首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yield in any given field or management zone is a product of interaction between many soil properties and production inputs. Therefore, multi-year yield maps may give better insight into determining potential management zones. This research was conducted to develop a methodology to delineate yield response zones by using two-state frequency analysis conducted on yield maps for 3 years on two commercial corn fields near Wiggins, Colorado. A zone was identified by the number of years that yield was equal and greater than the average yield in a given year. Classes producing statistically similar yield were combined resulting in three potential yield zones. Results indicated that the variability of yield over time and space could successfully be assessed at the same time without the drawbacks of averaging data from different years. Frequency analysis of multi-year yield data could be an effective way to establish yield response zones. Seventeen percent of the field #1 consistently produced lower yield than the mean while 43 of the field produced yield over the mean. Corresponding values for field #2 were 6% and 42%.The remainder of the fields produced fluctuating yields between years. These spatially and temporally sound yield response maps could be used to identify the yield-limiting factors in zones where yield is either low or fluctuating. Yield response maps could also be helpful to delineate potential management zones with the help of resource zones such as electrical conductivity and soil maps, along with the directed soil sampling results.  相似文献   

2.
A four-year study was conducted from 2000 to 2004 at eight field sites in Montana, North Dakota and western Minnesota. Five of these sites were in North Dakota, two were in Montana and one was in Minnesota. The sites were diverse in their cropping systems. The objectives of the study were to (1) evaluate data from aerial photographs, satellite images, topographic maps, soil electrical conductivity (ECa) sensors and several years of yield to delineate field zones to represent residual soil nitrate and (2) determine whether the use of data from several such sources or from a single source is better to delineate nitrogen management zones by a weighted method of classification. Despite differences in climate and cropping, there were similarities in the effectiveness of delineation tools for developing meaningful residual soil nitrate zones. Topographic information was usually weighted the most because it produced zones that were more correlated to actual soil residual nitrate than any other source of data at all locations. The soil ECa sensor created better correlated zones at Minot, Williston and Oakes than at most eastern sites. Yield data for an individual year were sometimes useful, but a yield frequency map that combined several years of standardized yield data was more useful. Satellite imagery was better than aerial photographs at most locations. Topography, satellite imagery, yield frequency maps and soil ECa are useful data for delineating nutrient management zones across the region. Use of two or more sources of data resulted in zones with a stronger correlation with soil nitrate.  相似文献   

3.
基于模糊聚类分析的田间精确管理分区研究   总被引:13,自引:0,他引:13  
【目的】以海涂围垦区盐碱土为研究对象,将从SPOT遥感影像提取出的NDVI数据和盐碱地土壤生产力的主要限制因子盐分数据及部分养分数据作为变量进行精确农业管理分区研究。【方法】模糊c均值聚类方法被用来进行分类分区,并引入了模糊聚类指数和归一化分类熵两种分区效果评价指标,对分区结果进行比较和评价。【结果】本研究区,最佳的分区数目为3个。对处于每一子区内土样的化学特性和实测棉花产量数据进行方差分析,发现其均值在所定义的每个管理分区内都存在着统计意义上的显著差异性,其中子区3具有最高的肥力水平和作物产量,而子区1最低。【结论】利用所选取的变量,模糊c均值聚类算法可以较好地进行管理分区划分。分区结果不但可以指导采样,而且可用于实施变量投入和精确施肥推荐,为样区土壤管理提供科学的决策依据。  相似文献   

4.
5.
A web-based decision support tool, zone mapping application for precision farming (ZoneMAP, ), has been developed to automatically determine the optimal number of management zones and delineate them using satellite imagery and field data provided by users. Application rates, such as of fertilizer, can be prescribed for each zone and downloaded in a variety of formats to ensure compatibility with GPS-enabled farming equipment. ZoneMAP is linked to Digital Northern Great Plains, a web-based application which hosts an archive of satellite imagery, as well as high resolution imagery from airborne sensors. Management zones created by ZoneMAP mapped natural variation of the soil organic matter and other nutrients relatively well and were consistent with zone maps created by traditional means. The results demonstrated that ZoneMAP can serve as an effective and easy-to-use tool for those who practice precision agriculture.  相似文献   

