首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to investigate the effect of feeding on the plasma disposition of triclabendazole (TCBZ) in goats following oral administration. A total of eight goats, aged 14–16 months and weighing 20–30 kg were used in this study. The animals were allocated into two groups (fasted and fed groups) of four animals each. The goats in fed group were fed ad libitum but the animals in fasted group were not fed 24 h before and 6 h after drug administration. Commercial oral drench formulation of TCBZ (Endex-K, 5%) was administered orally to animals in two groups at dose of 10 mg/kg bodyweight. Heparinized blood samples were collected between 1 and 192 h after treatment and the plasma samples were analysed by high performance liquid chromatography (HPLC) for TCBZ, TCBZ sulphoxide (TCBZ–SO), and TCBZ sulphone (TCBZ–SO2). Relatively very low concentration of TCBZ parent drug was detected between 2 and 48 h, but TCBZ–SO and TCBZ–SO2 metabolites were present between 2 and 192 h in the plasma samples of fed and fasted animals. Fasting significantly enhanced the plasma concentration of TCBZ and its metabolites. The availability of TCBZ, TCBZ–SO and TCBZ–SO2 in the plasma samples of fasted goats were markedly greater compared to those of fed goats. It was concluded that fasting decreases the digesta flow rate and prolongs the retention of the drug into the gastrointestinal tract, resulting in enhanced quantitative gastrointestinal absorption or systemic availability of TCBZ and its metabolites in fasted goats.  相似文献   

2.
Tulathromycin is a triamilide antibiotic that maintains therapeutic concentrations for an extended period of time. The drug is approved for the treatment of respiratory disease in cattle and swine and is occasionally used in goats. To investigate the pharmacokinetics of tulathromycin in meat goats, 10 healthy Boer goats were administered a single 2.5 mg/kg subcutaneous dose of tulathromycin. Plasma concentrations were measured by ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC–MS/MS) detection. Plasma maximal drug concentration (Cmax) was 633 ± 300 ng/ml (0.40 ± 0.26 h post-subcutaneous injection). The half-life of tulathromycin in goats was 110 ± 19.9 h. Tulathromycin was rapidly absorbed and distributed widely after subcutaneous injection 33 ± 6 L/kg. The mean AUC of the group was 12,500 ± 2020 h ng/mL for plasma. In this study, it was determined that the pharmacokinetics of tulathromycin after a single 2.5 mg/kg SC injection in goats were very similar to what has been previously reported in cattle.  相似文献   

3.
Cross-bred goats in Burundi infested with gastrointestinal nematodes were submitted to fecal investigations and injected subcutaneously with ivermectin. In Experiment 1, goats were treated with 200 μg kg−1 bw ivermectin. In Experiment 2, animals were administered twice that dose. In Experiment 3, goats suspected to be resistant to other anthelmintics were treated with 200 μg kg−1 bw ivermectin. In Experiment 4, two doses of the same strength were injected with an interval of 7 days. Results demonstrate that 200 μg kg−1 bw ivermectin is effective for the control of gastrointestinal nematodes of goats in Burundi; this dosage is also effective against nematodes suspected to be resistant to other anthelmintics. The administration of 400 μg kg−1 bw did not induce greater or more prolonged effectiveness percentages. The supposed decrease of ivermectin's residual activity on Day 28 might be avoided by administering two doses with an interval of 7 days. No adverse effects were observed in treated animals.  相似文献   

