共查询到19条相似文献,搜索用时 96 毫秒
1.
黄鳍金枪鱼垂直移动及水层分布研究进展 总被引:1,自引:0,他引:1
黄鳍金枪鱼(Thunnus albacares)为大洋性高度洄游鱼种,具有高速和深水游动能力,能够快速下潜至温跃层(20℃等温线)以下冷水区域觅食,最大深度甚至超过1000 m[1-4]。黄鳍金枪鱼垂直分布受海洋环境和饵料生物影响,进而影响渔船捕捞和效率[5]。因此获悉黄鳍金枪鱼垂直分布特征,不仅能辅助远洋渔场作业,对了解黄鳍金枪鱼鱼群垂直移动规律、分布习性和资源评估也至关重要。笔者综合国内外研究进展,综述了黄鳍金枪鱼垂直活动研究方法、垂直活动和水层分布及其影响因素在渔业生产和改进资源评估中应用,并对未来的研究内容进行展望。 相似文献
2.
长鳍金枪鱼(Thunnus alalunga)是延绳钓渔业主要捕捞目标物种,占金枪鱼年渔获量的1/3。南太平洋的长鳍金枪鱼资源丰富,探究其渔业资源的空间格局特征,分析是否存在空间尺度差异,对其渔业资源的合理利用和保护具有重要意义。根据2015—2019年中国大陆延绳钓渔捞日志数据,按季度以3种空间尺度进行聚合(1°、2°和5°),以及中西太平洋渔业委员会提供的5°网格数据,分别计算其空间格局特征,以比较不同空间尺度下资源分布格局的差异。结果表明:1)南太平洋长鳍金枪鱼资源空间格局方向特征的椭圆扁率大,所有尺度的空间格局均呈现显著的东西向分布,且资源的空间格局特征(资源的分布范围、扁率、分布方位角等)呈明显的季节性波动特征;2)同源的3种不同尺度数据反映的资源空间格局差异性较小,而不同源数据反映的则差异性较大;3)在同尺度5°网格数据中,相较于中西太平洋委员会数据,渔捞日志数据中空间格局的资源中心更偏东南,偏东约10°经度;4)采用较大尺度聚合的数据反映出的资源空间聚集特征更强,且不同尺度数据得到的资源空间热点区域有一定差异。 相似文献
3.
基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究 总被引:1,自引:0,他引:1
文章利用2008—2015年南太平洋长鳍金枪鱼(Thunnus alalunga)延绳钓渔业数据,结合11个环境指标(海表温度、叶绿素a (Chl-a)浓度、海表温度距平、叶绿素距平、海表温度梯度、叶绿素梯度、海平面异常以及渔区格网对应的前后各1个月海表温度和叶绿素值)和3个时空指标(月、经度和纬度),并基于6种集成学习模型,以月为时间分辨率、0.5°×0.5°为空间分辨率,开展了南太平洋长鳍金枪鱼渔场模型构建和预报研究。模型通过10折交叉验证和网格搜索思想确定最佳参数,采用的随机森林、Bagging决策树、C5.0决策树、梯度提升决策树、AdaBoost、Stacking集成模型分别取得了75.52%、73.87%、72.99%、71.14%、71.33%、75.84%的分类准确率。经对比,Stacking集成模型准确率最高。利用2015年环境数据进行预报精度检验,预报总体准确率为63.86%~82.14%,平均70.99%;高单位捕捞努力量渔获量(Catch per unit effort, CPUE)渔区预报准确率为62.71%~97.85%,平均78.76%。结果表明Stacking集成模型对南太平洋长鳍金枪鱼渔场的预报具有较好的效果及可行性。 相似文献
4.
南太平洋延绳钓长鳍金枪鱼生物学组成及其与栖息环境关系 总被引:1,自引:0,他引:1
长鳍金枪鱼(Thunnus alalunga)经济价值高,是我国延绳钓渔业重要的目标鱼种。根据2013年9月~2014年1月和2014年4~8月我国金枪鱼观察员在南太平洋东部海域收集的长鳍金枪鱼样本和海洋环境数据,对其生物学组成和栖息环境进行了研究。结果表明:叉长(FL,cm)与体质量(WW,kg)的关系为:WW=3×10-5×FL2.909 9(雌雄性,R2=0.915 3);体长(TL,cm)与叉长(FL,cm)关系为:TL=1.033 6FL+2.555(R2=0.961 4);叉长(FL,cm)与两背鳍间距(LD1D2,cm)的关系为:LD1D2=0.248 5FL+1.238 1(R2=0.815 1);利用各水层长鳍金枪鱼渔获率(catch per unit effort,CPUE)推测其主要的栖息水层为150~270 m,栖息水层温度范围16~22℃,盐度范围35.0~35.6,其中最高资源丰度主要分布在190~230 m的水层,对应的温度为18~20℃,盐度为35.2~35.4。研究结果可为掌握南太平洋长鳍金枪鱼栖息环境提供基础数据。 相似文献
5.
