首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The functional and anatomical rearrangements of cortical sensory maps accompanying changes in experience are not well understood. We examined in vivo and in vitro how the sensory map and underlying synaptic connectivity of the developing rat barrel cortex are altered when the sensory input to the cortex is partially deprived. In the nondeprived cortex, both the sensory responses and synaptic connectivity between columns were strengthened through an increase in the synaptic connection probability between L2/3 pyramids in adjacent columns. This was accompanied by a selective growth of L2/3pyramid axonal arbors between spared columns. In contrast, deprived and nondeprived cortical columns became weakly connected in their L2/3 pyramid connections.  相似文献   

2.
Fu YX  Djupsund K  Gao H  Hayden B  Shen K  Dan Y 《Science (New York, N.Y.)》2002,296(5575):1999-2003
The circuitry and function of mammalian visual cortex are shaped by patterns of visual stimuli, a plasticity likely mediated by synaptic modifications. In the adult cat, asynchronous visual stimuli in two adjacent retinal regions controlled the relative spike timing of two groups of cortical neurons with high precision. This asynchronous pairing induced rapid modifications of intracortical connections and shifts in receptive fields. These changes depended on the temporal order and interval between visual stimuli in a manner consistent with spike timing-dependent synaptic plasticity. Parallel to the cortical modifications found in the cat, such asynchronous visual stimuli also induced shifts in human spatial perception.  相似文献   

3.
Axons in the cerebral cortex receive synaptic input at the axon initial segment almost exclusively from gamma-aminobutyric acid-releasing (GABAergic) axo-axonic cells (AACs). The axon has the lowest threshold for action potential generation in neurons; thus, AACs are considered to be strategically placed inhibitory neurons controlling neuronal output. However, we found that AACs can depolarize pyramidal cells and can initiate stereotyped series of synaptic events in rat and human cortical networks because of a depolarized reversal potential for axonal relative to perisomatic GABAergic inputs. Excitation and signal propagation initiated by AACs is supported by the absence of the potassium chloride cotransporter 2 in the axon.  相似文献   

4.
The hypothesis that learning occurs through long-term potentiation (LTP)- and long-term depression (LTD)-like mechanisms is widely held but unproven. This hypothesis makes three assumptions: Synapses are modifiable, they modify with learning, and they strengthen through an LTP-like mechanism. We previously established the ability for synaptic modification and a synaptic strengthening with motor skill learning in horizontal connections of the rat motor cortex (MI). Here we investigated whether learning strengthened these connections through LTP. We demonstrated that synapses in the trained MI were near the ceiling of their modification range, compared with the untrained MI, but the range of synaptic modification was not affected by learning. In the trained MI, LTP was markedly reduced and LTD was enhanced. These results are consistent with the use of LTP to strengthen synapses during learning.  相似文献   

5.
The subplate forms a transient circuit required for development of connections between the thalamus and the cerebral cortex. When subplate neurons are ablated, ocular dominance columns do not form in the visual cortex despite the robust presence of thalamic axons in layer 4. We show that subplate ablation also prevents formation of orientation columns. Visual responses are weak and poorly tuned to orientation. Furthermore, thalamocortical synaptic transmission fails to strengthen, whereas intracortical synapses are unaffected. Thus, subplate circuits are essential not only for the anatomical segregation of thalamic inputs but also for key steps in synaptic remodeling and maturation needed to establish the functional architecture of visual cortex.  相似文献   

6.
The hippocampal CA1 region is crucial for converting new memories into long-term memories, a process believed to continue for week(s) after initial learning. By developing an inducible, reversible, and CA1-specific knockout technique, we could switch N-methyl-D-aspartate (NMDA) receptor function off or on in CA1 during the consolidation period. Our data indicate that memory consolidation depends on the reactivation of the NMDA receptor, possibly to reinforce site-specific synaptic modifications to consolidate memory traces. Such a synaptic reinforcement process may also serve as a cellular means by which the new memory is transferred from the hippocampus to the cortex for permanent storage.  相似文献   

7.
In vivo experience can occlude subsequent induction of long-term potentiation and enhance long-term depression of synaptic responses. Although a reduced capacity for synaptic strengthening may function to prevent excessive excitation, such an effect paradoxically implies that continued experience or training should not improve and may even degrade neural representations. In mice, we examined the effect of ongoing whisker stimulation on synaptic strengthening at layer 4-2/3 synapses in the barrel cortex. Although N-methyl-d-aspartate receptors were required to initiate strengthening, they subsequently suppressed further potentiation at these synapses in vitro and in vivo. Despite this transition, synaptic strengthening continued with additional sensory activity but instead required the activation of metabotropic glutamate receptors, suggesting a mechanism by which continued experience can result in increasing synaptic strength over time.  相似文献   

8.
The cerebral cortex receives sensory input from the periphery by means of thalamic relay nuclei, but the flow of information goes both ways. Each cortical area sends a reciprocal projection back to the thalamus. In the visual system, the synaptic relations that govern the influence of thalamic afferents on orientation selectivity in the cortex have been studied extensively. It now appears that the connectivity of the corticofugal feedback pathway is also fundamentally linked to the orientation preference of the cortical cells involved.  相似文献   

