首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the effects of dietary choline supplementation on growth, lipid deposition and intestinal enzyme activities of Megalobrama amblycephala. Fish were fed four diets with two lipid levels (50 and 150 g kg?1) and two choline supplementations (600 and 1600 mg kg?1) for 8 weeks. Feed conversion ratio (FCR), viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, whole‐body and muscle lipid contents, intestinal lipase activities and lipoprotein lipase (LPL) activities all increased significantly (< 0.05) as lipid levels increased, whereas the opposite was true for whole‐body and muscle moisture contents and intestinal amylase activities. VSI, IPF ratio and whole‐body lipid contents all decreased significantly (< 0.05) with increasing dietary choline supplementations. Weight gain, muscle moisture content all increased significantly (< 0.05) with increasing dietary choline supplementations when dietary lipid levels reached 150 g kg?1, whereas the opposite was true for FCR, IPF ratio, IPF and liver LPL activities. In addition, abnormal hepatocytes were found in the liver of fish fed 150 g kg?1 lipid with 600 mg kg?1 choline supplementation. The result of this study indicated that extra choline supplementation can improve growth performance, intestinal enzymes activities and reduce excessive lipid deposition of M. amblycephala fed high lipid.  相似文献   

2.
This study was conducted to determine the optimal dietary biotin requirement of juvenile Megalobrama amblycephala. Quadruple groups of fish (initial average weight 2.01 ± 0.01 g) were fed thrice daily with six isonitrogenous and isoenergetic purified diets containing 0 (basal diet), 0.015, 0.049, 0.158, 0.624 and 2.49 mg kg?1 biotin, respectively, for 8 weeks. Results showed that survival rate, final weight, feed intake, specific growth rate, protein efficiency ratio and nitrogen retention efficiency all increased significantly (< 0.01) as dietary biotin levels increased from 0 to 0.049 mg kg?1, whereas the opposite was true for feed conversion ratio. Dressout percentage, condition factor, hepatosomatic index, viscera/body ratio all showed no significant difference (> 0.05) within the biotin range tested. Contrary to moisture content, whole‐body protein and lipid contents showed a positive correlation with dietary biotin levels. In addition, liver biotin content increased significantly (< 0.05) with increasing dietary biotin levels up to 0.624 mg kg?1. Hepatic pyruvate carboxylase (PC) and acetyl‐CoA carboxylase (ACC) activities both showed an increasing trend as dietary biotin levels increased. Based on the regression analysis of weight gain, hepatic PC and ACC activities, the optimal dietary biotin requirement of juvenile Megalobrama amblycephala is estimated to be 0.063, 0.071 and 0.075 mg kg?1, respectively.  相似文献   

3.
The number of 360 individuals with an average initial weight of 87.8 ± 0.04 g was fed six diets containing graded levels of choline at 8.1 (control group), 602.5, 1119.0, 1511.5, 1970.0 and 4029.0 mg choline kg?1 diet, respectively, to investigate the effects of dietary choline on growth performance, lipid deposition and hepatic lipid transport for grouper, Epinephelus coioides. Dietary methionine was estimated to be 10.02 g kg?1, less than the requirement (13.10 g kg?1). The results of 10‐week study period indicated that the best values of specific growth rate (SGR), feed conversion rate (FCR) and protein efficiency rate (PER) all occurred in 1119.0 mg choline kg?1 diet (< 0.05). The survival range increased from 8.1 to 1511.5 mg choline kg?1 diet and then plateaued. Dietary choline supplementation significantly decreased the liver lipid content of grouper (< 0.05), but the lipid content of the muscle tended to be increased firstly and then decreased (< 0.05). Liver choline concentration reached a plateau in 1511.5 mg choline kg?1 diet and then levelled off (< 0.05). Serum high density lipoprotein‐cholesterol (HDL‐C) and total cholesterol (TCHO) levels were firstly decreased and then increased with dietary choline supplementation. A reversed tendency, however, was found in triglyceride. Broken‐line regression analysis of SGR and liver choline content indicated that choline requirement of grouper was 1093.7 and 1579.7 mg kg?1 diet, respectively.  相似文献   