文章利用2008—2015年南太平洋长鳍金枪鱼 (Thunnus alalunga) 延绳钓渔业数据,结合11个环境指标 (海表温度、叶绿素a (Chl-a)浓度、海表温度距平、叶绿素距平、海表温度梯度、叶绿素梯度、海平面异常以及渔区格网对应的前后各1个月海表温度和叶绿素值) 和3个时空指标 (月、经度和纬度),并基于6种集成学习模型,以月为时间分辨率、0.5°×0.5°为空间分辨率,开展了南太平洋长鳍金枪鱼渔场模型构建和预报研究。模型通过10折交叉验证和网格搜索思想确定最佳参数,采用的随机森林、Bagging决策树、C5.0决策树、梯度提升决策树、AdaBoost、Stacking集成模型分别取得了75.52%、73.87%、72.99%、71.14%、71.33%、75.84%的分类准确率。经对比,Stacking集成模型准确率最高。利用2015年环境数据进行预报精度检验,预报总体准确率为63.86%~82.14%,平均70.99%;高单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 渔区预报准确率为62.71%~97.85%,平均78.76%。结果表明Stacking集成模型对南太平洋长鳍金枪鱼渔场的预报具有较好的效果及可行性。
相似文献6.
基于最大熵模型的南太平洋长鳍金枪鱼栖息地预测 总被引:1,自引:0,他引:1
长鳍金枪鱼(Thunnus alalunga)是一种高度洄游的中上层鱼类,其分布受环境影响明显,利用海洋环境的变化对其栖息地分布进行预测有重要的科学意义。本研究采用2015—2017年盛渔期中国(不含港澳台地区)渔船在南太平洋140°E~130°W,0°~50°S区域长鳍金枪鱼延绳钓渔捞日志数据,结合同时期海洋环境数据,使用最大熵模型获得了2015—2016年盛渔期(5—8月)长鳍金枪鱼渔获率对各环境因子的反馈曲线以及各环境因子的贡献率,并据此计算出2017年盛渔期其潜在栖息地分布,然后叠加同年真实渔业数据对各模型的预测准确率进行比较。结果表明:(1)由渔获率对各环境因子的反馈曲线发现,25°S以北区域最适宜长鳍金枪鱼栖息的海表温度为28.4~30.6℃,300 m水深温度为13.2~17.6℃,海表面盐度为35.6~36.7,海表风场南北分量为-1.6~5.8 m/s;25°S以南区域最适宜长鳍金枪鱼栖息的海表温度为17.8~23.4℃,300 m水深温度为12.2~16.9℃,海表面盐度为35.2~36.0,海表风场南北分量为-0.7~4.9 m/s,总体相似。(2)25°S以北区域环境因子的重要性排名由高到低依次为海表面温度(因子平均贡献率31.3%)、海表面盐度(30.1%)、300 m水深温度(29.2%)、海表风场南北分量(9.4%);在25°S以南区域依次为海表面温度(60.7%)、海表面盐度(22.4%)、海表风场南北分量(10.6%)和300 m水深温度(6.3%);在25°S以南区域,最重要的环境因子为海表面温度(平均贡献率大于60%),且显著高于以北区域的31%;在25°S以北区域,3个主要环境因子的重要性差异较小,平均贡献率都在30%左右。(3)模型的综合预测准确率在30%~85%,具体以中适生区的预测准确率较高,高、低适生区预测准确率相对较低。 相似文献
7.