4.
Ivermectin is effective against ecto- and endoparasites. It is included in a plan of the Filariasis Division, Thailand for filariasis control and prevention by interrupting transmission of Brugia malayi-microfilariae from cat reservoirs to humans via mosquitoes. The pharmacokinetics of ivermectin in eight healthy cats receiving a single subcutaneous dose of 0.2mg/kg was investigated. Jugular blood samples were collected periodically for up to 30days after dosing. The serum ivermectin concentrations were measured by high performance liquid chromatography with fluorescence detection. The pharmacokinetic parameters (mean+/-S.D.) derived from one-compartment model analysis were as follows: T(max) 1.22+/-0.49day, C(max) 16.75+/-4.04ng/mL, k(ab) 2.62+/-1.86day(-1), t(1/2)(ab) 0.27+/-0.25day, k(el) 0.27+/-0.14day(-1), t(1/2)(el) 2.53+/-2.24day, V(d)/F 9.81+/-5.41L/kg, Cl/F 2.21+/-0.69L/kg/day and AUC(0-->infinity) 98.31+/-30.52ngday/mL. In conclusion, the pharmacokinetics of ivermectin in cats receiving a single dose of 0.2mg/kg by subcutaneous injection revealed a rapid absorption, high distribution, slow elimination and high possibility for the elimination of B. malayi-microfilariae from currently endemic regions.  相似文献   

5.
The effect of age/body weight in the plasma disposition kinetics of ivermectin (IVM) and nitroxynil (NTX) after their co-administration as a combined formulation to sheep was studied. Sixteen (16) male sheep were allocated into two experimental groups (n = 8 each): (a) high body weight (high bw) (18-20 months old), and (b) low body weight (low bw) (6-8 months old). Animals in both groups were subcutaneously (sc) treated with IVM (200 μg/kg) and NTX (10 mg/kg) using a commercially available combined formulation (Nitromectin®, Lab. Ovejero, Spain). Blood samples were taken by jugular venopuncture before (time 0), at 2, 4, 8, 12 h and at 1, 2, 3, 5, 7, 10, 15, 20, 25, 35, 40, 50 and 60 days after administration. Recovered plasma was analysed to quantify IVM and NTX by HPLC. Higher IVM plasma concentrations were measured until 20 days post-administration in “low bw” compared to “high bw” animals, where IVM was recovered up to 35 days post-treatment. The IVM absorption process greatly differed between experimental groups. A significantly higher (p < 0.01) Cmax (36.7 ± 7.52 ng/ml) value was obtained at a delayed (p < 0.05) Tmax (48.0 ± 0.0 h) in light compared to heavy (Cmax: 8.0 ± 0.80 ng/ml; at 34.0 h) body weight sheep. IVM elimination half-life and mean residence time were significantly shorter in light compared to heavy (older) sheep. NTX mean plasma concentrations were lower in “low bw” compared to those measured in “high bw” sheep, with elimination phases declining up to 60 d post-administration in both experimental groups. The NTX AUC value in “low bw” (1188.5 ± 122.6 μg day/ml) was significantly lower (p < 0.05) than that obtained in the “high bw” (oldest) animals (1735.0 ± 155.8 μg day/ml). Shorter NTX elimination half-life and mean residence time (p < 0.01) were obtained in the youngest (“low bw”) compared to the oldest (high bw) sheep. The work reported here assessed for the first time the disposition of IVM and NTX after their combinated injection to sheep, demonstrating that animal body weight/development greatly affects the kinetic behaviour of both anthelmintic drugs.  相似文献   

6.
Ivermectin (IVM- Eqvalan paste, 1.87%) and doramectin (DRM-Dectomax 1%) were each administered orally to donkeys at 200 microgkg(-1) bodyweight. Blood and faecal samples were collected at predetermined times over 30 days and plasma pharmacokinetics and faecal excretion determined. Maximum plasma concentrations (C(max)) of IVM (23.6 ngml(-1)) and DRM (33.9 ngml(-1)) were obtained at (t(max)) 19.2 and 24h, respectively. The area under the concentration curve (AUC) of DRM (228.9 ngdayml(-1)) was significantly larger than that of IVM (119.3 ngdayml(-1)) and mean residence time (MRT) was 6.5 days for IVM and 9.1days for DRM. The highest (dry weight) faecal concentrations (9.33 microgg(-1) - IVM, 12.12 microgg(-1) - DRM) were detected at 55.9 and 48.0 h, respectively and each compound was detected (0.05 microgg(-1)) in faeces between 11h and 9 days following oral administration in donkeys.  相似文献   

