首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为探讨少花蒺藜草的入侵机制和制定有效的治理措施,本试验对其入侵地植物群落构成进行了调查。调查地全部植物种类为20种,隶属8科18属。在此基础上,选定了少花蒺藜草及其常见伴生植物马唐和圆叶藜进行了光合特性研究。结果表明:在自然条件下,少花蒺藜草的净光合速率为14.33μmol/(m2·s),明显高于马唐和圆叶藜;少花蒺藜草的光饱和点为1 573.74μmol/(m2·s),均大于马唐的1 321.21μmol/(m2·s)和圆叶藜的1 226.94μmol/(m2·s);在光饱和点下的最大净光合速率为20.39μmol/(m2·s),也显著高于2种伴生植物。有效光合辐射的变化对少花蒺藜草及其伴生植物的气孔导度、蒸腾速率和水分利用率均有显著影响。少花蒺藜草具有较高的光合速率和物质积累能力,较高的生产力是其成功入侵的重要因素之一。  相似文献   

2.
【目的】研究华南地区2种主要水生入侵植物凤眼莲(Eichhornia crassipes)和大薸(Pistia stratiotes)的光合特性及差异性,探讨凤眼莲与大薸对环境光强、CO2浓度的响应机制。【方法】于2009-08采用LI-6400便携式光合仪,测定凤眼莲与大薸的光合作用日进程、光合-光强响应曲线及光合-CO2浓度响应曲线,并进行差异性分析。【结果】(1)自然光照条件下,凤眼莲与大薸在1 d中的净光合速率变化均呈现"双峰"型,但凤眼莲平均净光合速率显著高于大薸;凤眼莲蒸腾速率、气孔导度的日变化较大薸更为明显。(2)凤眼莲的光饱和点(LSP)、光补偿点(LCP)、CO2饱和点(CSP)分别为1 520μmol/(m2.s),31.19μmol/(m2.s)及1 323μmol/mol,均高于大薸,CO2补偿点(CCP)为52.51μmol/mol,低于大薸。(3)凤眼莲与大薸的表观量子效率(AQY)分别为0.054,0.046,表观羧化效率(CE)分别为0.094,0.037,差异均达到极显著水平。【结论】较高的光能利用力与较强的光合响应机制,是凤眼莲比大薸具有更强入侵力的生理基础。  相似文献   

3.
使用LCA4光合蒸腾测定系统测定外来入侵杂草加拿大一枝黄花(Solidago canadensis)及其16种伴生杂草的光合作用指标.结果发现:①加拿大一枝黄花实测最大净光合速率为19.22μmol CO2·m-2.s-1,低于一年蓬(Erigeron annuus)、野塘蒿(Conyza bonariensis)和小飞蓬(Conyza canadensis)3种外来入侵杂草,但是高于马缨丹(Lantana camara)、空心莲子草(Alternanthera philoxeroides)、北美车前(Plantago virginica)和苦苣菜(Sonchus oleraceus)等外来入侵杂草;②该外来种在五月下旬净光合速率的日进程与空心莲子草相似,有较弱的光合午休现象;③加拿大一枝黄花的光补偿点为48.36μmol·m-2·s-1,表明是一种喜阳性杂草;④在中等光强(300~400 μmol·m-2·s-1)和强光(1300~1800 μmol·m-2·s-1)照射下,加拿大一枝黄花位于植株中部叶片的净光合速率最高,处于弱光(15~45 μmol·m-2·s-1)下,植株基部叶片的净光合速率较高,反映出基部叶片比中上部叶片具有较低的光补偿点;⑤与阴生环境中的植株相比,阳生环境中的加拿大一枝黄花株高、叶数增加较快,净光合速率相对较高.加拿大一枝黄花植株通过提高叶绿素总含量来适应阴生环境;⑥阳生环境下,与加拿大一枝黄花植株净光合速率关系最大的环境因子依次为叶面光合有效辐射、蒸腾速率和叶面温度,而在阴生环境下,与该种净光合速率关系最大的环境因子依次为叶面光合有效辐射、空气相对湿度、蒸腾速率和气孔导度.  相似文献   