为掌握不同水层的环境因子对长鳍金枪鱼(Thunnus alalunga)延绳钓渔获率的影响,根据2015-2017年中国大陆在该海域的长鳍金枪鱼延绳钓渔捞日志资料,结合同期海洋环境数据,采用广义可加模型(Generalized additive model,GAM)对渔获率与各因子的关系进行研究。通过相关分析获取各环境因子相关系数,对相关性较大的环境因子分组建模。结果表明:1)海表面温度与120 m水深温度、海表面温度与海表面高度、120 m水深温度与海表面高度、300 m水深温度与300 m水深盐度为高度相关因子,海表面盐度、叶绿素a浓度、海表风场南北分量与其他环境因子之间的相关性均较小;2)模型的总解释偏差介于30%~40%,各环境因子重要性依次为120 m水深温度、海表温度、300 m水深温度、120 m水深盐度、海表面高度、300 m水深盐度、海表盐度、混合层深度、海面风场南北分量、海面风场东西分量、叶绿素a浓度;3)120 m水深温度与单位捕捞努力渔获量(CPUE)在15~30℃呈负相关。海表温度整体趋势与120 m水深温度类似,其中在25~28℃呈正相关。300 m水深温度与CPUE在10~18℃呈现明显的正效应关系。 相似文献
8.
根据2010年8~10月,在南太平洋所罗门群岛海域延绳钓作业渔场所采集的黄鳍金枪鱼数据,对其渔业生物学特性进行了初步分析。结果表明,1)叉长为47.5~166.5 cm,平均叉长为112.7 cm,优势叉长为80.0~90.0 cm和100.0~140.0 cm(75.0%);体重为2.0~72.0 kg,平均体重为26.5 kg,优势体重为5~10 kg和15~40 kg(68.6%),雌、雄个体大小差异明显(ANOVA,P<0.01);2)体重(RW)与叉长(FL)、纯重(DW)的关系分别为RW=1.159×10-5FL3.070和RW=1.118DW+0.684(不分性别);3)雌、雄性比为1∶1.2。各叉长组性比变化显著(χ2=1 093.386,P<0.001),叉长大于140 cm时,雄性个体占优势;4)性腺发育以Ⅱ期为主(50%),初次性成熟叉长为113.4 cm。达到性成熟的个体中,34.0%的个体发育至Ⅴ期以上,说明调查期间为黄鳍金枪鱼繁殖期;5)空胃率高达51.6%,摄食种类主要为鱼类(67.5%)、头足类(18.0%)和甲壳类(14.5%)。不同叉长组的摄食等级存在显著变化(χ2=400.782,P<0.001)。 相似文献
9.
本研究运用年龄结构资源评估模型ASAP,利用最新的渔业数据和生物学研究成果,对印度洋长鳍金枪鱼资源进行了评估。结果显示,主要资源变量捕捞死亡系数(F)、产卵亲体生物量(SSB)和生物学参考点受亲体-补充量关系的陡度参数(h)的影响很大。假设陡度参数h=0.7、0.8、0.9时,最大持续产量(MSY)分别为25 268t、27 414t、51 924t,当前(2010年初)F与FMSY之比分别为2.85、2.32、1.11,当前渔获量与MSY之比分别为1.65、1.52、0.80。1984年以来,F总体处于上升趋势,SSB处于下降趋势。基本模型条件下(h=0.8),当前资源状况为"趋向于过度捕捞"(Overfishing),且已接近于"过度捕捞"(Overfished)。若h=0.7、h=0.9,当前资源状况分别为"捕捞过度"、"趋向于过度捕捞"。 相似文献
10.
11.
Changes in albacore tuna habitat in the northeast Pacific Ocean under anthropogenic warming 下载免费PDF全文
Albacore tuna are widespread in the North Pacific Ocean and the basis of an important commercial fishery. These fish live mainly within a fairly narrow thermal niche range defined by sea surface temperature (SST) isotherms between 14 and 19°C. Because the fish's thermal range coincides with strong latitudinal temperature gradients off the northwest coast of North America, there is a great deal of seasonal and interannual variability in the distribution of these fish, and a significant potential for a new habitat in this region with anthropogenic climate change. We use historical catch and effort data from the Canadian troll fleet to define the fish's thermal niche, and document observed shifts in distribution associated with interannual climate variability. We then use an ensemble of climate model simulations from the Coupled Model Intercomparison Project to estimate northward extension of the potential habitat under anthropogenic warming scenarios. A potential new habitat is about half a million square kilometres even under a moderate mitigation scenario. Estimates are smaller for some months of the year in which the fishery is conducted, but as well as opening up new regions, the length of season in which the fishery is active may be extended in the northern part of the range. However, much of the potential new habitat will be in oceanic waters with relatively low productivity. Our estimated area of potential habitat is based on the fish's thermal niche and assumes that other biologically important factors such as food will not be limiting. 相似文献
12.