6.
 【目的】由适时获得的高光谱数据代替传统繁琐的实验室土壤养分测定数据来进行变量施肥,实现冬小麦高产优质的目标。【方法】本研究利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数(OSAVI,optimization of soil-adjusted vegetation index)和变量施肥模型进行变量施肥管理(变量区),以相邻地块常规非变量(均一)施肥区(对照区)为对照,研究了不同氮肥处理冬小麦冠层光谱特征及其施肥效应。【结果】变量施肥之后两种氮肥处理在敏感波段670 nm和760~900 nm处反射率差异明显,而670nm和760~900nm是氮素和冠层的敏感波段,说明进行变量施肥时,利用基于这两个波段组合的光谱指数OSAVI优于其它波段组合的光谱指数;SAVI不同生育时期的变化情况,反映了变量施肥在调控作物长势及群体结构上的优势;与对照区相比变量区提高产量达378.72 kg•ha-1,并降低了各小区产量之间的变异,变量区土壤硝态氮浓度降低,氮肥利用率提高,生态效益较为明显。【结论】该技术通过改善冬小麦群体质量,延缓了植株衰老,促进干物质和氮积累,增加冬小麦产量和氮肥利用率。  相似文献   

7.
Researchers from Colorado State University, in collaboration with scientists from the United States Department of Agriculture (USDA), initiated a long-term multi-disciplinary study in precision agriculture in 1997. Site-specific management zones (SSMZ) were investigated as a means of improving nitrogen management in irrigated maize cropping systems. The objective was to develop precise nutrient management strategies for semi-arid irrigated cropping systems. This study was conducted in five fields in northeastern Colorado, USA. Two techniques for delineating management zones were developed and compared: SSMZ and yield-based management zones (YBMZ). Nitrogen uptake and grain yield differences among SSMZs were compared as were soil properties. Both management zone techniques were used to divide fields into smaller units that were different with regard to productivity potential (e.g., high zones had high productivity potential while low zones had low productivity potential). Economic analysis was also performed. Based on grain yield productivity, the SSMZs performed better than the YBMZ technique in most cases. Grain yield and N uptake between the low and high productivity management zones were statistically different for most site-years and N fertilizer rates (p < 0.05). Soil properties helped to explain the productivity potential of the management zones. The low SSMZ was markedly different from the high SSMZ based on bulk density, organic carbon, sand, silt, porosity and soil moisture. Net returns ranged from 188 to 679 USD ha?1. In two out of three site-years the variable yield goal strategy resulted in the largest net returns. In this study, the SSMZ approach delineates areas of different productivity accurately across the agricultural fields. The SSMZs are different with regard to soil properties as well as grain yield and N uptake. Site-specific management zones are an inexpensive and pragmatic approach to precise N management in irrigated maize.  相似文献   

8.
Precision viticulture aims at managing vineyards at a sub-field scale according to the real needs of each part of the field. The current study focused on delineating management zones using fuzzy clustering techniques and developing a simplified approach for the comparison of zone maps. The study was carried out in a 1.0 ha commercial vineyard in Central Greece during 2009 and 2010. Variation of soil properties across the field was initially measured by means of electrical conductivity, soil depth and topography. To estimate grapevine canopy properties, NDVI was measured at different stages during the vine growth cycle. Yield and grape composition (must sugar content and total acidity) mapping was carried out at harvest. Soil properties, yield and grape composition parameters showed high spatial variability. All measured data were transformed on a 48-cell grid (10 × 20 m) and maps of two management zones were produced using the MZA software. Pixel-by-pixel comparison between maps of electrical conductivity, elevation, slope, soil depth and NDVI with yield and grape composition maps, set as reference parameters, allowed for the calculation of the degree of agreement, i.e. the percentage of pixels belonging to the same zone. The degree of agreement was used to select the best-suited parameters for final management zones delineation. For the year 2009 soil depth, early and mid season NDVI were used for yield-based management zones while for quality-based management zones ECa, early and mid season NDVI were utilized. For the year 2010 ECa, elevation and NDVI acquired during flowering and veraison were used for the delineation of yield-based management zones while for quality-based management zones ECa and NDVI acquired during flowering and harvest were utilized. Results presented here could be the basis for simple management zone delineation and subsequent improved vineyard management.  相似文献   

9.
Since conventional sampling and laboratory soil analysis do not provide a cost effective capability for obtaining geo-referenced measurements with adequate frequency, different on-the-go sensing techniques have been attempted. One such recently commercialized sensing system combines mapping of soil electrical conductivity and pH. The concept of direct measurement of soil pH has allowed for a substantial increase in measurement density. In this publication, soil pH maps, developed using on-the-go technology and obtained for eight production fields in six US states, were compared with corresponding maps derived from grid sampling. It was shown that with certain field conditions, on-the-go mapping can significantly increase the accuracy of soil pH maps and therefore increase the potential profitability of variable rate liming. However, in many instances, these on-the-go measurements need to be calibrated to account for a field-specific bias. After calibration, the overall error estimate for soil pH maps produced using on-the-go measurements was less than 0.3 pH, while non-calibrated on-the-go and conventional field average and grid-sampling maps produced errors greater than 0.4 pH.  相似文献   