4.
芍药光合特性研究   总被引:2,自引:0,他引:2  
采用Li-6400便携式光合分析仪,测定了5年生大田芍药‘大富贵’(Paeonia lactiflora‘Da Fugui’)开花期的光合作用。结果显示:芍药的净光合速率日变化呈"单峰型"曲线,最大净光合速率为11.8μmol·m-2·s-1,出现在11∶00;而水分利用效率表现出早晚高、中午低的变化规律。净光合速率与蒸腾速率、气孔导度、水分利用效率呈极显著正相关,与胞间CO2浓度呈极显著负相关。表明芍药光合速率主要控制因子为非气孔限制。芍药的光饱和点为1000μmol·m-2·s-1,光补偿点为34.98μmol.m-2.s-1,光合表观量子效率为0.0409,表明芍药属阳性植物,且耐荫性较强。  相似文献   

5.
贡嘎山地区黄背栎光合作用日变化及光合响应   总被引:4,自引:0,他引:4  
使用Li-6400便携式光合作用测定系统,研究了自然条件下黄背栎光合作用日进程及光合响应。结果表明:(1)晴天叶片净光合速率日变化为比较平缓的单峰曲线,无光合“午休”现象,峰值出现在14∶00左右,为7.15μmol·m-2·s-1,净光合速率日变化趋势与光合有效辐射和叶片气孔导度的变化一致,与大气CO2体积分数和叶片的胞间CO2体积分数的日进程相反;(2)随着CO2体积分数的增加,叶片对光合有效辐射的利用效率增加,光饱和点、弱光下光量子利用效率和最大净光合速率均增加,而光补偿点和暗呼吸速率降低,较高的CO2体积分数可增强植物对强光的适应性,抑制暗呼吸作用。3种CO2体积分数下测得的黄背栎光饱和点为1486~1725μmol·m-2·s-1,光补偿点为46~76μmol·m-2·s-1,表观量子效率为0.02541~0.02969;(3)随着光合有效辐射的增加,光合速率在一定范围内随CO2体积分数的增加而增加,气孔导度随CO2体积分数的增加而降低。CO2饱和点为1000~1200μmol·mol-1,羧化效率为0.0149~0.0420。  相似文献   

6.
采用美国LI-COR公司生产的LI-6400便携式光合测定系统对虎杖的光合生理特性进行了研究。结果表明:(1)虎杖的光补偿点为64 ̄75μmol/(m2·s),光饱和点为390 ̄600μmol/(m·2s),表观量子利用效率为0.0272 ̄0.0387,对弱光的利用能力不强。(2)CO2补偿点为105 ̄120μmol/mol,CO2饱和点为930 ̄1051μmol/mol,羧化效率为0.0365 ̄0.0459。(3)虎杖的净光合速率日变化呈“单峰型”曲线,日最大光合速率为15.0±1.8μmol/(m·2s),其净光合速率最高值出现在9:00左右。在供试的五个材料中,以组培苗地栽的光合特性最强,而贵州凯里光合特性最差。  相似文献   

7.
利用GFS-3000便携式光合-荧光测量系统测定鲁北冬枣叶片的光合作用日变化和光响应特征。结果表明:鲁北冬枣叶片的净光合速率日变化曲线为"双峰"型,具有明显的光合"午休"现象;净光合速率与气孔导度呈显著正相关,而气孔限制值与胞间CO2浓度呈显著负相关,午间光合速率降低主要是受气孔限制因素影响;鲁北冬枣的光补偿点为16.0μmol/(m2.s),光饱和点为1 500.0μmol/(m2.s),表观量子效率0.058,属喜阳植物;其CO2补偿点为29.54μmol/mol,饱和点为1 352.5μmol/mol时,羧化效率为0.054。  相似文献   

8.
利用LI-6400XT便携式光合作用测定仪,采用开放式气路分别测定了在不同光照强度和CO2浓度下4品系黄连叶片的净光合速率(Pn),气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等相关指标。结果表明:4品系黄连叶片的光饱和点在400~700 mol/m2.s之间;光补偿点在3.71~9.31μmol/m2.s之间;表观光量子效率都在0.014 2~0.020 6之间;CO2饱和点在1 000~1 400μmol/mol之间;其中有光叶的光饱和点最低,约为400 mol/m2.s,无光叶的光饱和点最高,约为700 mol/m2.s;当达到光饱和点之后,大花叶的最大净光合速率最低,约为3.24μmol/m2.s,无光叶的最大净光合速率最高,4.60μmol/m2.s;当达到CO2饱和点之后,有光叶的最大净光合速率最大,约为21.14μmol/m2.s;当环境中CO2浓度相对较低(<400μmol/mol)时,小花叶的光合速率最低,而大花叶等的光合速率相对较高。  相似文献   