7.
Gokbulut, C., Cirak, V.Y., Senlik, B., Aksit, D., McKellar, Q.A. The effects of different ages and dosages on the plasma disposition and hair concentration profile of ivermectin following pour‐on administration in goats. J. vet. Pharmacol. Therap. 34 , 70–75. The effects of different ages and dosages on the plasma disposition and hair degradation of ivermectin (IVM) were investigated following pour‐on administration in goats. Twenty‐eight female Saanen goats allocated into two groups of 14 animals according to their ages as young (5–6 months old) and old (12–24 months old) groups. Each age group was divided into two further of seven goats and administered pour‐on formulation of IVM topically at the in recommended dosage rate of 0.5 mg/kg bodyweight The recommended cattle dosages rate of 0.5 mg/kg or at the higher dosage of 1.0 mg/kg. Blood samples were collected at various times between 1 h and 40 days. In addition, hair samples (>0.01 g) were collected using tweezers from the application sites and far from application sites of the all animals throughout the blood sampling period. The plasma and hair samples were analyzed by high performance liquid chromatography (HPLC) using fluorescence detection following solid and liquid phase extractions, respectively. Dose‐ and age‐dependent plasma disposition of IVM were observed in goats after pour‐on administration. In addition, relatively high concentration and slow degradation of IVM in hair samples collected from the application site and far from the application site were observed in the present study. The differences between young and old goats are probably related to differences in body condition and/or lengths of haircoat. The systemic availability of IVM following pour‐on administration is relatively much lower than after oral and subcutaneous administrations but the plasma persistence was prolonged. Although, the longer persistence of IVM on hairs on the application site may prolong of efficacy against ectoparasites, the poor plasma availability could result in subtherapeutic plasma concentrations, which may confer the risk of resistance development in for internal parasites after pour‐on administration in goats.  相似文献   

8.
This study evaluates the comparative plasma dispositions of ivermectin (IVM) and doramectin (DRM) following oral and subcutaneous administration (200 microg/kg) over a 40-day period in dogs. Twenty bitches were allocated by weight in to four groups (Groups I-IV) of five animals each. Animals in the first two groups (Groups I and II) received orally the injectable solutions of IVM and DRM, respectively, at the dose of 200 microg/kg bodyweight. The other two groups (Groups III and IV) received subcutaneously injectable solutions at the same dose rate. Blood samples were collected between 1h and 40 days after treatment and the plasma samples were analysed by high performance liquid chromatography (HPLC) using fluorescence detection. The results indicated that IVM produced a significantly higher maximum plasma concentration (C(max): 116.80+/-10.79 ng/ml) with slower absorption (t(max): 0.23+/-0.09 day) and larger area under the concentration versus time curve (AUC: 236.79+/-41.45 ng day/ml) as compared with DRM (C(max): 86.47+/-19.80 ng/ml, t(max): 0.12+/-0.05 day, AUC: 183.48+/-13.17 ng day/ml) following oral administration of both drugs; whereas no significant differences were observed on the pharmacokinetic parameters between IVM and DRM after subcutaneous administrations. In addition, subcutaneously given IVM and DRM presented a significantly lower maximum plasma concentration (C(max): 66.80+/-9.67 ng/ml and 54.78+/-11.99 ng/ml, respectively) with slower absorption (t(max): 1.40+/-1.00 day and 1.70+/-0.76 day, respectively) and larger area under the concentration versus time curve (AUC: 349.18+/-47.79 ng day/ml and 292.10+/-78.76 ng day/ml, respectively) as compared with the oral administration of IVM and DRM, respectively. No difference was observed for the terminal half-lives ((t(1/2lambda(z)) and mean residence times (MRT) of both molecules. Considering the pharmacokinetic parameters, IVM and DRM could be used by the oral or subcutaneous route for the control of parasitic infection in dogs.  相似文献   

9.

