首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
农作物的苗期生长是一个复杂的生理生化及代谢过程,苗期的生长发育直接影响到作物的生物产量、经济产量、营养品质及其安全性。农作物苗期长势监测对于作物肥水管理、病虫害防治具有指导作用,是精细农业和数字农业的关键技术之一。该文从农作物苗期生长形态检测、营养组分检测和病虫害诊断3个方面,详细阐述了各种无损检测技术,如机器视觉技术、激光漫反射技术、荧光测量技术和反射光谱分析技术等在作物苗期长势监测中的应用进展。国内外学者对上述技术进行了较深入的理论方法研究,部分技术已在实践中得到广泛应用,但目前作物无损检测技术大多强调单一信息的获取及分析,随着数字农业和智慧农业的发展,未来将更加强调多源、多尺度数据的获取及形态、养分、病虫害综合信息的提取。作物苗期长势的监测数据将与精准农业的联系更加紧密,为农事操作提供传感信息,形成智能化的农业施工、调优栽培与管理决策系统。   相似文献   

2.
数字农业田间信息获取技术研究现状和发展趋势   总被引:2,自引:0,他引:2  
对土壤水分与养分的测量方法、作物长势及其背景的监测、营养状况监测、作物冠层监测、作物病虫害诊断、杂草识别等田间信息获取技术在数字农业中的开发、应用现状以及发展概况做了简要综述,并指出将遥感技术和光谱技术结合应用是我国实现田间信息获取技术的关键.  相似文献   

3.
基于机器视觉的番茄长势信息无损检测的研究   总被引:1,自引:0,他引:1  
提出了利用机器视觉的方法在复杂自然条件环境下对番茄的茎粗、株高和果实横截面积进行快速测定方法。通过利用CCD获取不同生长周期下番茄的长势信息,采用中值滤波方法对图像进行预处理;采用基于rg颜色因子的Otsu自动阈值分割法来提取目标区域。同时,通过相关性分析建立作物长势参数与目标图像特征值的拟合函数,实现了番茄长势信息的有效获取。试验结果表明:对番茄茎粗的检测在幼苗期、开花坐果期、结果期的相对误差分别为1.73%~4.04%,0.64%~4.42%,0.46%~4.78%;株高和果实横截面积检测的相对误差分别为1.2%~6.5%,0.8%~3.1%。  相似文献   

4.
随着物联网、环境调控和水肥一体化等农机智能化技术的发展,能直接反映番茄作物水分亏缺等长势信息的监测技术研究试验逐渐增多,该文对设施番茄监测技术的研究现状、优势及应用进行了总结。  相似文献   

5.
随着农业信息技术的发展,农业生产的智能化与科学化受到越来越多的重视,其中通过智能化监测设备获取作物生长信息已成为主要发展方向。因此,学习和掌握不同监测设备的技术特点对获取农业信息是十分重要。本文分别介绍红外热成像技术和数码图像技术在农业上的应用,其中较为详细的阐述红外热成像技术在农作物生长长势、病虫害防治、品质的无损检测和农业生产自动化等方面的应用,分析总结两种成像技术在实际应用中的利弊,并进行讨论和展望,以期为智能监测设备的选择与应用提供依据。  相似文献   

6.
无人机是无人驾驶航空飞行器的简称,在农业方面可用于农田信息监测。无人机监测农田信息的覆盖范围广,实效性强且客观准确,具有其它方法无可比拟的优势。计算机视觉是一种新兴的图像分析技术,可以分析无人机拍摄的农田作物图像,其与无人机结合应用符合精准农业的发展趋势。为此,基于计算机视觉建立了一种农田信息获取的无人机系统。无人机拍摄农田图像,由信息检测中心转换为数字信号后发给计算机视觉模块处理,根据颜色特征识别作物种类和长势,并计算各区域面积。试验结果表明:该系统对水稻、小麦和大豆的信息获取相对误差较小,玉米由于植株太高形成遮挡,降低了农田信息获取的准确性。系统从拍摄图像到输出结果的整个过程耗时2s,具有较强的实时性,可以为拓宽无人机在农业中的应用范围提供技术支持。  相似文献   