9.
为了研究不同种黄连木之间光合特性的差异,利用Li-6400XT便携式光合测定仪,对4种黄连木光合指标的日变化和光响应特征进行了测定。结果表明:日变化中4种黄连木的净光合速率、蒸腾速率、气孔导度基本为单峰型,没有明显的光合"午休"现象,胞间CO2浓度与净光合速率呈负相关;4种黄连木最大光合速率为13.393~18.603μmol/m2·s,表观量子效率为0.04~0.05,光补偿点为42.007~201.622μmol/m2·s,光饱和点为1 514.195~1 973.116μmol/m2·s;4种黄连木的光合特性存在差异,以黄连木杂交种(UCB-I)光合效率表现最好。  相似文献   

10.
扁穗牛鞭草光合特性研究   总被引:1,自引:0,他引:1  
利用Li-6400型光合作用测定系统测定了扁穗牛鞭草的光合特性。试验结果显示:扁穗牛鞭草叶片的光合日进程呈"单峰型",光饱和点较高,在2200μmol/(m2.s)以上仍然未达到饱和,光补偿点为4.53μmol/(m2.s),表观量子效率为0.038,CO2饱和点为1200μmol/mol,补偿点8.29μmol/mol,羧化效率(CE)为0.273。通过对净光合速率和其他相关因素的日变化分析得知:光量子通量密度是影响扁穗牛鞭草净光合速率的主要环境因子。  相似文献   

11.
甜樱桃“红玛瑙”的光合特性研究   总被引:3,自引:0,他引:3  
以甜樱桃品种"红玛瑙"为试材,用LI-6400光合作用测定系统对其光合特性进行了研究。结果表明,红玛瑙樱桃净光合速率日变化呈双峰曲线,中午前后光合速率下降,出现"午休现象"。净光合速率年变化呈双峰曲线。红玛瑙樱桃光饱和点为2 362.5μmol.m-2.s-1,光补偿点为31.94μmol.m-2.s-1,CO2饱和点和补偿点分别为1 245μmol CO2.mol-1和65.72μmol CO2.mol-1,光合最适温度为27.75℃。  相似文献   

12.
采用Li-6400型光合作用系统,对不同季节地被石竹的光合日变化进行研究,通过相关分析和通径分析,得出光合速率与生态因子间的关系,并综合曲线拟合和多元逐步回归分析方法对净光合速率(Pn)与影响因子建立相应的优化模型方程.结果表明:(1)地被石竹叶片Pn的日变化在春季和秋季呈单峰曲线型;夏季表现为双峰曲线型,具有典型的光合"午睡"现象.(2)春季,蒸腾速率和气温是直接影响地被石竹叶片Pn的主要因子;夏季,空气相对湿度、胞间CO2浓度和气温是直接影响Pn的主要因子;秋季,胞间CO2浓度和蒸腾速率是直接影响Pn的主要因子.(3)地被石竹光补偿点约为56.94μmol.m-2.s-1,光饱和点约为800μmol.m-2.s-1,补偿点、饱和点均较高,属于喜光植物.  相似文献   

13.
不同品种番石榴光合特性的研究   总被引:6,自引:1,他引:6  
通过田间对3个番石榴品种光合特性的研究, 结果表明, 珍珠番石榴、水晶番石榴和土种番石榴叶片的光饱和点均为1 400μmol·m-2·s-1, 光补偿点分别为110 04、158 89和170 97μmol·m-2·s-1 光合表观量子产量(AQY)分别为0 011 5, 0 009和0 006 2 当PAR≥800μmol·m-2·s-1时, 珍珠番石榴叶片的Pn、Tr、Cs值最高, 水晶番石榴次之, 土种番石榴叶片的最低 随着PAR的增加, 3个品种番石榴叶片Ci呈逐渐下降趋势, 相同的光照强度下, 珍珠番石榴叶片Ci最低, 水晶番石榴次之, 土种番石榴叶片的Ci最大 珍珠番石榴年株产量显著高于水晶番石榴, 这与其具有较高的光合特性是相适应的  相似文献   

