首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
鸡马立克氏病活疫苗免疫效力比较试验   总被引:1,自引:0,他引:1  
用HVT冻干苗、HVT细胞结合苗、CVI988细胞结合苗、SB1+FC126双价活疫苗、301B/1+FC126双价活疫苗和Z4+FC126双价活疫苗等6种鸡马立克氏病(MD)疫苗免疫SPF白来航鸡或普通伊莎鸡,用鸡马立克氏病病毒(MDV)强毒GA株、京-1血毒以及鸡马立克氏病超强毒vvMDV-Md5毒株分别攻击进行免疫效力比较试验。试验表明,MD单价苗的免疫效力强弱顺序依次是CVI988、HVT细胞结合苗和HVT冻干苗,这3种MD单价苗均能给免疫鸡群提供有效的免疫保护力。SB1+FC126、Z4+FC126和301B/1+FC126等3种MD双价苗免疫效力显著高于MD单价苗,均能给免疫鸡群提供较强的免疫保护力,并能有效地抵抗vvMDV-Md5毒株的致瘤作用。Z4+FC126和301B/1+FC126MD双价苗免疫效力无显著差异  相似文献   

2.
Objective To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody.
Study design Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carried out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel.
Results The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multi-valent vaccines, although protection achieved with the mono-valent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus.
Conclusion The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

3.
OBJECTIVE: To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody. STUDY DESIGN: Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carded out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel. RESULTS: The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multivalent vaccines, although protection achieved with the monovalent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus. CONCLUSION: The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

4.
Comparative 50% protective dose (PD50) assays were performed using a plaque-purified preparation of Marek's disease virus (MDV) strain CVI-988 at the 65th chicken embryo fibroblast (CEF) passage level (MDV CVI-988 CEF65 clone C) and three commercial MD vaccines: herpesvirus of turkeys (HVT) FC126, MDV CVI-988 CEF35, and a bivalent vaccine composed of HVT FC126 and MDV SB-1. In addition, comparative PD50 assays were performed in groups of chickens with maternal antibody to each of the three vaccines. Three representatives of the newly emerged biovariant very virulent (vv) MDV strains-RB/1B, Tun, and Md5-were employed as challenge virus. The experiments made feasible the differentiation between virulent MDV and vvMDV strains, within serotype 1. Vaccination with CVI-988 clone C vaccine resulted in PD50 estimates of about 5 plaque-forming units (PFUs) against challenge infection with each of the three vvMDV strains. The PD50 estimate of CVI-988 clone C vaccine was 12-fold below the PD50 of HVT FC126. The protective synergism of bivalent vaccine, composed of HVT and SB-1, was confirmed by groups given the lowest vaccine doses. The bivalent vaccine, however, resulted in incomplete protection in groups given the highest vaccine doses. Homologous maternal antibodies to serotype 1 caused a fivefold increase in the PD50 estimate of CVI-988 clone C. Heterologous maternal antibodies against HVT did not interfere with efficacy of CVI-988 clone C vaccination. However, the combination of maternal antibodies against both HVT and SB-1 (serotypes 2 and 3) showed a strong adverse effect on CVI-988 clone C vaccine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

6.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

7.
Sung HW 《Avian diseases》2002,46(3):517-524
The incidence of Marek's disease (MD), an important neoplastic disease of chickens, suddenly increased in 1997 in Korea. Most MD cases of this country were detected in chickens over 20 wk of age. Five MD viruses were isolated from field flocks in which severe MD losses had occurred, and one of the viruses was studied to compare its pathotype with the prototype JM strain. The isolate KOMD-IC induced severe depression not only in body weight but also in relative bursal weight, and the depression by KOMD-IC was more severe than that induced by JM strain. In addition, the incidence of MD tumor caused by KOMD-IC was higher than that caused by the JM strain. The protective capacity of several MD vaccines was studied against challenge with KOMD-IC. The protective levels of several MD vaccines such as herpesvirus of turkeys (HVT), HVT plus SB1, and Rispens were usually lower against challenge with KOMD-IC than those challenged with JM strain, even if the chickens vaccinated with serotype 1 were not completely protected against challenge with KOMD-IC. The above results indicate that the virulence of KOMD-IC isolated recently was increased, and the increase of MD outbreak in Korea may be related to the virulence increase of the virus. Various MD vaccine programs were applied to reduce MD loss to a broiler breeder farm where severe MD loss had occurred. Serotype 1 vaccine could dramatically decrease the mortality due to MD, and the best results were obtained from the flocks vaccinated with bivalent vaccine of Rispens and HVT.  相似文献   

