首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Newer cyclo-oxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drugs (NSAIDs), such as firocoxib, are proposed to reduce inhibition of cyclo-oxygenase-1 (COX-1) and avoid undesirable side effects, while continuing to inhibit inflammation associated with COX-2. However, COX selectivity is typically based on in vitro testing, which may not provide sufficient information critical for treatment selection. This study investigated the pharmacokinetics and ex vivo COX-1 and COX-2 inhibition of phenylbutazone, flunixin meglumine, meloxicam and firocoxib. Horses (n = 3) were administered one of the four drugs, in a randomised cross-over design, with 3-week washout periods. For each drug, three doses were given and sampling performed. Drug plasma concentrations, thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were determined. After one dose, TXB2 and PGE2 levels were significantly higher in horses administered firocoxib compared to flunixin meglumine. Following the third dose, TXB2 levels in horses administered firocoxib and meloxicam were significantly higher compared to flunixin meglumine or phenylbutazone; all drugs reduced PGE2 to a similar degree. The mean plasma half-lives were 5.97 ± 0.47, 4.74 ± 0.14, 8.24 ± 3.74 and 47.42 ± 7.41 h for phenylbutazone, flunixin meglumine, meloxicam and firocoxib, respectively. Firocoxib and meloxicam exhibited significantly less COX-1 inhibition compared to flunixin meglumine and phenylbutazone; all drugs inhibited COX-2. The plasma half-life of firocoxib was longer than the other NSAIDs, including meloxicam. Data from this study have important clinical relevance and should be used to inform practitioners’ drug selection of a COX-1 sparing or traditional NSAID and dose selection and to provide knowledge of the duration for the four NSAIDs studied.  相似文献   

2.
Flunixin meglumine (FM) is a commonly used Nonsteroidal anti‐inflammatory drug (NSAID) in horses, but clinical efficacy is often unsatisfactory. Ketorolac tromethamine (KT) demonstrates superior efficacy compared to other NSAIDs in humans, but its anti‐inflammatory effects have not been investigated in the horse. Safety of repeated dosing of KT has not been evaluated. The first objective was to conduct a dose determination study to verify that a previously described dosage of KT would inhibit Lipopolysaccharide (LPS)‐induced eicosanoid production in vitro, and to compare KT effects of this inhibition to those of FM. Then, a randomized crossover study was performed using nine healthy horses to evaluate plasma concentrations of KT and FM following IV administration. Administered dosages of KT and FM were 0.5 mg/kg and 1.1 mg/kg, respectively. Safety following six repeated doses of KT was assessed. Ketorolac tromethamine and FM suppressed LPS‐induced Thromboxane B2 (TXB2) and Prostaglandin E2 (PGE2) production in vitro for up to 12 hr. Intravenous administration produced plasma concentrations of KT and FM similar to previous reports. No adverse effects were observed. A KT dosage of 0.5 mg/kg IV inhibited LPS‐induced eicosanoids in vitro, and repeated dosing for up to 3 days appears safe in healthy horses. Investigation of in vivo anti‐inflammatory and analgesic effects of KT is warranted.  相似文献   

3.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight adult female Boer goats. A dose of 2.2 mg/kg was administered intravenously (IV) and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after flunixin meglumine for both routes of administration. Mean λz‐HL after IV administration was 6.032 hr (range 4.735–9.244 hr) resulting from a mean Vz of 584.1 ml/kg (range, 357.1–1,092 ml/kg) and plasma clearance of 67.11 ml kg?1 hr?1 (range, 45.57–82.35 ml kg?1 hr?1). The mean Cmax, Tmax, and λz‐HL for flunixin following TD administration was 0.134 μg/ml (range, 0.050–0.188 μg/ml), 11.41 hr (range, 6.00–36.00 hr), and 43.12 hr (15.98–62.49 hr), respectively. The mean bioavailability for TD flunixin was calculated as 24.76%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.28 μg/ml (range, 0.08–0.69 μg/ml) and was only achieved with IV formulation of flunixin in this study. The PK results support clinical studies to examine the efficacy of TD flunixin in goats. Determining the systemic effects of flunixin‐mediated PGE2 suppression in goats is also warranted.  相似文献   