14.
雷公藤无性系苗木光合生理特性研究   总被引:12,自引:4,他引:12  
对雷公藤(Tripterygium wilfordiiHook.f.)23个无性系苗木的光合生理特性进行研究。结果表明:雷公藤苗木净光合速率Pn日变化曲线为不对称的双峰曲线,蒸腾速率tr日变化曲线为单峰曲线,气孔导度Gs、胞间CO2浓度Ci的日变化分别呈勺形、倒双峰变化趋势;净光合速率随光合有效辐射增加而达到峰值,随后反而降低,光补偿点为17μmol.m-.2s-1,光饱和点为600μmol.m-.2s-1;净光合速率与气温、叶温、光合有效辐射、蒸腾速率呈极显著正相关关系,与大气相对湿度、叶内湿度、胞内CO2浓度、胞间CO2浓度呈极显著负相关关系;通过分析比较,初选获得编号为17、13、16、10、11、4、6共7个具有较高净光合速率的优良无性系。  相似文献   

15.
施肥对毛竹林幼竹生长期光合特性的影响   总被引:5,自引:2,他引:3  
为了揭示施肥对毛竹光合能力的影响规律,研究了不同施肥模式下4年生毛竹在幼竹生长期(5月)的光合特性。结果表明:(1)5月施肥、8月施肥、不施肥3种处理下毛竹的净光合速率(Pn)、蒸腾速率(Tr)日变化均为"单峰"曲线,在13:00左右达到峰值。5月施肥Pn、Tr日平均值分别为4.14μmol/(m2.s)、1.12 mmol/(m2.s),均高于8月施肥和不施肥处理;(2)5月施肥毛竹的光饱和点(LSP)、最大净光合速率(Pnmax)、表光量子效率(AQY)、CO2饱和点(CSP)、羧化效率(CE)分别为:1512μmol/(m2.s)、9.45μmol/(m2.s)、0.0226 mmol/mol、1725μmol/mol、0.0265,均高于8月施肥和不施肥处理,而光补偿点和CO2补偿点低于其他处理。结果显示,换叶后的幼叶期(5月)施肥更有利于提高和维持毛竹的光合能力。  相似文献   

16.
以杂交新美柳Salix matsudana × alba幼苗为研究材料,采用LI?鄄6400便携式光合测定系统对其光合特性进行研究。结果表明:①自然生长季节,杂交新美柳叶片的净光合速率(Pn)日变化呈单峰曲线,最高峰出现在中午11 : 00,其最大净光合速率(Pmax)为20.8 μmol·m-2·s-1。②在控制二氧化碳摩尔分数和温度的条件下,光饱和点(PLS)为1 847.6 μmol·m-2·s-1,光补偿点(PLC)为58.1 μmol·m-2·s-1。杂交新美柳的光饱和点和光补偿点都较高,表明它是一种阳性植物。③在控制光照强度和温度的条件下,利用Farquhar模型对杂交新美柳叶片净光合速率-胞间二氧化碳摩尔分数的响应进行拟合,当胞间二氧化碳摩尔分数小于400 μmol·mol-1时,可算得其最大羧化速率(Vcmax)为91.6 μmol·m-2·s-1,二氧化碳补偿点(Г *)为46.5 μmol·mol-1,呼吸速率(Rd)为4.9 μmol·m-2·s-1;升高二氧化碳摩尔分数可使杂交新美柳的净光合速率增大,提高叶片对光能的利用率,其叶片二氧化碳饱和点(PCS)大约在1 000 μmol·mol-1,同时可算得其最大电子传递速率(Jmax)为256.0 μmol·m-2·s-1;当二氧化碳过饱和(>1 000 μmol·mol-1)时,可算得其磷酸丙糖利用速率(UTP)为19.7 μmol·m-2·s-1。图3表2参18  相似文献   