北太平洋长鳍金枪鱼年龄与生长初步研究 总被引:1,自引:0,他引:1
北太平洋长鳍金枪鱼(Thunnus alalunga)是金枪鱼渔业的主要捕捞对象之一,其资源的养护和管理日益受到各方关注,鱼类年龄鉴定是渔业资源研究的重要内容之一。根据2013~2014年北太平洋长鳍金枪鱼探捕所采集的227个脊椎骨样本,用不同的染色方法分成4组进行年龄的鉴定,选用线性模型、指数模型和幂指数模型对叉长和脊椎骨半径进行拟合,最后选出结果最好的鉴定组和拟合模型,通过年龄鉴定估算长鳍金枪鱼的Von Bertalanffy生长方程。研究结果表明,北太平洋长鳍金枪鱼的叉长范围为52~104 cm,优势叉长组为81~90 cm,占总数的83.1%;年龄组成以5、6龄较多,占样本总数的80.86%。最终得到北太平洋长鳍金枪鱼生长方程为:Lt=109.180 2[1-e~(-0.258 783(t-1.991 28))],t_(tp)=2.25。 相似文献
13.
Archival tags were used to study the seasonal movements, migration patterns and vertical distribution of juvenile North Pacific albacore (Thunnus alalunga). Between 2001 and 2006, archival tags were deployed in North Pacific albacore in two regions of the Northeast Pacific: (i) off Northern Baja California, Mexico and Southern California, and (ii) off Washington and Oregon. Twenty archival tagged fish were recovered with times at liberty ranging from 63 to 697 days. Tagged albacore exhibited five distinct, seasonal migratory patterns. Depth and temperature data also showed a broad range of vertical behaviors. In certain regions such as off Baja California, Mexico, juvenile albacore make frequent dives to depths exceeding 200 m during the day and remain in the surface mixed layer at night, whereas off Oregon and Washington they remain near the surface both day and night. Water temperatures encountered ranged from 3.3 to 22.7°C. Peritoneal temperatures were significantly higher by an average of approximately 4°C, as expected in these warm‐bodied fish. This study provides a comprehensive examination of horizontal and vertical movements of juvenile albacore in the Northeast Pacific. The results reveal diverse behavior that varies regionally and seasonally as albacore move among different habitats throughout the entire North Pacific. 相似文献
14.
Cheng Zhou Pingguo He Liuxiong Xu Pascal Bach Xuefang Wang Rong Wan Hao Tang Yu Zhang 《Fisheries Oceanography》2020,29(3):238-251
Albacore tuna (Thunnus alalunga) exhibit patchy concentrations associated with biological process at a wide range of spatial scales, resulting in variations in their catchability by fishing gears. Here, we investigated the association of catch variation for pelagic longlines in the South Pacific Ocean with oceanographic mesoscale structures (in horizontal dimension) and ambient conditions (in vertical dimension). The distribution of albacore tuna as indicated by catch per unit effort (CPUE) of longlines was significantly related to the presence of mesoscale structures, with higher CPUE found at locations closer to thermal fronts and with greater gradient magnitudes, as well as areas marked by peripheral contour line of the anticyclone indicated by Sea Surface Height Anomalies ~0.05 m. Surface mesoscale current velocity had the negative effect on the catch, probably as a result of decreased catchability by shoaling the hook depth. Vertical distribution of albacore in the survey region of South Pacific Ocean was hardly restricted by ambient temperature and oxygen concentration, though effect of ambient temperature was relevant and showed a negatively linear correlation with CPUE at the range of 20–24°C. On the contrary, albacore distribution was evidently dominated by the water depth and showed strong preference on water depth of 200 m, which was likely a representative feeding layer. The presence of prey resources and their accessibility by albacore revealed by mesoscale structures in the biological and physical processes, and catchability determined by the location of the baited hooks comprehensively contribute to the variability of catch. 相似文献
15.
Migration of albacore, Thunnus alalunga, in the North Pacific Ocean in relation to large oceanic phenomena 总被引:1,自引:0,他引:1
On the basis of Japanese long-line fishery data during 1970–1988, anticlockwise migration routes of albacore in the North Pacific are newly proposed. The annual migration route for mature albacore is described as a closed ellipse with a centre at 20°N and 170°E, and is wider in El Niño years than non-El Niño years associated with an appearance of a cold-water region in the central and south-western North Pacific. Immature albacore also have an anticlockwise migration route in winter which extends from 25°N to 35°N and from 130°E to 180°E, when the Kuroshio has a relatively straight path. However, the migration does not persist when the Kuroshio takes a large meander path. 相似文献
16.