8.
The efficacies of trivalent (Md11/75C + SB-1 + HVT), bivalent (SB-1 + HVT), and turkey herpesvirus (HVT) vaccines against Marek's disease (MD) were compared in commercial broiler flocks in four trials involving 11 farm locations and 486,300 chickens. In all four trials, chickens receiving polyvalent vaccines had lower leukosis (MD) condemnation rates than chickens vaccinated with HVT alone; when data were summarized for each vaccine type in each trial, condemnation rates for the bivalent- or trivalent-vaccinated groups were 56-96% (mean 78%) lower than those for HVT-vaccinated chickens. Polyvalent vaccination was clearly mor efficacious than HVT in 8 of 11 individual farms, although it did not always reduce leukosis condemnations to acceptable levels. Body weights of chickens vaccinated with polyvalent vaccines did not differ consistently from those vaccinated with HVT. Chickens inoculated with the trivalent vaccine had slightly lower overall leukosis condemnation rates (0.24%) than those inoculated with the bivalent vaccine (0.45%) in trials 1-3, where direct comparisons were made. Bivalent vaccines containing either 1,500 or 200 plaque-forming units of SB-1 virus were equally effective; thus, HVT may need to be supplemented with only small amounts of SB-1 to obtain the benefits of protective synergism. SB-1 virus did not appear to carry over from polyvalent-vaccinated flocks to subsequent HVT-vaccinated flocks in the same houses, even when old litter was used.  相似文献   

9.
R L Witter 《Avian diseases》1987,31(4):752-765
Attempts were made, through selection of optimum viral strains, to develop improved vaccines against Marek's disease (MD). Seven attenuated serotype 1 strains and 22 avirulent serotype 2 strains, both alone and in combination with the FC126 strain of serotype 3, were screened for protective efficacy against challenge with virulent and very virulent MD viral strains. The three viruses selected as most promising were evaluated alone and in various combinations and compared with commercially available vaccines, including FC126, bivalent (FC126 + SB-1), and CV1988/C, in 12 separate assays. Two of these new viruses--301B/1 (serotype 2) and Md11/75C/R2 (serotype 1)--were exceptionally protective compared with prototype vaccine strains. Four new monovalent and polyvalent vaccines based on these two isolates protected chickens better than FC126 alone or CV1988/C alone. Three of these new vaccines provided better protection than the bivalent (FC126 + SB-1) vaccine. Protective synergism was noted commonly between viruses of serotypes 2 and 3 but only sporadically between serotypes 1 and 2 or between serotypes 1 and 3. Strain CVI988/C was protective but was no better than FC126 alone, and it was less effective than bivalent (FC126 + SB-1) vaccine, even when used as a bivalent vaccine with FC126 or SB-1.  相似文献   

10.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

11.
Comparison of blood and feather pulp (FP) samples for the diagnosis of Marek's disease (MD) and for monitoring Marek's diseases vaccination in chickens (serotypes 2 and 3 vaccines) by real time-PCR was evaluated. For diagnosis of MD, quantification of serotype 1 Marek's disease virus (MDV) DNA load was evaluated in 21 chickens suffering from MD. For each chicken, samples of blood and FP were collected and MDV DNA load was quantified. Solid tumors are the sample of choice for MD diagnosis by real time-PCR and, hence, 14 solid tumors were included in the study as positive controls. Load of MDV DNA in FP was equivalent to that detected in solid tumors (threshold cycle [Ct] ratio above 1.7). MDV DNA load in blood samples was lower than in solid tumors and FP samples. Nonetheless, there was a statistically significant correlation of the results obtained from FP and blood (r = 0.92). Results of the Pearson correlation test showed that Ct ratio values of 1.7 in FP correspond to Ct ratio values of 1.2 in peripheral blood. For monitoring vaccines, serotypes 2 and 3 MDV DNA load was evaluated in blood and FP samples of vaccinated chickens. Serotype 2 MDV DNA load was evaluated in samples of blood and FP from 34 chickens vaccinated with SB-1 strain. Serotype 3 MDV DNA load was evaluated in blood and FP samples from 53 chickens vaccinated with HVT strain. For both serotypes, frequency of positive samples and load of vaccine DNA was higher in FP than in blood samples. There was not a statistically significant correlation between the load of SB-1 DNA (r = 0.17) or HVT DNA (r = -0.04) in FP and blood. Our results show that the load of serotypes 1, 2, and 3 DNA is higher in FP than in blood. Diagnosis of MD could be done using both FP and blood samples. Monitoring of MD vaccination by real time-PCR required the use of FP samples. There were a high percentage of false negative samples when using blood to detect serotypes 2 and 3 MDV by real time-PCR.  相似文献   