4.
A 9‐week feeding experiment was conducted to determine the effect of dietary biotin levels on growth performance and non‐specific immune response of large yellow croaker. Fish (6.16 ± 0.09 g) were fed twice daily to apparent satiation with diets containing 0.00 (as the basal diet), 0.01, 0.05, 0.25, 1.24 and 6.22 mg biotin kg?1 diet. Results showed that fish fed the basal diet had the lowest survival rate, and fish fed 0.05 mg kg?1 dietary biotin achieved significantly higher final weight and weight gain. Dietary biotin levels had no significant influence on carcass crude lipid, moisture and ash content, but significantly influenced the carcass crude protein. Liver biotin concentration significantly increased with the supplementation of biotin, but no tissue saturation was found within the supplementation scope of biotin. Broken‐line regression analysis of weight gain showed that juvenile large yellow croaker requires a minimum dietary biotin of 0.039 mg kg?1 for maximal growth. The analyses of serum parameters showed that the moderate‐ (0.05 mg kg?1) and high‐dose (6.22 mg kg?1) dietary biotin significantly improved both lysozyme and alternative complement pathway activities, indicating dietary biotin within a certain range could improve the non‐specific immune response of large yellow croaker.  相似文献   

5.
A 9‐week feeding trial was conducted to investigate the dietary methionine requirement of juvenile Megalobrama amblycephala at a constant dietary cystine level. Six semipurified diets were formulated to contain graded dietary methionine levels from 3.9 to 15.4 g kg?1 in about 2.5 g kg?1 increments in the presence of 2.2 g kg?1 cystine. Results showed that specific growth rate (SGR) and protein efficiency ratio (PER) significantly increased with increasing dietary methionine levels from 3.9 to 12.4 g kg?1 and thereafter kept stable. Maximum protein productive value (PPV), nitrogen retention efficiency (NRE) and liver weight were observed in 8.5 g methionine kg?1 diet. Protein contents in whole fish body were positively correlated with dietary methionine level, while lipid contents were negatively correlated with it. Morphological index and hepatic glutamate‐pyruvate transaminase (GPT) activities were independent of dietary methionine levels. However, dietary methionine supplementation significantly improved haematological parameters, plasma methionine and total essential amino acid contents and hepatic glutamate‐oxaloacetate transaminase (GOT) activities. Analysis of dose response using broken‐line regression on the basis of SGR and PPV versus dietary methionine level estimated the optimum dietary methionine requirements of juvenile M. amblycephala to be between 8.5 and 8.4 g kg?1 of diet (25.0 and 24.7 g kg?1 of protein) in the presence of 2.2 g kg?1 cystine, respectively. Hence, the corresponding total sulphur amino acids requirements of this species were calculated to be 10.7 and 10.6 g kg?1 of diet (31.5 and 31.2 g kg?1 of dietary protein).  相似文献   

6.
A growth trial was conducted to examine the effect of dietary digestible energy (DE) content on methionine (Met) utilization and requirement in juvenile Nile tilapia (Oreochromis niloticus). Ten iso‐nitrogenous (288 g kg?1 protein) practical diets, with two DE levels (10.9 MJ kg?1; 12.4 MJ kg?1) and five methionine supplementation levels (0, 1, 2, 4 and 6 g kg?1), were hand‐fed twice daily to triplicate groups of Nile tilapia (initial body weight 8.95 ± 0.06 g) for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased significantly with increasing dietary methionine concentration at the same DE content (< 0.001). At the same dietary methionine level, WG and SGR of fish fed high‐DE diets were significantly higher than that of fish fed low‐DE diets (= 0.0001), although no interaction was found between dietary DE and methionine supplementation. Based on quadratic regression analysis between dietary methionine concentration and weight gain, optimal methionine requirement for maximum growth, expressed as g Met required kg?1 diet (low‐ versus high‐DE diets), increased as diet DE concentration increased (7.34 versus 9.90 g kg?1 diet, respectively; with cysteine 4.70 g kg?1 diet). The results indicated that diet DE content affects methionine utilization and requirement in juvenile Nile tilapia, fish fed high‐DE diets required more methionine for maximum growth.  相似文献   