4.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight, adult, female, Huacaya alpacas. A dose of 2.2 mg/kg administered IV and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after IV flunixin meglumine administration but there was minimal change after TD application. Mean t1/2λz after IV administration was 4.531 hr (range 3.355 to 5.571 hr) resulting from a mean Vz of 570.6 ml/kg (range, 387.3 to 1,142 ml/kg) and plasma clearance of 87.26 ml kg?1 hr?1 (range, 55.45–179.3 ml kg?1 hr?1). The mean Cmax, Tmax and t1/2λz for flunixin following TD administration were 106.4 ng/ml (range, 56.98 to 168.6 ng/ml), 13.57 hr (range, 6.000–34.00 hr) and 24.06 hr (18.63 to 39.5 hr), respectively. The mean bioavailability for TD flunixin was calculated as 25.05%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.23 µg/ml (range, 0.01 to 1.38 µg/ml). Poor bioavailability and poor suppression of PGE2 identified in this study indicate that TD flunixin meglumine administered at 3.3 mg/kg is not recommended for use in alpacas.  相似文献   

5.
Background: Nonsteroidal anti‐inflammatory drugs (NSAIDs) are commonly used systemically for the treatment of inflammatory ocular disease in horses. However, little information exists regarding the ocular penetration of this class of drugs in the horse. Objective: To determine the distribution of orally administered flunixin meglumine and firocoxib into the aqueous humor of horses. Animals: Fifteen healthy adult horses with no evidence of ophthalmic disease. Methods: Horses were randomly assigned to a control group and 2 treatment groups of equal sizes (n = 5). Horses assigned to the treatment groups received an NSAID (flunixin meglumine, 1.1 mg/kg PO q24h or firocoxib, 0.1 mg/kg PO q24h for 7 days). Horses in the control group received no medications. Concentrations of flunixin meglumine and firocoxib in serum and aqueous humor and prostaglandin (PG) E2 in aqueous humor were determined on days 1, 3, and 5 and aqueous : serum ratios were calculated. Results: Firocoxib penetrated the aqueous humor to a significantly greater extent than did flunixin meglumine at days 3 and 5. Aqueous : serum ratios were 3.59 ± 3.32 and 11.99 ± 4.62% for flunixin meglumine and firocoxib, respectively. Ocular PGE2 concentrations showed no differences at any time point among study groups. Conclusions and Clinical Importance: Both flunixin meglumine and firocoxib penetrated into the aqueous humor of horses. This study suggests that orally administered firocoxib penetrates the aqueous humor better than orally administered flunixin meglumine at label dosages in the absence of ocular inflammation. Firocoxib should be considered for the treatment of inflammatory ophthalmic lesions in horses at risk for the development of adverse effects associated with nonselective NSAID administration.  相似文献   

6.
A transdermal formulation of the nonsteroidal anti‐inflammatory drug, flunixin meglumine, has been approved in the United States and Canada for single‐dose administration. Transdermal flunixin meglumine was administered to 10 adult Holstein cows in their second or third lactation at the label dose of 3.33 mg/kg every 24 hr for three total treatments. Plasma flunixin concentrations were determined using high‐pressure liquid chromatography with mass spectroscopy (HPLC ‐MS ). Pharmacokinetic analysis was completed on each individual animal with noncompartmental methods using computer software. The time to maximum drug concentration (T max) was 2.81 hr, and the maximum drug concentration was 1.08 μg/ml. The mean terminal half‐life (T½) was determined to be 5.20 hr. Clearance per fraction absorbed (Cl/F) was calculated to be 0.294 L/hr kg?1, and volume of distribution of fraction (V z/F ) absorbed was 2.20 L/kg. The mean accumulation factor was 1.10 after three doses. This indicates changes in dosing may not be required when giving multiple doses of flunixin transdermal. Further work is required to investigate the clinical efficacy of transdermal flunixin after multiple daily doses.  相似文献   