12.
应用荷兰农业部提供的鸡马立克氏病(MD)CVI988/Rispens Ⅰ型致弱种毒, 在农业部批准的符合GMP 要求的生产车间研制出鸡马立克氏病CVI988/Rispens 疫苗。将按国际标准检验合格的三批疫苗及进口商品CVI988/Rispens 疫苗接种1 日龄SPF 雏鸡, 于7 日龄经腹腔攻击鸡马立克氏病强毒(北京- 1 株) 血毒, 全部鸡只隔离饲养观察至60 日龄并作全群剖检。经测定: 非免疫攻毒组100% 发病,健康对照组全部阴性, 三批国产CVI988/Rispens 疫苗保护指数分别为90-0, 90-0, 93-3 , 进口商品苗保护率为93-3 。结果表明国产和进口CVI988/Rispens疫苗均能提供对MD 较高的免疫保护力, 国产疫苗的保护效果达到了国际同类产品的先进水平。  相似文献   

13.
We used in ovo technology to protect chickens against multiple diseases by inoculating vaccines containing mixtures of live viral agents. A single in ovo injection of a vaccine containing serotypes 1, 2, and 3 of Marek's disease virus (MDV), a vaccine strain of serotype 1 infectious bursal disease virus (IBDV), and recombinant fowl pox vaccine with HN and F genes of Newcastle disease virus (rFP-NDV) induced protection against virulent MDV, IBDV, Newcastle disease virus, and fowl poxvirus. The multiple-agent vaccine induced specific antibodies against the viral agents present in the mixture and did not adversely affect the survival of hatched chickens. Inoculation of a vaccine containing serotypes 1, 2, and 3 of MDV and IBDV did not affect hatchability of eggs, although the addition of rFP-NDV to the mixture reduced hatchability by 23%-26%. In ovo vaccination with a vaccine containing MDV and IBDV vaccine viruses did not exacerbate the inhibitory effect of individual viral agents on humoral and cellular immune competence.  相似文献   

14.
An enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the antibody response of commercial White Leghorn chickens to vaccination against Marek's disease (MD) at hatch (day 0) with serotype-1 (Rispens), -2 (SB-1), or -3 (turkey herpesvirus, HVT) vaccine virus and to challenge on day 21 with MD virus. Antigens for the test were whole chicken embryo fibroblast cells infected with Rispens, SB-1, or HVT. The chickens were progeny of stock that had been vaccinated with HVT, and on day 21 the nonvaccinated group had higher levels of maternal antibodies to HVT than to other antigens (P < 0.05). Only SB-1 vaccine had induced antibodies by day 21, and this was detected only against homologous antigens. On day 49, all three vaccines had induced higher levels of antibodies to homologous than to heterologous antigens. Marek's Disease virus (MDV) induced antibodies to all three antigens, but challenging vaccinated chicks did not significantly increase levels of antibodies on day 81 to any of the three antigens. It was concluded that an ELISA using whole cells as antigens would have potential value for monitoring the antibody response induced by MD vaccines and virulent MDV.  相似文献   

15.
J M Sharma 《Avian diseases》1985,29(4):1155-1169
Studies with specific-pathogen-free chickens revealed that chicks hatching from eggs inoculated at the 18th day of embryonation with infectious bursal disease (IBD) vaccine viruses of low virulence (isolates TC-IBDV and BVM-IBDV) developed antibody against IBD virus (IBDV) and resisted challenge with virulent IBDV at 3 weeks of age or older. Embryo vaccination did not adversely affect hatchability of chicks or survival of hatched chicks. Chicks embryonally vaccinated with TC-IBDV had transient histologic lesions in the bursa of Fabricius at hatch. Similar but milder lesions were also noted in chickens that received TC-IBDV at hatch. The level of protection following embryo vaccination with TC-IBDV and BVM-IBDV was similar to that following vaccination with the same vaccines at hatch. Vaccine viruses of moderate virulence (isolates BV-IBDV and 2512-IBDV) were not suitable as vaccines in embryos lacking maternal antibody to IBDV, because the vaccinated chicks developed acute IBD after hatch. Isolate 2512-IBDV was not pathogenic for embryos bearing maternal antibody to IBDV. Maternal antibody against IBDV interfered with efficacy of embryo vaccination with BVM-IBDV but not with 2512-IBDV. Embryo vaccination with a mixture of vaccines against IBD and Marek's disease resulted in protection of hatched chicks against challenge with virulent IBDV and Marek's disease virus.  相似文献   