7.
The effects of dietary phosphorus (P) on growth, body composition and immunity of young taimen (Hucho taimen) were studied. Six purified diets contained graded levels (2.3‐control, 4.0, 5.6, 7.5, 9.1 and 10.8 g kg?1 diet) of available P. Each diet was fed to triplicate groups of 30 fish with an initial average weight (55.31 ± 0.38) g for 84 days. The weight gain, specific growth rate and feed conversion ratio were improved by dietary available P up to 4.35 g kg?1 (< 0.05) and then levelled off. Hepatosomatic index and body crude lipid content decreased significantly with increasing P levels, while ash contents and P concentrations in the whole body and vertebrae increased by dietary available P up to 4.36 and 4.44 g kg?1 and then levelled off respectively (< 0.05). Liver superoxide dismutase and glutathione peroxidase and plasma alkaline phosphatase activities in the treatment groups were significantly higher compared with the control group (< 0.05). Plasma IgM contents increased linearly with increasing dietary P from 4.0 to 9.1 g kg?1 group and then decreased. Dietary P supplementation reduced plasma triglyceride, malondialdehyde and liver malondialdehyde contents. There were no significant effects on plasma total protein, albumin, globulin, glucose, aspartate aminotransferase and alanine aminotransferase, catalase, lysozyme and liver catalase compared with the control group (> 0.05). Broken line regression analysis indicated that dietary available P requirement was 4.34 and 4.35 g kg?1, based on weight gain and P concentration in the whole body respectively.  相似文献   

8.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

9.
This study was conducted to investigate the effects of fructooligosaccharide (FOS) and Bacillus licheniformis (B. licheniformis) on growth performance, body composition, intestinal enzymes activities and gut histology of Megalobrama terminalis. Nine experimental diets were formulated to contain three FOS levels (0, 3 and 6 g kg?1) and three B. licheniformis levels (0, 1 and 5 × 107 CFU g?1) following a 3 × 3 factorial design. Accordingly, diets were named as 0/0, 0/3, 0/6, 1/0, 1/3, 1/6, 5/0, 5/3 and 5/6 (B. licheniformis/FOS). At the end of the 8‐week feeding trial, weight gain (WG) and specific growth rate (SGR) of fish fed 6 g kg?1 FOS were both significantly (< 0.01 and < 0.05) higher than that of the other groups in terms of dietary FOS levels. Besides, WG and SGR of fish fed 1 × 107 CFU g?1 B. licheniformis were significantly (< 0.05) higher than that of the control group in terms of dietary B. licheniformis levels. In addition, a significant interaction (< 0.05) between dietary FOS and B. licheniformis was observed in finial weight, WG, SGR as well as the survival rate with the highest values all observed in fish fed diet 1/3. Hepatosomatic index, carcass lipid content, lipase activities as well as microvilli length increased significantly (< 0.05) from 0 to 1 × 107 CFU g?1, but no significant difference (> 0.05) was observed in terms of dietary FOS levels. In addition, a significant (< 0.05) interaction of FOS and B. licheniformis was observed in both protease and Na+, K+‐ATPase activities with the highest value obtained in fish fed diet 1/3. The results indicated that the dietary applications of dietary FOS and B. licheniformis alone or in combination can significantly improve the growth performance, survival rate, intestinal enzymes activities as well as microvilli length of triangular bream. In addition, there is a significant interaction between dietary FOS and B. licheniformis. The best combination for this species is 3 g kg?1 FOS with 1 × 107 CFU g?1 B. licheniformis.  相似文献   

10.
A 10‐week feeding trial was conducted in a flow‐through system to determine dietary choline requirement for juvenile gibel carp (Carassius auratus gibelio) (5.5 ± 0.1 g). Purified basal diet was formulated using vitamin‐free casein as protein source. Choline chloride was supplemented to the basal diet to formulate seven diets containing 76.1, 163, 356, 969, 1457, 2024 and 4400 mg kg?1 choline. Dietary methionine was 0.58%, less than the requirement (0.69%). The results indicated that specific growth rate (SGR) was higher in the fish fed 2024 mg kg?1 diet than the control group. Feeding rate and feed efficiency were not significantly affected. Protein productive value increased as dietary choline increased from 76.1 to 2024 mg kg?1 diet and was lower in the fish fed the diet containing 4400 mg choline kg?1 diet. Serum high‐density lipoprotein cholesterol (HDL‐C) and total cholesterol significantly increased with increasing dietary choline up to 1457 mg kg?1, and no differences were found with further increase. Fish carcass fat contents decreased significantly with increased dietary choline. Hepatic lipid contents increased with dietary choline up to 1457 mg kg?1 and then decreased. Quadric regression of SGR and plasma HDL‐C indicted dietary choline requirement was 2500 and 2667 mg kg?1 diet, respectively.  相似文献   