7.
Non‐steroidal anti‐inflammatory drugs may potentiate the opioid induced reduction in volatile anaesthetic requirements ( Gomez de Segura et al. 1998 ). This study determined the reduction in the MAC of isoflurane (ISO) produced by ketoprofen (KETO) in dogs anaesthetized with fentanyl (FENT) and ISO. Six healthy female crossbred dogs, weighing 13.5 ± 1.3 (mean ± SD) kg and aged 3.0 ± 0.9 years were studied. Approval of the study was obtained from the institutional ethics committee. Anaesthesia was induced in all dogs via a facemask with 5% ISO in 5 L minute?1 oxygen. The dogs' trachea were intubated and lungs were ventilated to maintain normocapnia (Pe ′CO2 4.7–6 kPa, 35–45 mm Hg). A heating pad was used to maintain body temperature. The animals were anaesthetized four times at one week intervals with the following anaesthetic and analgesic protocols randomly administered. Study 1, MAC (ISO); Isoflurane MAC. Study 2, MAC (ISO + FENT); dogs anaesthetized with ISO received a loading dose of 30 µg kg?1 FENT IV over 20 minutes followed by a maintenance infusion of 0.2 µg kg?1 minute?1 FENT. Study 3, MAC (ISO + FENT + KETO1); as study 2 plus 1 mg kg?1 KETO. Study 4, MAC (ISO + FENT + KETO2); as study 2 plus 2 mg kg?1 KETO. The MAC was determined in duplicate by applying a standard electrical stimulus (50 V, 50 H2 over 60 seconds via two needles placed SC over the tarsus). The stimulus was applied 15 minutes after every step change in anesthetic concentration. The Wilcoxon test was applied to data to determine significant differences among MAC measurements. Fentanyl significantly decreased MAC (ISO) from 1.27% ± 0.02% to 0.73% ± 0.08%, a reduction of 42% (p < 0.05). Ketoprofen 1 mg kg?1 further decreased the MAC value (although not statistically significantly) with a reduction of 47% from MAC (ISO) (0.67% ± 0.13%) and 8% from MAC (ISO + FENT). When KETO 2 mg kg?1 was given, the reduction in MAC was 50% compared to MAC (ISO) (0.63% ± 0.08%; p < 0.05) and 14% compared to MAC (ISO + FENT) p < 0.05. Administration of KETO further reduces MAC (ISO) compared to levels observed with FENT alone. The observed reduction may have clinical advantages.  相似文献   

8.

Objective

To study the influence of pain on the pharmacokinetics and anti-inflammatory actions of transdermal flunixin administered at dehorning.

Study design

Prospective, crossover, clinical study.

Animals

A total of 16 male Holstein calves, aged 6–8 weeks weighing 61.3 ± 6.6 kg.

Methods

Calves were randomly assigned to one of two treatments: transdermal flunixin and dehorning (PAIN) or transdermal flunixin and sham dehorning (NO PAIN). Flunixin meglumine (3.33 mg kg?1) was administered topically as a pour-on concurrently with hot iron dehorning or sham dehorning. The calves were subjected to the alternative treatment 14 days later. Blood samples were collected at predetermined time points up to 72 hours for measurement of plasma flunixin concentrations. Pharmacokinetics parameters were determined using noncompartmental analysis. Prostaglandin E2 (PGE2) concentration was determined using a commercial enzyme-linked immunosorbent assay. The 80% inhibition concentration (IC80) of PGE2 was determined using nonlinear regression. Pharmacokinetic data were statistically analyzed using paired t tests and Wilcoxon rank sums for nonparametric data. Flunixin and PGE2 concentrations were log transformed and analyzed using repeated measures.