Background

Overwintering (breeding) reindeer (Rangifer tarandus tarandus) are commonly treated with ivermectin against parasitic infestations once yearly in autumn-winter roundups. The only preparations registered to reindeer are those for subcutaneous injection. However, also oral extra-label ivermectin administration is used. Twenty-six, 8-month-old reindeer calves were randomly allocated into three groups. Group 1 (n = 9) received oral ivermectin mixture (Ivomec® vet mixt. 0.8 mg/ml, oral ovine liquid drench formulation), Group 2 (n = 9) oral ivermectin paste (Ivomec® vet 18.7 mg/g equine paste), and Group 3 (n = 8) subcutaneous injection of ivermectin (Ivomec® 10 mg/ml vet inj.), each group at a dose of 200 μg/kg body weight. Blood samples were collected at treatment and at days 1, 2, 3, 6, 9 and 16 post treatment. Plasma concentrations of ivermectin were determined by high-pressure liquid chromatography (HPLC) with fluorescence detection.

Results

The peak plasma concentration (Cmax) was reached by 2 days after each treatment. The Cmax and Area Under Curve (AUC) differed significantly between the groups: Cmax was 30.2 ± 3.9, 14.9 ± 5.7 and 63.1 ± 13.1 ng/ml, and AUC was 2881 ± 462, 1299 ± 342 and 6718 ± 1620 ng*h/ml for groups 1, 2 and 3, respectively (mean ± standard deviation).

Conclusions

The differences in plasma concentrations of ivermectin are concomitant with earlier observed differences in antiparasitic efficacy, which discounts the use of the equine paste in reindeer in favour of the oral ovine liquid drench formulation, or preferably, the reindeer-registered subcutaneous injection formulation.  相似文献   

10.
11.
The effect of two different diet types (concentrate feed+hay and grazing) on the pharmacokinetic profiles of triclabendazole following oral administration in goats was investigated. A total of 12 goats were randomly allocated into two groups which were either indoor and fed concentrate + hay ration (housed group) or were grazing on pasture (grazing group). Triclabendazole was administered orally to animals in two groups at 10 mg/kg bodyweight. Blood samples were collected from 1 h to 192 h post-treatment and analyzed by high performance liquid chromatography (HPLC). Feeding with different diets significantly effected the plasma disposition of triclabendazole sulphoxide. Maximum plasma concentration (C(max): 13.22+/-2.81 microg/ml), time to reach maximum plasma concentration (t(max): 18.4+/-2.19 h), area under the curve (AUC: 613+/-137 microg h/ml), half-life (t(1/2): 24.77+/-1.94 h) and mean resident time (MRT: 40.22+/-4.36 h) of triclabendazole sulphoxide in housed group were significantly different from those of grazing group (C(max): 10.17+/-1.51 microg/ml, t(max): 14.0+/-2.19 h, AUC: 406+/-98 microg h/ml), t(1/2): 16.16+/-1.17 h and MRT: 34.48+/-4.40 h). It is concluded that anthelmintically more active sulphoxide metabolite has higher plasma concentration when triclabendazole is administered to goats fed with concentrate feed + hay compared to grazing goats.  相似文献   

12.
The effect of sesame oil (SSO) and sunflower oil (SFO) (the excipients) on the plasma disposition of ivermectin (IVM) following intravenous (i.v.) and subcutaneous (s.c.) administration at a dosage of 200 μg/kg was investigated in goats. Ten clinically healthy crossbred goats were used in the study. The animals were allocated by weight and sex into two groups of five animals each. Group 1 (n = 5) received the drug and excipient by the i.v. route only and group 2 received drug and excipient by the s.c. route only. The study was designed according to a two‐phase crossover design protocol. In the first phase three animals in group 1 were i.v. administered IVM (0.2 mg/kg) + SSO (1 mL) and the other two animals received IVM (0.2 mg/kg) + SFO (1 mL). In the second phase animals were crossed over and received the alternate excipient with IVM at the same dosages. In group 2 during the first phase, three animals were s.c. administered IVM (0.2 mg/kg) + SSO (1 mL) and the other two animals were received IVM (0.2 mg/kg) + SFO (1 mL). In the second phase animals were crossed over and received the alternate excipient with IVM at the same dosages. A 4‐week washout period was allowed between the two phases. In group 2 significantly increased dermal thickness was observed at the s.c. injection site of the all animals which received IVM during phase I regardless of the excipient. There was almost no change observed at the injection site of any animal during the second phase of the study following s.c. administration. In group 2 the plasma concentrations of IVM in the second phase for both excipient combinations were much higher than the plasma concentrations following first administration and appeared to be related with the dermal changes. The mean plasma disposition of IVM in combination with SSO or SFO was similar following i.v. administration. Longer terminal elimination half‐lives and resultant longer mean resident time were observed after s.c. administration of the both combinations compared with i.v. administration.  相似文献   