11.
A study was conducted to estimate the optimum requirement of dietary phosphorus (P) for Channa argus × Channa maculata. Effects of dietary P levels on the tissue composition, serum biochemical parameters and antioxidant status were also examined. Five practical diets were formulated to contain graded levels (4.8 g kg?1, 6.4 g kg?1, 7.9 g kg?1, 9.4 g kg?1 and 11.0 g kg?1) of available P from dietary ingredients and monocalcium phosphate (MCP). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (initial body weight, 20.50 ± 0.53 g) for 8 weeks. The results showed that the specific growth rate (SGR) and weight gain (WG) were all significantly improved by dietary P up to 9.4 g kg?1 (< 0.05) and then levelled off beyond this level. Broken‐line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 9.6 g kg?1. With the increase in dietary P level, protein efficiency rate (PER) increased significantly and reached a plateau, while the feed conversion ratio (FCR), the mesenteric lipid somatic index (MSI) and the whole‐body lipid content significantly reduced (< 0.05). Dietary P levels also affected the mineralization (ash and P) of whole body, vertebrae and scale (< 0.05). Quadratic analysis based on P contents in whole body, vertebrae, scale and ash content in vertebra indicated that the available P requirements were 10.4, 9.8, 10.0 and 10.3 g kg?1, respectively. However, no differences were found in the whole‐body moisture, crude protein, serum calcium (Ca) contents or Ca/P value, as well as the viscerosomatic index (VSI) and hepatosomatic index (HSI) among all the treatments (> 0.05). Triglyceride (TG), total cholesterol (TC), high‐density lipoprotein cholesterol (HDL‐C) and low‐density lipoprotein cholesterol (LDL‐C) decreased significantly, while serum P content, HDL‐C/TC and HDL‐C/LDL‐C value increased significantly with dietary available P levels (< 0.05). No significant changes in superoxide dismutase activity and malondialdehyde (MDA) content were observed (> 0.05), but serum catalase (CAT) and glutathione peroxidase (GPx) activities and the ratio of CAT/SOD and GPx/SOD increased significantly with increasing dietary P levels (< 0.05). In conclusion, the optimal P requirement of juvenile snakehead in practical feed was 9.6 g kg?1. Signs of P deficiency were characterized by poor growth, slightly reduced mineralization and the antioxidant capacity and an increase in body lipid content.  相似文献   

12.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

13.
This study evaluated the effects of diets containing 0, 25, 50, 75 and 100 g kg?1 Spirulina platensis on proximate composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss). Supplementation of S. platensis did not change moisture and protein contents, but fish fed 50 and 100 g kg?1 S. platensis had lower muscle lipid content than those fed control diet (< 0.05). Fish fed 100 g kg?1 of S. platensis contained lower percentages of saturated and monounsaturated fatty acid and a higher percentage of polyunsaturated fatty acid than those fed control diet (< 0.05). The n‐3/n‐6 ratio of the fatty acid increased and muscle atherogenic and thrombogenic indices were significantly decreased as the dietary supplement of S. platensis increased. Furthermore, lipid peroxidation of the fillet significantly decreased with increasing dietary S. platensis at 4 °C and at ?20 °C (< 0.05). The results of this study show that supplementation of S. platensis to the diet improves muscle quality of the rainbow trout.  相似文献   