Results

A total of 15 calves completed the study. Plasma half-life of flunixin was significantly longer in PAIN (10.09 hours) than NO PAIN (7.16 hours) (p = 0.0202). Bioavailability of transdermal flunixin was 30% and 37% in PAIN and NO PAIN, respectively (p = 0.097). Maximum plasma concentrations of flunixin were 0.95 and 1.16 μg mL?1 in PAIN and NO PAIN, respectively (p = 0.089). However, there was a treatment (PAIN versus NO PAIN) by time interaction (p = 0.0353). PGE2 concentrations were significantly lower in the PAIN treatment at 48 and 72 hours (p = 0.0092 and p = 0.0287, respectively). The IC80 of PGE2 by flunixin was similar in both treatments (p = 0.88).

Conclusion and clinical relevance

Pain alters the pharmacokinetics and anti-inflammatory effects of transdermally administered flunixin.  相似文献   

9.
The objective of this study was to describe the pharmacokinetics (PK) of flunixin in 12 nonlactating sows following transdermal (TD) flunixin (3.33 mg/kg) and intravenous (IV; 2.20 mg/kg) flunixin meglumine (FM) administration using a crossover design with a 10‐day washout period. Blood samples were collected postadministration from sows receiving IV FM (3, 6, 10, 20, 40 min and 1, 3, 6, 12, 16, 24, 36, and 48 hr) and from sows receiving TD flunixin (10, 20, 40 min and 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60, and 72 hr). Liquid chromatography and mass spectrometry were used to determine plasma flunixin concentrations, and noncompartmental methods were used for PK analysis. The geometric mean ± SD area under the plasma concentration–time curve (AUC) following IV injection was 26,820.59 ± 9,033.88 and 511.83 ± 213.98 hr ng/ml for TD route. Mean initial plasma concentration (C0) was 26,279.70 ± 3,610.00 ng/ml, and peak concentration (Cmax) was 14.61 ± 7.85 ng/ml for IV and TD administration, respectively. The percent mean bioavailability of TD flunixin was 1.55 ± 1.00. Our results demonstrate that topical administration is not an efficient route for delivering flunixin in mature sows.  相似文献   

10.
We previously reported that administration of flunixin meglumine two times at a critical stage approaching pregnancy recognition associated with maintenance of the corpus luteum (CL) increased early embryo survival and pregnancy rate via an additive antiluteolytic effect with the conceptus [Vet Rec 160 (2007) 404]. In this study, the objective was to determine if a single administration of meloxicam, a non‐steroid anti‐inflammatory drug with a longer half‐life, could be used instead of flunixin meglumine. This would avoid repeated injections in heifers following insemination at a critical stage to increase pregnancy rate due to its inhibitory effect on prostaglandin F synthesis. Eighty‐five, 15‐ to 18‐month‐old Holstein heifers were synchronized, and following insemination (day 0) heifers were assigned to receive subcutaneous meloxicam injection (0.5 mg/kg; n = 37) on the afternoon of day 15 or were untreated as a control (n = 48). Pregnancy rates were defined as the percentage of heifers inseminated that were diagnosed pregnant by ultrasound between days 31 and 38 after artificial insemination. Effect of the treatment on pregnancy rates was analysed by chi‐square test. Meloxicam treatment on day 15 after insemination dramatically decreased pregnancy rates in the heifers (52%; 25 of 48 in the control group vs 24.3%; 9 of 37 in the meloxicam‐treated group; p < 0.01). This result indicates that administration of meloxicam at the time associated with pregnancy recognition processes to maintain the CL was harmful to the pregnancy even though the drug is considered to be safe during pregnancy in cattle.  相似文献   

