPCR method can be used for rapid and specific detection of F. commune in plant and soil samples, which will facilitate monitoring of the pathogen and improvement of disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号