TAKASHI KITAGAWA RE M. BOUSTANY CHARLES J. FARWELL THOMAS D. WILLIAMS MICHAEL R. CASTLETON BARBARA A. BLOCK 《Fisheries Oceanography》2007,16(5):409-421
Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time‐series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light‐based longitude and sea surface temperature‐based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid‐winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11–14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon. 相似文献
17.
Relationships between albacore tuna (Thunnus alalunga) longline catch per unit effort (CPUE) and environmental variables from model outputs in New Caledonia’s Exclusive Economic Zone (EEZ) were examined through generalized linear models at a 1° spatial resolution and 10‐day temporal resolution. At a regional (EEZ) scale, the study demonstrated that a large part of albacore CPUE variability can be explained by seasonal, interannual and spatial variation of the habitat. Results of the generalized linear models indicated that catch rates are higher than average in the northwestern part of the EEZ at the beginning of the year (January) and during the second half of the year (July–December). In the northwestern region of the EEZ, high CPUEs are associated with waters <20.5° in the intermediate layer and with moderate values of primary production. Longline CPUE also appeared to be dependent on prey densities, as predicted from a micronekton model. Albacore CPUE was highest at moderate densities of prey in the epipelagic layer during the night and for relatively low prey densities in the mesopelagic layer during the day. We also demonstrated that the highest CPUEs were recorded from 1986 to 1998, which corresponds to a period with frequent El Niño events. 相似文献
18.
Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors 总被引:4,自引:0,他引:4
The distribution pattern of albacore, Thunnus alalunga, in the Indian Ocean was analyzed based on catch data from the Taiwanese tuna longline fishery during the period 1979–85. The Taiwanese tuna fishery began operating in the Indian Ocean in 1967. We used a geographic information system to compile a fishery and environmental database and statistically explored the catch per unit effort (CPUE) distribution of albacore. Our results indicated that immature albacore were mainly distributed in areas south of 30°S although some displayed a north–south seasonal migration. Mature albacore, which were mainly concentrated between 10°S and 25°S, also showed a north–south migration. Within 10°S and 30°S, the separation of mature, spawning, and immature albacore life history stages roughly coincided with the boundaries of the three oceanic current systems in the Indian Ocean. The optimal environmental variables for CPUE prediction by stepwise discriminant analysis differed among life history stages. For immature albacore, the sea surface variables sea surface temperature (SST), chlorophyll concentration and surface salinity were significant. For mature albacore, SST was significant, while for spawning albacore, the sub‐surface variables temperature at 100 m and oxygen at 200 m were significant. Spawning albacore evidently prefer deep oceanographic conditions. Our results on the oceanographic conditions preferred by different developmental stages of albacore in the Indian Ocean were compatible with previous studies found in the Pacific Ocean. 相似文献
19.
Haruhiko Hino Takashi Kitagawa Takayuki Matsumoto Yoshinori Aoki Shingo Kimura 《Fisheries Oceanography》2019,28(4):359-371
Vertical movements related to the thermoregulation were investigated in 12 juvenile bigeye tuna (Thunnus obesus) in Japanese waters using archival tag data. Movements changed with time of day, season, and body size. During daytime, bigeye tuna descended to greater depths, presumably to feed in the deep scattering layer (DSL). Thereafter, they repeatedly ascended to shallower layers, suggesting attempts at behavioral thermoregulation, although the beginning of vertical thermoregulatory ascents might reflect a shift in DSL depth. By the end of such movement, the whole‐body heat‐transfer coefficient might decrease because, although the depth and ambient temperature of the upper layers did not change, the body temperature gradually decreased significantly just after ascent for thermoregulation. Seasonal patterns indicated that the vertical thermal structure of the ocean might influence this ascent behavior. For example, from January to May, bigeye tuna made fewer ascents to less shallow waters, suggesting that they respond to increasing depths of the mixed surface layer by reducing energy expenditure during vertical migration. In addition, as body size increased, fewer thermoregulatory ascents were required to maintain body temperature, and fish remained deeper for longer periods. Thus, vertical thermoregulatory movements might change with body size as bigeye tuna develop better endothermic and thermoregulatory abilities. We hypothesize that bigeye might also increase cold tolerance as they grow, possibly due to ontogenetic shifts in cardiac function. 相似文献