11.
Robenacoxib and ketoprofen are acidic nonsteroidal anti‐inflammatory drugs (NSAIDs). Both are licensed for once daily administration in the cat, despite having short blood half‐lives. This study reports the pharmacokinetic/pharmacodynamic (PK/PD) modelling of each drug in a feline model of inflammation. Eight cats were enrolled in a randomized, controlled, three‐period cross‐over study. In each period, sterile inflammation was induced by the injection of carrageenan into a subcutaneously implanted tissue cage, immediately before the subcutaneous injection of robenacoxib (2 mg/kg), ketoprofen (2 mg/kg) or placebo. Blood samples were taken for the determination of drug and serum thromboxane (Tx)B2 concentrations (measuring COX‐1 activity). Tissue cage exudate samples were obtained for drug and prostaglandin (PG)E2 concentrations (measuring COX‐2 activity). Individual animal pharmacokinetic and pharmacodynamic parameters for COX‐1 and COX‐2 inhibition were generated by PK/PD modelling. S(+) ketoprofen clearance scaled by bioavailability (CL/F) was 0.114 L/kg/h (elimination half‐life = 1.62 h). For robenacoxib, blood CL/F was 0.684 L/kg/h (elimination half‐life = 1.13 h). Exudate elimination half‐lives were 25.9 and 41.5 h for S(+) ketoprofen and robenacoxib, respectively. Both drugs reduced exudate PGE2 concentration significantly between 6 and 36 h. Ketoprofen significantly suppressed (>97%) serum TxB2 between 4 min and 24 h, whereas suppression was mild and transient with robenacoxib. In vivoIC50COX‐1/IC50COX‐2 ratios were 66.9:1 for robenacoxib and 1:107 for S(+) ketoprofen. The carboxylic acid nature of both drugs may contribute to the prolonged COX‐2 inhibition in exudate, despite short half‐lives in blood.  相似文献   

12.
The purpose of this study was to investigate the in vitro effects of flunixin meglumine, a cyclo-oxygenase inhibitor, and ketoprofen, a reported cyclo-oxygenase and lipoxygenase inhibitor, on the synthesis of cyclo-oxygenase end-products thromboxane B2 and prostaglandin E2, lipoxygenase derived 12-hydroxyeicosatetraenoic acid, tumor necrosis factor and tissue factor. Six adult horses were each randomly administered flunixin meglumine (1.1 mg/kg) or ketoprofen (2.2 mg/kg) intravenously every 12 hours with the drug treatments separated by two weeks. Blood samples were obtained prior to initiating treatment, the last day of treatment and for two consecutive days after the termination of treatment for measurement of serum concentrations of thromboxane B2 as well as isolation of peripheral blood monocytes. Quantitation of unstimulated, endotoxin- and calcium ionophore-induced synthesis of thromboxane B2, prostaglandin E2, 12-hydroxyeicosatetraenoic acid, tumor necrosis factor and tissue factor by peripheral blood monocytes was performed in vitro. Both flunixin meglumine and ketoprofen significantly decreased serum concentrations of thromboxane B2 demonstrating in vivo cyclo-oxygenase inhibition. There were no significant differences between drug treatment groups in the in vitro production of thromboxane B2, prostaglandin E2, 12-hydroxy-eicosatetraenoic acid, tumor necrosis factor or tissue factor. This study does not identify significant differences between the effects of flunixin meglumine and ketoprofen.  相似文献   

13.
A 6‐year‐old Quarter Horse gelding was presented for bilateral uveitis resulting in vision loss as well as icterus. Anaemia with autoagglutination was consistent with a presumptive immune‐mediated haemolytic anaemia. Urinary PCR was positive for Leptospira spp. and microscopic agglutination test (MAT) titres were elevated to multiple serovars supportive of a diagnosis of leptospirosis. Treatments included broad spectrum antibiotics and aggressive anti‐inflammatory medications. While the horse was hospitalised, the development of bilateral corneal ulcers precluded the use of topical ophthalmic anti‐inflammatories for a number of days. The corneal ulceration resolved, vision returned in both eyes and the immune‐mediated haemolytic anaemia resolved. After 9 days of hospitalisation, oral minocycline was administered for 2 weeks at home as well as low dose oral flunixin meglumine and topical ophthalmic diclofenac and atropine. This case represents the first published case of haemolytic anaemia associated with leptospirosis in a horse.  相似文献   