10.
Precision irrigation requires the mapping of within-field variations of water requirement. Conventional remote sensing techniques provide estimates of water status at only shallow soil depths. The ability of a water sensitive crop, sugar beet, to act as an intermediate sensor providing an integrated measure of water status throughout its rooting depth is tested here. Archive aerial photographs and satellite imagery of Eastern England show crop patterns resulting from past periglacial processes. The patterns were found to be spatially and temporally consistent. Field sampling of soil cores to 1 m depth established that the within-field wilting zones were significantly associated with coarser or shallow soils. The stress classes, determined by classification of the digitised images, were weakly correlated with total available water (Pearson correlation r = 0.588, P < 0.05). These results suggest that wilting in sugar beet can be used as an intermediate sensor for quantifying potential soil water availability within the root zone. Within-field stress maps generated in 1 year could be applied as a strategic tool allowing precision irrigation to be applied to high-value crops in following years, helping to make more sustainable use of water resources.  相似文献   

11.
Maps of kriged soil properties for precision agriculture are often based on a variogram estimated from too few data because the costs of sampling and analysis are often prohibitive. If the variogram has been computed by the usual method of moments, it is likely to be unstable when there are fewer than 100 data. The scale of variation in soil properties should be investigated prior to sampling by computing a variogram from ancillary data, such as an aerial photograph of the bare soil. If the sampling interval suggested by this is large in relation to the size of the field there will be too few data to estimate a reliable variogram for kriging. Standardized variograms from aerial photographs can be used with standardized soil data that are sparse, provided the data are spatially structured and the nugget:sill ratio is similar to that of a reliable variogram of the property. The problem remains of how to set this ratio in the absence of an accurate variogram. Several methods of estimating the nugget:sill ratio for selected soil properties are proposed and evaluated. Standardized variograms with nugget:sill ratios set by these methods are more similar to those computed from intensive soil data than are variograms computed from sparse soil data. The results of cross-validation and mapping show that the standardized variograms provide more accurate estimates, and preserve the main patterns of variation better than those computed from sparse data.  相似文献   

12.
Vegetation indices (VI) obtained by optical sensors have a positive correlation with various attributes of cotton plant growth. This work is aimed at evaluating the variable rate application of plant growth regulator (PGR) and fruit ripener on zones defined by VI and penological measurements using a sprayer equipped with a relatively low cost electronic flow controller on the height, percentage of open fruits, yield and net income. The work was done in a 92 ha field during crop seasons 2012/2013 and 2013/2014, and in a 202 ha field, during the crop season 2014/2015. Two spray applications were made using variable rate technology (VRT) of the PGR and one fruit ripener, in both harvest seasons, according to three VI classes formed by a previous mapping. The uniformity of the cotton height and opened fruits contribute to a similar yield across zones. Uniform plant height facilitates cotton harvest. The ripener helps to ensure all the cotton is ready to be harvested at the same time. In this trial, use of VRT technique to manage the PGR and fruit ripener application increased net income by US$152.28 ha?1, but this estimate is based on yields that are not statistically significantly different from the control. This research confirms that PGR and fruit ripener can be sufficiently managed with an electronic flow controller to result in more uniform cotton plant height and yields within fields, but it leaves open the question of whether VRT PGR is profitable even with the lower cost electronic flow controller.  相似文献   

13.
Within-field variability of plant-available nutrients often results in different fertilizer requirements across a field. There is uncertainty concerning the efficacy of alternative sampling strategies suitable for site-specific management. This study compared various soil sampling approaches for P, K, pH, and organic matter (OM) in eight agricultural fields. Soil samples were collected using an intensive 0.2-ha grid-point procedure, and were used to compare less intensive sampling approaches. The approaches were based on 1.2–1.6-ha grid cells (Grid), soil series of digitized soil survey maps (SSM), soil series of detailed soil survey (1:12,000 scale) maps, elevation zones, and management zones based on various information layers (ZS). The approaches varied in reducing the within-unit soil-test variability and maximizing mean soil-test values across sampling units, but none was superior across all fields and nutrients. All approaches were less efficient for P and K than for pH or OM. The Grid and ZS approach were the most effective across all nutrients and fields. However, the Grid approach was more effective for P, the Grid and ZS approaches were better for K and pH, and the SSM and ZS approaches were better for OM. The ZS approach often resulted in fewer sampling zones than the Grid approach, which implies lower soil testing costs for producers, but required more knowledge and subjective judgement than a Grid approach to adapt it to field-specific conditions.  相似文献   

14.