13.
14.
15.
The efficacy of ivermectin was evaluated against Melophagus ovinus in Darab ecotype goats of Iran. Twenty-four healthy Iranian crossbreed male goats were randomly divided into three equal groups (n = 8). An experimental infestation was induced in all animals of the three groups with 100 M. ovinus on the body of each animal. Groups 1 and 2 were treated with 1% ivermectin solution at a dosage of 0.5 mg/kg of body weight applied as a pour-on along the dorsal midline and 0.2 mg/kg subcutaneously, respectively; while group 3 was kept as control group. Seven days after infestation ivermectin was administered then the goats were observed for a period of 7 days. Body surface of each goat of three groups was inspected daily and decreases in M. ovinus were recorded. The rate of elimination in keds was assessed on the basis of decrease in keds count on the skin and hairs. The results revealed that complete absence of keds were observed in 6 and 7 days post-treatment with injection and pour-on routes, respectively. The results of present study showed that subcutaneous injection of ivermectin more rapidly eliminated M. ovinus than pour-on route. Both routes were 100% effective against this parasite in the goats. Ivermectin can be a drug of choice against M. ovinus in long-hair Iranian goats due to its high efficacy, easy applicability and wide safety margin.  相似文献   

16.
This study evaluates the comparative serum disposition kinetics of injectable formulations of doramectin (DRM), ivermectin (IVM) and moxidectin (MXD) in Australian Merino sheep. Thirty-six, 2-year-old sheep were allocated by weight into six groups of six animals. Animals in each group received 200 microg/kg of DRM, MXD, IVM or a combination of two of these drugs by subcutaneous (s.c.) injection. Blood was collected at designated intervals (between 1 h and 40 days after treatment) and the serum analysed by high performance liquid chromatography (HPLC) using fluorescence detection. The results indicated that MXD administration produced a significantly higher maximum serum concentration and a more rapid absorption as compared with DRM and IVM. MXD and DRM had a significantly larger area under the concentration vs. time curve (AUC) than IVM, suggesting a more persistent effect for the former two products in sheep. The AUC for DRM was significantly higher when administered alone as compared with that observed when given in combination with MXD or IVM, suggesting preferential elimination of DRM compared with IVM and MXD from concurrent s.c. administration.  相似文献   

17.
The purpose of this study was to investigate the stereospecific pharmacokinetics of ketorolac (KT) in goats following a single 2 mg/kg intravenous (i.v.) dose and a single 6 mg/kg oral dose. A stereoselective high pressure liquid chromatography assay was used to quantify ketorolac plasma concentrations. Pharmacokinetic parameters for both stereoisomers were estimated by model independent methods. Following an i.v. dose, the plasma concentration profiles for the stereoisomers were similar with half-lives of 1.05 ± 0.62 h for R -KT and 1.05 ± 0.61 h for S -KT. Clearance values for R - and S -KT after an i.v. dose were 0.53 ± 0.23 and 0.54 ± 0.23 L·h/kg, respectively. Following an oral dose, the terminal half-lives were longer with values of 34.08 ± 11.81 and 33.97 ± 12.19 h for R -KT and S- KT, respectively. The average bioavailability was 133 ± 23% for R -KT and S -KT, respectively. The longer half-lives and high apparent bioavailability after oral dosing are suggestive of a slow absorption process in the gastrointestinal tract and recycling. The results indicate that interconversion of the stereoisomers of ketorolac is absent in goats. However, studies with individual isomers are needed before any conclusion can be drawn about the lack of bioinversion.  相似文献   

18.
AIMS: To investigate the plasma disposition and faecal excretion of eprinomectin (EPM) in non-lactating dairy cattle following topical and S/C administration.