14.
A 12‐week growth trial was conducted in a flow‐through system to determine dietary selenium (Se) requirement for on‐growing gibel carp (initial body weight: 76.2 ± 0.05 g, mean ± SEM). Selenomethionine was supplemented to the basal diet to formulate seven semi‐purified diets containing 0.26, 0.58, 0.72, 1.14, 1.34, 1.73 and 2.09 mg Se kg?1 diet. The results showed that plasma superoxide dismutase (SOD) activity significantly increased when fish were fed with 0.58 mg Se kg?1 diet (< 0.05) and then decreased at 2.09 mg Se kg?1 diet (< 0.05). Plasma T‐AOC activity was higher in fish fed with 0.72 mg Se kg?1 diet (< 0.05) and plasma malondialdehyde (MDA) was higher in fish fed with 0.26 mg Se kg?1 diet (< 0.05). When fish were fed 1.14 mg Se kg?1 diet, hepatic GSH‐Px, T‐AOC, GSH and CAT activities were significantly higher than those fed with 0.26 mg Se kg?1 diet (< 0.05). Hepatic superoxide dismutase (SOD) activity was higher at 1.34 mg Se kg?1 diet (< 0.05). Fish liver Se concentrations were significantly higher when fed with 0.72 mg Se kg?1 diet (< 0.05) and then kept constant when Se ≥ 0.72 mg kg?1 (> 0.05). Whole‐body and muscle Se concentrations were higher when fed with 1.34 mg Se kg?1 diet (< 0.05) and kept a plateau when Se ≥ 1.34 mg kg?1 (> 0.05). In conclusion, based on broken‐line regression of hepatic Se concentrations, hepatic SOD activity and hepatic T‐AOC activity, dietary Se requirements for on‐growing gibel carp was 0.73 mg kg?1, 1.12 mg kg?1 and 1.19 mg kg?1 diet respectively.  相似文献   

15.
This experiment was conducted to study the effects of different forms and levels of manganese (Mn) on the growth performance, antioxidant activities, tissue Mn content and cytosolic manganese superoxide dismutase (cMnSOD) gene expression of Litopenaeus vannamei. Treatments consisted of 0, 10, 20, 30, 40 and 60 mg Mn kg?1 from manganese sulphate (Mn‐S) and manganese methionine (Mn‐Met), providing the actual dietary value of 5.17, 15.62, 25.55, 34.22, 44.48 and 67.90 mg Mn kg?1 Mn‐S, and 5.17, 15.71, 25.36, 35.86, 45.16 and 65.06 mg Mn kg?1 Mn‐Met, respectively. Each diet was fed to triplicate groups of L. vannamei (initial body weight: 1.925 ± 0.002 g) in a recirculated fresh water rearing system for 8 weeks. Weight gain rate (WGR) increased in prawns provided with from 25.55 to 44.48 mg Mn kg?1 Mn‐S and 15.71 to 45.16 mg Mn kg?1 Mn‐Met and then declined above these levels. The lowest protein efficiency ratio (PER) and the highest feed conversion rate (FCR) were observed in prawns fed the control diet (< 0.05) and showed no significant differences among other treatments (> 0.05). Survival rate (SR) was not affected by the dietary treatments (> 0.05). Total SOD and Mn‐SOD activities were higher in the hepatopancreas of prawns fed with Mn‐supplemented diets from 15.71 to 44.48 mg Mn kg?1 (< 0.05). On the contrary, malondialdehyde (MDA) content was lower in the hepatopancreas of prawns fed the basal diet (< 0.05). Mn concentrations in the hepatopancreas and muscles increased with increasing levels of dietary Mn supplementation. Moreover, Mn accumulation was lower in the muscle than in the hepatopancreas of the prawns. The mRNA expression of cMnSOD gene in the hepatopancreas of prawns was upregulated with increasing dietary Mn levels of Mn‐S from 25.55 to 44.48 mg Mn kg?1, Mn‐Met from 15.71 to 45.16 mg Mn kg?1 and then plateaued above these levels. Broken‐line regression analysis of WGR indicated that the optimal dietary Mn requirements for juvenile L. vannamei were 32.26 mg Mn kg?1 Mn‐S and 23.90 mg Mn kg?1 Mn‐Met, respectively.  相似文献   

16.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

17.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

18.
This study was conducted to determine dietary thiamine requirement of juvenile Sclizothorax prenanti and evaluate the effect of dietary thiamine levels on growth performance, body composition and haemato‐biochemical parameters for this fish species. The seven experimental diets were formulated to contain the graded levels of thiamine (0, 10, 20, 30, 40, 60 and 100 mg kg?1 diet, respectively), providing the actual dietary thiamine values of 0.31 (control), 9.82, 21.49, 29.83, 41.66, 62.24 and 114.58 mg kg?1 diet, respectively. Each diet was assigned to three replicate groups of S. prenanti (initial body weight: 13.46 ± 0.28 g, means ± SD) for 60 days. Increasing dietary thiamine level up to 21.49 mg kg?1 diet increased weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) (< 0.05), beyond which they remained nearly unchanged. Similarly, hepatic thiamine concentration and several serum biochemical parameters (transketolase activity, triglyceride and total cholesterol contents) increased with increasing levels of thiamine up to 21.49 mg kg?1 diet (< 0.05) and, thereafter, remained almost constant. However, no significant differences in body composition (moisture, protein, lipid and ash contents) were found among dietary thiamine treatments (P > 0.05). Analysis by the broken‐line regression of WGR, SGR, FE, PER, hepatic thiamine concentration and serum transketolase activity indicated that dietary thiamine requirements in juvenile S. prenanti were 18.45–25.91 mg kg?1 diet.  相似文献   