14.
Reasons for performing the study: Endotoxaemia contributes to morbidity and mortality in horses with colic due to inflammatory cascade activation. Effective therapeutic interventions are limited for these horses. Ethyl pyruvate (EP), an anti‐inflammatory agent that alters the expression of proinflammatory cytokines, improved survival and organ function in sepsis and gastrointestinal injury in rodents and swine. Therapeutic efficacy of EP is unknown in endotoxaemic horses. Objectives: Determine the effects of EP on signs of endotoxaemia and expression of proinflammatory cytokines following administration of lipopolysaccharide (LPS) in horses. Methods: Horses received 30 ng/kg bwt LPS in saline to induce signs of endotoxaemia. Next, horses received lactated Ringer's solution (LRS), (n = 6), 150 mg/kg bwt EP in LRS, (n = 6), or 1.1 mg/kg bwt flunixin meglumine (FM), (n = 6). Controls received saline followed by LRS (n = 6). Physical examinations, behaviour pain scores and blood for clinical pathological testing and gene expression were obtained at predetermined intervals for 24 h. Results: Lipopolysaccharide infusion produced clinical and clinicopathological signs of endotoxaemia and increased expression of tumour necrosis factor alpha (TNFα), interleukin 6 (IL‐6) and IL‐8 (P<0.001) compared with controls. Leucopenia and neutropenia occurred in all horses that received LPS. Horses treated with EP and FM had significantly (P<0.0001) reduced pain scores compared with horses receiving LPS followed by LRS. Flunixin meglumine was significantly more effective at ameliorating fever compared with EP. Both EP and FM significantly diminished TNFα expression. Ethyl pyruvate significantly decreased, but FM significantly increased, IL‐6 expression. Neither EP nor FM altered IL‐8 expression. Conclusions and potential relevance: Ethyl pyruvate administered following LPS diminished the clinical effects of endotoxaemia and decreased proinflammatory gene expression in horses. Ethyl pyruvate suppressed expression of proinflammatory cytokines better than FM. However, FM was a superior anti‐pyretic compared with EP. Ethyl pyruvate may have therapeutic applications in endotoxaemic horses.  相似文献   

15.

Purpose  

The purpose of this study was to evaluate the brain, renal, and hepatic effects of three NSAIDs (flunixin meglumine, ketoprofen, and phenylbutazone) when administered IV to clinically normal Iranian fat-tailed sheep.  相似文献   

16.
Obesity is associated with inflammatory disorders in humans, including degenerative joint disease. While obesity is endemic in horses, its relationship to equine degenerative joint disease has not been explored. The current study sought to describe relationships between: body weight (BW), body condition score (BCS), lameness grade (AAEP), total body fat mass (kg; FM) and fat per cent (FP) [multifrequency bioelectrical impedance analysis (mfBIA)], age, gender, activity level (AL), synovial fluid (SF) and plasma (PL) PGE2 and glycosaminoglycan (GAG) in horses. During this field investigation, the BCS (of nine) of 54 horses at multiple farms in southern Ontario, Canada, was determined. Horses were categorized as thin (BCS=3/9; n = 6), moderate (BCS=4 or 5/9; n = 18), overweight (BCS=6 or 7/9; n = 19) or obese (BCS=8 or 9/9; n = 11). Total fat mass (kg) and body fat% was measured using mfBIA, lameness was assessed (AAEP lameness scale) and synovial fluid was collected via aseptic arthrocentesis from the left intercarpal joint for assessment of inflammatory biomarkers (PGE2, GAG). Means were compared with a one‐way ANOVA; correlation coefficients were calculated using a Spearman Rank Order Correlation to reveal correlations between variables. BCS was positively correlated with BW, FM, FP, AL and PL‐PGE2. BW was also significantly positively correlated with PL‐PGE2. It is concluded that BCS is significantly correlated with PL‐PGE2, due in part to the combined effect of AL and body condition. Net inflammatory effects of body fat on risk for joint disease require further study.  相似文献   