9.
Zhou Q  Tao HW  Poo MM 《Science (New York, N.Y.)》2003,300(5627):1953-1957
Persistent synaptic modifications are essential for experience-dependent refinement of developing circuits. However, in the developing Xenopus retinotectal system, activity-induced synaptic modifications were quickly reversed either by subsequent spontaneous activity in the tectum or by exposure to random visual inputs. This reversal depended on the burst spiking and activation of the N-methyl-D-aspartate subtype of glutamate receptors. Stabilization of synaptic modifications can be achieved by an appropriately spaced pattern of induction stimuli. These findings underscore the vulnerable nature of activity-induced synaptic modifications in vivo and suggest a temporal constraint on the pattern of visual inputs for effective induction of stable synaptic modifications.  相似文献   

10.
Penicillin as epileptogenic agent: its effect on an isolated neuron   总被引:4,自引:0,他引:4  
Penicillin induces partial depolarization and increased excitability of the neuronal membrane of crayfish stretch receptor. Such effects suggest that the epileptic focus created by the topical application of penicillin to the mammalian cerebral cortex may result from the lowering of the threshold for impluse initiation by excitatory synaptic action within the neuron population.  相似文献   

11.
The distribution of cyclic 3',5'-nucleotide phosphodiesterase activity in rat cerebral cortex was determined by cytochemical methods. The detectable phosphodiesterase activity was localized in postsynaptic (dendritic) nerve endings, most of it immediately adjacent to the synaptic membrane. Most of the postsynaptic nerve endings showed phosphodiesterase activity.  相似文献   

12.
Yuan Q  Xiang Y  Yan Z  Han C  Jan LY  Jan YN 《Science (New York, N.Y.)》2011,333(6048):1458-1462
How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. Here, we describe our findings in the Drosophila larval visual system, where the variation of sensory inputs induced substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, our genetic analyses have identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila.  相似文献   

13.
Chronic exposure of rats to 10 parts of halothane per million during early life produced later deficits in learning a shock-motivated light-dark discrimination and a food-motivated maze pattern, correlated with enduring synaptic nembrane malformation in cerebral cortex. Adult exposure had no effect. Halothane may provide a useful analytical tool for study of brain. The behavioral-ultrastructural techniques also suggest a standard for assessing the safety of trace toxicants with central nervous system effects.  相似文献   

14.
The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.  相似文献   

15.
Intracortical infusion of the "N-methyl-D-aspartate" (NMDA) receptor blocker D,L-2-amino-5-phosphonovaleric acid (APV) renders kitten striate cortex resistant to the effects of monocular deprivation. In addition, 1 week of continuous APV treatment (50 nanomoles per hour) produces a striking loss of orientation selectivity in area 17. These data support the hypothesis that crucial variables for the expression of activity-dependent synaptic modifications are a critical level of postsynaptic activation and calcium entry through ion channels linked to NMDA receptors.  相似文献   

16.
Memories are thought to be due to lasting synaptic modifications in the brain. The search for memory traces has relied predominantly on determining regions that are necessary for the process. However, a more informative approach is to define the smallest sufficient set of brain structures. The rutabaga adenylyl cyclase, an enzyme that is ubiquitously expressed in the Drosophila brain and that mediates synaptic plasticity, is needed exclusively in the Kenyon cells of the mushroom bodies for a component of olfactory short-term memory. This demonstrates that synaptic plasticity in a small brain region can be sufficient for memory formation.  相似文献   

17.
Complex repetitive-spike or slow-wave discharges can be evoked, and can also occur spontaneously, in small clusters of neurons which reaggregate in vitro after dissociation of cerebral cortex, brainstem, or spinal cord from the fetal mouse. Even after random dispersion in culture, these cells still form functional synaptic networks with bioelectric discharge patterns and pharmacologic sensitivities characteristic of the organ (that is, organotypic).  相似文献   

18.
The cerebral cortex of the human brain is a sheet of about 10 billion neurons divided into discrete subdivisions or areas that process particular aspects of sensation, movement, and cognition. Recent evidence has begun to transform our understanding of how cortical areas form, make specific connections with other brain regions, develop unique processing networks, and adapt to changes in inputs.  相似文献   

19.
Sensory maps in neocortex are adaptively altered to reflect recent experience and learning. In somatosensory cortex, distinct patterns of sensory use or disuse elicit multiple, functionally distinct forms of map plasticity. Diverse approaches-genetics, synaptic and in vivo physiology, optical imaging, and ultrastructural analysis-suggest a distributed model in which plasticity occurs at multiple sites in the cortical circuit with multiple cellular/synaptic mechanisms and multiple likely learning rules for plasticity. This view contrasts with the classical model in which the map plasticity reflects a single Hebbian process acting at a small set of cortical synapses.  相似文献   

20.
Little is known about the neuronal mechanisms that subserve long-term memory persistence in the brain. The components of the remodeled synaptic machinery, and how they sustain the new synaptic or cellwide configuration over time, are yet to be elucidated. In the rat cortex, long-term associative memories vanished rapidly after local application of an inhibitor of the protein kinase C isoform, protein kinase M zeta (PKMzeta). The effect was observed for at least several weeks after encoding and may be irreversible. In the neocortex, which is assumed to be the repository of multiple types of long-term memory, persistence of memory is thus dependent on ongoing activity of a protein kinase long after that memory is considered to have consolidated into a long-term stable form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号