19.
To study the effects of manganese on growth performance, digestive and absorptive abilities, as well as the antioxidative capacity in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idellus Val.) (264 ± 1 g) were fed diets containing graded levels of manganese at 3.65 (control), 8.62, 13.48, 18.24, 22.97 and 27.86 mg kg?1 diet for 8 weeks. Per cent weight gain (PWG) and feed intake were the poorest in fish fed the basal diet (< 0.05). The activities of trypsin, lipase and alkaline phosphatase in the intestine were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (P < 0.05). Additionally, in the hepatopancreas and intestine, the protein carbonyl and malondialdehyde contents were the lowest in fish fed the diet with dietary manganese level at 13.48 mg kg?1 diet (< 0.05), while the anti‐hydroxyl radical capacities, manganese superoxide dismutase (MnSOD), glutathione peroxidase and glutathione‐S‐transferase activities were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (< 0.05). Moreover, the catalase activity and glutathione content in the intestine were the highest in fish fed the diet with dietary manganese level at 18.24 mg kg?1 diet (< 0.05). These results indicated that optimum dietary manganese promoted growth, enhanced the digestive and absorptive abilities, and improved the antioxidative capacity in young grass carp. Based on the quadratic regression analysis for PWG and intestinal MnSOD activity, the manganese requirements for young grass carp with the initial body weight of 264 g were 16.91 and 18.21 mg kg?1 diet respectively.  相似文献   

20.
An 8‐week feeding trial was conducted to determine the optimum dietary methionine (Met) requirement of juvenile Pseudobagrus ussuriensis with an initial average weight of 0.60 g reared in indoor flow‐through and aerated aquaria. Six isonitrogenous (430 g kg?1 protein) and isolipidic (50 g kg?1 lipid) test diets were formulated to contain graded levels of crystalline L‐methionine (4.9, 9.0, 11.8, 14.2, 18.1 and 20.8 g kg?1 dry diets, respectively) at a constant dietary cystine level of 2.5 g kg?1 dry diets. Equal amino acid nitrogen was maintained by replacing methionine with non‐essential amino acid mixture. Fish were randomly allotted to 18 aquaria (1.0 × 0.5 × 0.8 m) with 50 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. No significant difference was observed in survival of fish (84.67–91.33%). Specific growth rate (SGR), weight gain (WG), feed conversion ratio (FCR), protein productive value (PPV) and protein efficiency ratio (PER) were significantly affected by different dietary methionine levels (< 0.05). WG, SGR PPV and PER increased, while FCR decreased with increasing dietary methionine level from 4.9 to 11.8 g kg?1 (< 0.05). However, with further increase from 11.8 to 20.8 g kg?1, WG, SGR PPV and PER significantly decreased, FCR increased (< 0.05). The whole body and muscle composition were affected by different dietary methionine levels (< 0.05). Condition factor (CF) increased with increasing dietary methionine levels up to 11.8 g kg?1 (< 0.05) and after 11.8 g kg?1 methionine diet, but not significant, declines were observed (> 0.05). Hepatosomatic index (HSI) of the 4.9, 9.0, 11.8 and 14.2 g kg?1 Met diets was significantly higher than that of fish fed diets 18.1 and 20.8 g kg?1 Met diets (< 0.05). Viscerosomatic index (VSI) of the 4.9, 9.0 and 11.8 g kg?1 Met diets was significantly higher than that of fish fed diets 14.2, 18.1 and 20.8 g kg?1 Met diets (< 0.05). Quadratic regression analysis of WG and PER against dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth and feed utilization of juvenile Pseudobagrus ussuriensis was 14.3 and 14.1 g kg?1 dry diet (35.3 and 34.8 g kg?1 dietary protein), respectively, in the presence of 2.5 g kg?1 dry diets cystine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号