7.
[目的/意义]作物农艺性状与形态结构表型智能识别是作物智慧育种的主要内容,是研究“基因型—环境型—表型”相互作用关系的基础,对现代作物育种具有重要意义。[进展]大规模、高通量作物表型获取设备是作物表型获取、分析、测量、识别等的基础和重要手段。本文介绍了高通量作物表型主流平台和感知成像设备的功能、性能以及应用场景。分析了作物株高获取、作物器官检测与技术等农艺性状智能识别和作物株型识别、作物形态信息测量以及作物三维重建等形态结构智能识别技术的研究进展及挑战。[结论/展望]从研制新型低成本田间智能作物表型获取与分析装备、提升作物表型获取田间环境的标准化与一致性水平、强化田间作物表型智能识别模型的通用性,研究多视角、多模态、多点连续分析与时空特征融合的作物表型识别方法,以及提高模型解释性等方面,展望了作物表型技术主要发展方向。  相似文献   

8.
机器人在农业领域农情获取方面的应用近年成为研究的热点。与卫星遥感和基于物联网的传感器等技术相比,采用农情获取机器人对非结构化农业生产环境进行地形、农作物长势、可视性、光照和空气条件等农情信息的获取,具有信息数据量大、表现形式多元、信息间相关性复杂等优点。随着物联网、传感器和无人技术水平的不断提高,农情获取机器人正从科研试验阶段逐步向实际应用阶段发展。  相似文献   

9.
作物数字图像远程实时获取方法研究   总被引:1,自引:0,他引:1  
作物图像获取方法是应用计算机视觉技术监测作物长势的首要问题。为此,对作物数字图像远程实时获取方法进行了研究。研究的作物数字图像远程实时获取系统由图像获取设备、下位机、数据传输系统、Web服务器和客户端等部分组成,包括用户管理与系统维护、数据库管理、图像获取与设备控制和数据处理与发布4个功能模块。系统利用带无线传输功能的数码相机和高清晰网络工业相机作为作物数字图像获取设备,并给出了图像获取设备的5种安装形式:移动车载、固定形式、滑动导轨、云台和综合形式;系统在图像获取设备到下位机之间采用有线或微波无线的传输方式,从下位机到Web服务器再到客户端采用Internet网络连接,通过增加带宽可以显著提高图像信息的传输速率;系统利用直接存取法建立作物图像数据库,并利用Web信息系统实现了作物图像信息的实时发布。  相似文献   

10.
田间信息的快速、高效获取,是进行精准农业时间的关键。随着现代信息技术的迅猛发展,田间信息采集技术手段也得到了不断更新。遥感是20世纪60年代发展起来的对地观测综合性技术,具有动态、快速和周期性地获取地表信息的特点,大大节省了人力、物力、财力和时间。针对遥感在农业田间信息获取方法的应用,展开相应的阐述与分析,主要阐述了作物病虫害监测、作物生产面积监测、作物产量估算监测、作物土壤水分含量监测和作物养分监测5个方面,应用遥感技术进行信息采集的原理及其大体的流程图。最后,在分析我国现在农业田间信息采集的特点基础上,指出建立田间信息遥感监测与信息管理系统的必要性,并给出了应用"3S"技术综合构建田间信息管理平台的流程图。  相似文献   

11.
为探究在不同生境条件下农作物的长势,明确并创造农作物的最佳生长条件,本文设计了一套精细监管下的作物长势与生境信息监测系统,对农作物所处生境与作物长势等信息进行探究.系统利用机器视觉、物联网等技术,完成了作物病虫害识别与生境信息监测等功能,有助于农作物的增产增收.  相似文献   