Reducing the decision-making unit to classes within fields can improve yields, efficiency in the use of nutrients and profitability of crops. The objectives were to compare methods for class delimitation in wheat (Triticum aestivum L.) crops based on apparent productivity levels and establish similarities among them in terms of spatial overlapping, productive attributes and the use of nitrogen. In three wheat fields, high and low apparent productivity classes (APC) were defined based on eight methodologies: yield maps, soil maps, gramineae vegetation index, rotation crop index, interpretation of satellite images, management records, elevation and integrated soil and yield maps. In each APC, soil and crop yield components were determined under five nitrogen fertilization levels. Among delimitation methodologies, the degree of coincidence varied from 1.4 to 81.7%. The differences in soil properties, nitrogen use efficiency and grain yields were greater among fields than among APC within each field. In each field, the delimitation methodologies identified different single factors that discriminated among the potential management classes and were partially associated with the crop grain yields. The wheat crops at the low APC yielded 39% less and 12% less than at the high APC, respectively. The nitrogen fertilization, at the rate for maximum productivity for each ACP, reduced the yield differences between contrasting APC. Nitrogen fertilization also modified clustering of classes based on expected yields. Making management classes for wheat based on expected productivity is more accurate when based on previous crop production information under similar nitrogen fertilization conditions than the targeted crop.

  相似文献   

15.
Core soil sampling followed by laboratory analysis is the traditional method used to map soil pH prior to variable rate application (VRA) of lime on cropland. A recently developed automated soil sampling system capable of measuring soil pH on-the-go has significantly increased sampling resolution. However, adoption of such systems must be justified economically. This paper presents a method for assessing the economic benefit from automated mapping of soil pH prior to variable rate lime application. In this work, geostatistical, agronomic, and economic methods were used to generate a comprehensive numerical model for quantitative assessment of the net return over cost of liming for different lime management strategies. The strategies included: automated pH mapping, manual grid soil sampling, and whole field sampling used in combination with either variable or fixed rate liming. The model was demonstrated using a simulated field with known average pH and semivariogram model. The analysis showed the largest benefit ($6.13ha–1year–1) from using VRA with automated soil pH mapping versus VRA based on 1ha (2.5acres) manual grid point sampling for the selected simulated field conditions. A sensitivity analysis demonstrated that for a wide range of field conditions and crop prices, VRA plus automated mapping promises higher relative benefits than VRA based on either manual grid point or grid cell sampling.  相似文献   

16.
Developing placement criteria for soil moisture sensors is crucial in increasing the practical functionality of a variable rate irrigation (VRI) system. In this field study, the temporal stability pattern of soil water content was compared between VRI and uniform rate irrigation (URI) treatments during growing seasons of winter wheat and summer maize to determine the placement criteria of soil water sensors. The 1.64-ha experimental site located in a highly variable alluvial flood plain was divided into four management zones according to the available water holding capacity ranging from 152 to 205 mm within the 0.6 m soil profile. In each zone, two sub-zones were created to represent VRI and URI treatments. A temporal stability analysis of soil moisture was conducted by regularly measuring soil water contents at 62 locations in the field during the growing seasons. Results showed that the VRI management changed the overall similarity of soil moisture spatial patterns when crop water consumption was provided mainly by irrigation water rather than precipitation. In each management zone, every measuring position was a time-stable location with respect to the mean soil water content. Significant linear regressions were detected between the mean clay percentile in each management zone and the clay percentile representing the mean soil water content sites, and a nearly equivalent value of fitted equation coefficient was obtained for winter wheat (1.15) and summer maize (1.19). These results demonstrated that the temporal stability of soil water content spatial patterns still existed in each management zone with the VRI management, and the clay percentile supplied a priori identification for placement of soil moisture sensors.  相似文献   

17.
18.
19.
20.
农田土壤质量评价是耕地地力升降实行奖惩使用的前提。由于当前耕地土壤质量评价是以地块、地片为基础进行的。为适应这一需要,我们在第二次全国土壤普查的基础上,以太谷县为试点,将土壤普查土壤分类中之土种以下通过因素重迭法续分为土种—变种—土片三级基层分类;同时以1/万地形图作底图,用航片与地形图上对应明显地物点分别建立相应菱形锁,用相似透视网格法按成图比例尺转绘成(1/5000、1/2500或1/万)地形地块(片)及土壤质量等级图、作为农田地力升降奖惩的图幅依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号