17.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

18.
Assisted reproduction procedures, such as embryo transfer (ET) and artificial insemination (AI), in cattle could induce the secretion of prostaglandin F2‐alpha (PGF2α) from uterine horns which may in turn interrupt embryo development and implantation. This study investigated the effect of flunixin meglumine (FM), prostaglandin F2 alpha (PGF2α) and FM combined with PGF2α supplementation in culture medium (IVC‐II) on the development and quality of in vitro produced bovine embryos. The development rate of embryos was significantly higher in the FM group (33.3%) than in control (24.3%), PGF2α (23.9%) and FM + PGF2α groups (24.5%). The percentage of hatched blastocysts was also higher (p < 0.05) in the FM group (41.2%) than in the control (27.8%) and PGF2α groups (19.8%). While, there was no significant difference in total cell number in all experimental groups, the number of apoptotic cells was significantly higher in the PGF2α group (8.2 ± 6.6) than in the control (4.7 ± 3.2), FM (4.7 ± 2.5) and FM + PGF2α (4.9 ± 3.4) groups. Detected by real‐time PCR, secreted vesicle seminal protein 1 (SSLP1) and prostaglandin G/H synthase 2 (PTGS2) gene expression decreased (p < 0.05) in the PGF2α group. However, SSLP1 and PTGS2 gene expression in the FM + PGF2α group returned to their baseline levels, similar to the control and FM groups. Caspase 3 (CAPS3) gene expression increased in the PGF2α group compared with other groups (p < 0.05). In conclusion, addition of FM in vitro culture significantly improved embryo development as well as alleviated the negative impact of PGF2α.  相似文献   

19.
Drug use in livestock has received increased attention due to welfare concerns and food safety. Characterizing heterogeneity in the way swine populations respond to drugs could allow for group‐specific dose or drug recommendations. Our objective was to determine whether drug clearance differs across genetic backgrounds and sex for sulfamethazine, enrofloxacin, fenbendazole and flunixin meglumine. Two sires from each of four breeds were mated to a common sow population. The nursery pigs generated (n = 114) were utilized in a random crossover design. Drugs were administered intravenously and blood collected a minimum of 10 times over 48 h. A non‐compartmental analysis of drug and metabolite plasma concentration vs. time profiles was performed. Within‐drug and metabolite analysis of pharmacokinetic parameters included fixed effects of drug administration date, sex and breed of sire. Breed differences existed for flunixin meglumine (P‐value<0.05; Cl, Vdss) and oxfendazole (P‐value<0.05, AUC0→∞). Sex differences existed for oxfendazole (P‐value < 0.05; Tmax) and sulfamethazine (P‐value < 0.05, Cl). Differences in drug clearance were seen, and future work will determine the degree of additive genetic variation utilizing a larger population.  相似文献   

20.
Ketoprofen is a nonsteroidal anti‐inflammatory and analgesic agent that nonselectively inhibits cyclooxygenase, with both COX‐1 and COX‐2 inhibition. Recent studies on COX receptor expression in reptiles suggest that nonselective COX inhibitors may be more appropriate than more selective inhibitors in some reptiles, but few pharmacokinetic studies are available. The goal of this study was to determine single‐ and multidose (three consecutive days) pharmacokinetics of racemic ketoprofen administered intravenously and intramuscularly at 2 mg/kg in healthy juvenile loggerhead turtles (Caretta caretta). The S‐isomer is the predominant isomer in loggerhead sea turtles, similar to most mammals, despite administration of a 50:50 racemic mixture. Multidose ketoprofen administration demonstrated no bioaccumulation; therefore, once‐daily dosing will not require dose adjustment over time. S‐isomer pharmacokinetic parameters determined in this study were Cmax of 10.1 μg/ml by IM injection, C0 of 13.4 μg/ml by IV injection, AUC of 44.7 or 69.4 μg*hr/ml by IM or IV injection, respectively, and T½ of 2.8 or 3.6 hr by IM or IV injection, respectively. Total ketoprofen plasma concentrations were maintained for at least 12 hr above concentrations determined to be effective for rats and humans. A dose of 2 mg/kg either IM or IV every 24 hr is likely appropriate for loggerhead turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号