12.
根据温室番茄智能管理作业视觉信息获取需求,研究了番茄植株主茎动态跟踪与立体测量方法,以提高对叶、果和花等目标的搜索效率。结合工厂化番茄种植特征,采用二自由度双目云台摄像机采集植株主茎图像;在对摄像机与旋转云台之间坐标关系进行标定的基础上,提出针对番茄植株主茎图像跟踪采集的云台伺服控制方法,对作业区域内植株进行自下而上多视角图像动态采集;对相邻视场主茎重叠区域的图像匹配方法进行研究,实现了植株离散图像的拼接和形态恢复;基于主茎跟踪参考点的空间坐标信息,研究了作业区域主茎长度、高度和生长倾角等立体形态参数的测量方法;最后,通过现场试验对主茎拼接与测量方法进行验证。结果表明,在距地面高度600~1500mm作业区域内,视觉系统跟踪采集的主茎3个区域图像的平均拼接偏差为3.77°;以人工测量结果为对照,采用视觉系统测量主茎长度、高度和生长倾角的决定系数分别为0.9933、0.8426、0.9793,平均测量偏差分别为46.20mm、18.60mm和4.33°。本研究可为番茄智能化整枝、采摘和授粉等作业视觉信息获取提供技术支撑。  相似文献   

13.
        遥感技术已在农业领域较为广泛成功地应用。农业遥感在作物长势监测、灾害监测、作物产量和品质估测、对象的识别和信息提取等方面有重要的意义。与此同时,高通量表型信息获取以及图像处理、表型信息分析技术的提高,促进了表型组学的发展,推动了农业的跨越式发展。为集中报道国内外在农业遥感和表型获取分析领域取得的进展,《智慧农业(中英文)》期刊在本期出版“农业遥感与表型信息获取分析”专题。此专题共包括10篇论文,其中2篇综述性论文,8篇研究性论文,作者来自于中国、美国、英国、法国等4个国家。论文聚焦农业遥感与表型领域的机载成像系统应用、遥感监测、农学参量反演、表型检测识别、深度学习等热点话题。  相似文献   

14.
用声发射技术实现作物生理需水信息监测   总被引:3,自引:0,他引:3  
采用植株茎部声发射(AE)信号表征作物需水信息,运用虚拟仪器技术,设计了对作物植株茎部声发射信息进行实时、快速测量的微机检测系统,并以温室盆栽番茄为时象试验研究了声发射信号同植物蒸腾以及环境因子间的关系.试验结果表明:作物在水胁迫下产生的AE事件发生率与作物蒸腾速率一致性较好,在一定范围内,声发射频次越高,作物亏水越严重,当每秒声发射事件计数率超过2次时,可以考虑实施灌溉;作物AE事件发生率与光照度、温度有显著的相关性,AE信号可用于指导作物生长环境的调节控制.  相似文献   

15.
作物长势信息空间分析系统设计   总被引:1,自引:0,他引:1  
为了满足作物长势动态测量的要求,设计了作物长势信息空间分析系统,针对作物冠层信息获取手段及其数据特点设计相应的功能模块。系统主要由光谱文件管理、定点作物光谱分析、动态采集监测、空间数据分析等功能模块组成。系统能够兼容多种光谱文件格式,具有两种空间数据分析方法,配有专家数据库接口,具有较强的二次开发潜力。该系统配合车载作物长势检测平台,对玉米的长势空间分析进行了应用效果验证,结果证明:该系统能够实时读取和分析车载式作物长势检测平台的动态数据,通过不同的空间插值方法能够掌握冠层生物信息空间分布状况。该系统为车载动态测量提供了良好的技术支持,可为制定相应的精准管理决策提供理论依据。  相似文献   