17.
采用Li-6400便携式光合测定仪对香蜂草的光合特性进行了研究,并测定了叶绿素含量.结果表明:香蜂草的净光合速率日变化为双峰型,有明显的“午休”现象.净光合速率与蒸腾速率、气孔导度呈正相关,与胞间CO2浓度呈负相关.日净光合速率最大值为4.02μ·mol·m-2·s-1.在400 μmol·mol -1 CO2浓度下,香蜂草光补偿点为49.68 μmol·m-2·s-1,光饱和点为1103μmol·m-2·s-1.叶绿素a/b为0.6798.香蜂草光合特性表现为的阳性耐荫植物.  相似文献   

18.
以杂交新美柳Salix matsudana alba幼苗为研究材料,采用LI?鄄6400便携式光合测定系统对其光合特性进行研究。结果表明:①自然生长季节,杂交新美柳叶片的净光合速率(Pn)日变化呈单峰曲线,最高峰出现在中午11 : 00,其最大净光合速率(Pmax)为20.8 molm-2s-1。②在控制二氧化碳摩尔分数和温度的条件下,光饱和点(PLS)为1 847.6 molm-2s-1,光补偿点(PLC)为58.1 molm-2s-1。杂交新美柳的光饱和点和光补偿点都较高,表明它是一种阳性植物。③在控制光照强度和温度的条件下,利用Farquhar模型对杂交新美柳叶片净光合速率-胞间二氧化碳摩尔分数的响应进行拟合,当胞间二氧化碳摩尔分数小于400 molmol-1时,可算得其最大羧化速率(Vcmax)为91.6 molm-2s-1,二氧化碳补偿点(Г *)为46.5 molmol-1,呼吸速率(Rd)为4.9 molm-2s-1;升高二氧化碳摩尔分数可使杂交新美柳的净光合速率增大,提高叶片对光能的利用率,其叶片二氧化碳饱和点(PCS)大约在1 000 molmol-1,同时可算得其最大电子传递速率(Jmax)为256.0 molm-2s-1;当二氧化碳过饱和(>1 000 molmol-1)时,可算得其磷酸丙糖利用速率(UTP)为19.7 molm-2s-1。图3表2参18  相似文献   

19.
茶树光合作用的年变化   总被引:3,自引:0,他引:3  
一年中茶树叶片的净光合速率有2个低谷,分别出现在1和4月份(分别为2.50和4.02μmol·m-2·s-1);有2个高峰,第1个出现在3月份(5.91μmol·m-2·s-1),第2个出现在6和8月份(分别为8.75和8.23μmol·m-2·s-1).全年中5~8月份净光合速率均维持在较高水平.茶树光合年变化受生理生态因子的影响,特别是主导因子的影响.多元统计分析、主成分分析和通径分析表明,光合有效辐射、叶温和气温是茶园生态系统的主导因子(此三者第1主成分的特征向量分别为0.4467、0.4335和0.4356;P光合有效福射→Y=1.1543,P气温→Y=-1.0808,P气温→光合有效辐射→Y=1.0653,P叶温→光合有效辐射→Y=1.0685).生理因子中气孔导度对茶树叶片的净光合速率影响最大(气孔导度第1主成分的特征向县为—0.4464,P气孔导度→Y=-0.3723).  相似文献   

20.
连翘光合特性研究   总被引:1,自引:0,他引:1  
用Li-6400光合作用测定系统对连翘的光合特性进行了测定。结果表明:连翘叶片的净光合速率Pn日变化呈"单峰型"曲线,无"午休"现象,12:00时Pn出现高峰,峰值为13.54μmol/(m2.s),叶片蒸腾速率Tr和气孔导度Gs的变化趋势与Pn一致,胞间CO2浓度Ci与之相反。Pn与Tr、Gs极显著正相关;影响连翘叶片光合作用的主导环境因子为光合有效辐射PAR和相对湿度RH。连翘光合作用的光饱和点LSP和光补偿点LCP分别为1 360μmol/(m2.s)和26.06μmol/(m2.s),表观量子效率为0.049 5;CO2饱和点较高,在2000μmol/mol范围内未达到饱和,CO2补偿点为81.79μmol/mol,羧化效率为0.036 3。以上结果表明,连翘是一种典型的阳性C3植物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号