16.
R L Witter 《Avian diseases》1991,35(4):877-891
In earlier studies, a revertant serotype 1 Marek's disease virus (MDV), clone Md11/75C/R2, was found to be a highly protective vaccine virus but was mildly pathogenic for susceptible chickens. The term "revertant" indicates that the virus, after attenuation, gained virulence following backpassage in chickens. The present study is an attempt to develop a more attenuated but still protective vaccine virus from Md11/75C/R2. Forty-two derivative viruses or clones from Md11/75C/R2 were evaluated. Two of these, designated clones R2/23 and R2/29, induced viremia but little or no pathology in preliminary trials and were selected for further study. In a series of nine trials, both clones provided protection against challenge with very virulent MDV strains that was superior to that induced by turkey herpesvirus (HVT) and was not significantly different (P greater than 0.05) from that induced by a bivalent (HVT + SB-1) vaccine. Both clones appeared fully attenuated based on pathogenicity tests in susceptible antibody-negative chickens. Both clones gained virulence on backpassage in chickens, but this seemed of little concern because neither virus spread by contact to other chickens. Although the two clones were very similar, clone R2/23 appeared to have a slightly lower pathogenic potential following backpassage and thus best meets the combined criteria of safety and efficacy.  相似文献   

17.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

18.
19.
Two experiments determined the influence of an experimental reovirus-antibody complex vaccine on Mareks disease virus (MDV) vaccine when used in ovo. Designs were the same except that specific-pathogen-free (SPF) broiler eggs were used in Experiment 1 and commercial broiler eggs with maternal antibodies against reovirus were used in Experiment 2. At 18 days of incubation, embryos were separated into four groups and inoculated with either diluent, MDV vaccine, reovirus-antibody complex vaccine, or a combination of reovirus-antibody complex and MDV vaccine. At 5 days of age, half the chickens in each group were challenged with MDV. At 7 wk old, all were euthanatized, weighed, and examined. At 7 days of age, remaining chickens in each group were challenged with reovirus. At 21 days old, chickens were euthanatized and weighed. No vaccine adversely affected hatchability or posthatch mortality in SPF or commercial chickens. There were no significant differences in protection against reovirus challenge when vaccines were used separately or in combination, and lesion scores were nearly identical in all vaccinated groups in both experiments. However, percentage of protection against reovirus was lower in Experiment 2, indicating an adverse effect of maternal immunity on efficacy of the reovirus vaccine. There were no significant differences in protection against MDV when the vaccines were used separately or combined. Severity of MDV lesions was nearly identical in all vaccinated groups in both experiments. However, the combination of vaccines gave numerically lower protection against MDV than MDV vaccine alone. Use of a larger number of birds, as in field conditions, may result in statistically lower protection for the vaccine combination. Large field trials are needed to determine the potential of the reovirus-antibody complex vaccine.  相似文献   

20.
J M Sharma 《Avian diseases》1987,31(3):570-576
Several oncogenic and non-oncogenic isolates of Marek's disease virus (MDV) were inoculated into embryonated eggs on embryonation day (ED) 16 to 18, and embryos or chicks hatching from inoculated eggs were examined for infectious virus and viral internal antigen (VIA) in lymphoid organs. There was no evidence of extensive replication of MDV in any of the embryonic tissues examined. Levels of VIA peaked 4-5 days after chicks hatched. This indicated that MDV remained inactive during embryonation and did not initiate pathogenic events until chicks hatched. Because HVT replicated rapidly in the embryo but MDV did not, in ovo inoculation of HVT simultaneously with oncogenic MDV or several days after MDV resulted in significant protection (P less than 0.025) of hatched chicks against Marek's disease (MD). Little protection was obtained if HVT was given simultaneously with MDV or after MDV to chicks already hatched. The relative susceptibility of the embryo to extensive replication of the vaccine virus but not the challenge virus apparently accounted for protection against MD in chicks hatching from dually infected eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号