16.
农业遥感研究现状与展望   总被引:29,自引:0,他引:29  
遥感技术具有覆盖面积大、重访周期短、获取成本相对低等优势,对大面积露天农业生产的调查、评价、监测和管理具有独特的作用。从20世纪70年代出现民用资源卫星后,农业成为遥感技术最先投入应用和收益显著的领域。特别是随着高空间、高光谱和高时间分辨率遥感数据的出现,农业遥感技术在长时间序列作物长势动态监测、农作物种类细分、田间精细农业信息获取等关键技术方面得到了突破。但是农业生产的分散性、时空变异性等特点,对当前农业遥感技术的应用还存在诸多挑战。本文简要回顾了农业遥感发展历程以及其应用的理论基础;再从农作物估产、农业资源调查、农业灾害监测和精准农业管理4个领域阐述了国内外相关研究和应用情况。最后提出农业遥感应加强与地面农业观测网技术的结合,推动新一代低空无人机遥感平台的发展,强化多源传感器融合以及农业过程模型与遥感数据同化的研究。  相似文献   

17.
针对中小农场对作物长势快速监测与精确诊断的需求,本研究设计了作物长势监测仪(CropSense)数据采集与分析系统,该系统实现了数据采集、处理、分析和管理的一体化集成。系统通过蓝牙技术连接智能手机和作物长势监测仪获取作物采样数据,经服务器中内置光谱模型计算得到地块的作物生长参数分布专题图。依据地块预期产量指标,可提供可视化的专家决策处方。用户只需点击一次按钮,即可实时获取田间作物的监测诊断信息和专业的田间管理指导方案。目前系统已在多个研究机构实验农场试用,其中在小汤山基地的应用示例结果显示:在玉米大喇叭口期使用该系统进行作物诊断和指导施肥,比传统的施肥方案减少约16.67%施肥量。该系统具有采集分析数据高效便利、推荐施肥方案优化合理等特点,在中国家庭农场快速增长的背景下,具有广阔的应用前景。  相似文献   

18.
正无人机在农业上的应用有以下几个方面:有效预估作物产量,诊断农作物营养状况,有效监控病虫害,监督作物长势。完成农药的喷洒,种子、化肥的撒播等作业。无人机传感器检测到农作物的长势,传感器通过RF将信息发射给无人机,无人机将信息传递给信息中心,决策者获得信息后立即做出正确的部署,从而加强作物田间管理。一、成武县无人机技术在农业生产上的现状成武县地处黄淮平原,位于鲁西南菏泽市的东南部。境内属温带季风气候,农业人口55.4万,耕地面积106万亩。粮食作物主要以小麦、玉米轮作  相似文献   

19.
基于机器视觉的棉花氮素营养诊断系统设计与试验   总被引:5,自引:0,他引:5  
采用数码相机和CCD数字摄像头为图像监测设备,融合机器视觉技术,集成数字图像处理技术、农业物联网技术、Web远程控制技术、信息传输服务技术和数据库管理技术等构建了远程服务系统平台。通过2年试验对棉花的生长状况进行实时跟踪监测,获取其冠层图像,运用数字图像处理技术对棉花群体冠层图像进行分割,筛选棉花长势监测与氮素营养诊断反应敏感的特征颜色参数覆盖度,构建了覆盖度与棉花地上部总含氮量间的关系模型。研究结果表明,覆盖度与棉花地上部总含氮量间指数函数模型相关性最高,其决定系数为0.978,根均方差为1.479 g/m~2。依据棉花覆盖度与氮素营养诊断的最佳模型,搭建了棉花长势长相监测中心(田间监测)、网络信息服务控制中心(服务器)、图像分析与数据处理中心、决策诊断与评价中心以及用户浏览中心,形成一个大型环式"一网三层五中心"棉花监测管理诊断体系,初步实现对棉花生长信息和氮素营养状况快速准确的监测与诊断。  相似文献   

20.
侯春生  段洪洋  夏宁  万忠 《农机化研究》2012,34(7):19-23,35
农业产地环境信息的获取与监测对作物产地生态环境以及农产品质量安全具有重要意义。为此,归纳了信息化技术与装备在农田环境信息智能采集与监测方面的研究进展,并对未来智能化农业产地环境信息技术与装备的主要发展趋势进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号