METHODS: Holstein dairy cows, 3.5–5 years-old, were selected 20–25 days after being dried off and were randomly allocated to receive EPM either topically (n=5) or S/C (n=5) at dose rates of 0.5 and 0.2?mg/kg bodyweight, respectively. Heparinised blood and faecal samples were collected at various times between 1 hour and 30 days after treatment, and were analysed for concentrations of EPM using high performance liquid chromatography with a fluorescence detector.

RESULTS: The maximum concentration of EPM in plasma (Cmax) and the time to reach Cmax were both greater after S/C administration (59.70 (SD 12.90) ng/mL and 1.30 (SD 0.27) days, respectively) than after topical administration (20.73 (SD 4.04) ng/mL and 4.40 (SD 0.89) days, respectively) (p<0.001). In addition, S/C administration resulted in greater plasma availability (area under the curve; AUC), and a shorter terminal half-life and mean residence time (295.9 (SD 61.47) ng.day/mL; 2.95 (SD 0.74) days and 4.69 (SD 1.01) days, respectively) compared with topical administration (168.2 (SD15.67) ng.day/mL; 4.63 (SD 0.32) days, and 8.23 (SD 0.57) days, respectively) (p<0.01). EPM was detected in faeces between 0.80 (SD 0.45) and 13.6 (SD 4.16) days following S/C administration, and between 1 (SD 0.5) and 20.0 (SD 3.54) days following topical administration. Subcutaneous administration resulted in greater faecal excretion than topical administration, expressed as AUC adjusted for dose (1188.9 (SD 491.64) vs. 311.5 (SD 46.90) ng.day/g; p<0.05). Maximum concentration in faeces was also higher following S/C than topical administration (223.0 (SD 63.96) vs. 99.47 (SD 43.24) ng/g; p<0.01).

CONCLUSIONS: Subcutaneous administration of EPM generated higher plasma concentrations and greater plasma availability compared with topical administration in non-lactating cattle. Although the S/C route provides higher faecal concentrations, the longer faecal persistence of EPM following topical administration may result in more persistent efficacy preventing establishment of incoming nematode larvae in cattle.  相似文献   

19.
Six calves (weight 210 to 230 kg) were dosed with an intra-ruminal slow-release bolus prepared to deliver ivermectin at a low daily dosage for 135 days. Ivermectin concentrations in jugular blood 160 days post-treatment were determined by high performance liquid chromatography (HPLC) using fluorescence detection. Ivermectin plasma concentrations increased gradually to achieve the steady-state concentration (20 ng ml(-1)) at approximately four days post-treatment, which was maintained for 120 days. The ivermectin peak plasma concentration (28.5 ng ml(-1)) was attained at 15 days post-administration of the bolus. The faecal ivermectin concentration rose to a maximal concentration of 4.1 microg g(-1) at four days post-treatment, dropping to a steady-state concentration of around 1.18 microg g(-1) which was maintained up to 120 days post-treatment. Ivermectin was detected in both plasma (0.05 ng ml(-1)) and faeces (2.67 ng g(-1)) up to 160 days. The high levels of ivermectin recovered in faeces indicate that a large proportion of the dose released by the bolus (80 to 90 per cent) is excreted in faeces.  相似文献   

20.
The pharmacokinetics of diclofenac was studied in camels (Camelus dromedarus) (n=6) following intravenous (i.v.) administration of a dose of 2.5 mg kg(-1) body weight. The metabolism and urinary detection time were also studied. The results obtained (median and range) were as follows: the terminal elimination half-life (t(1/2beta)) was 2.35 (1.90-2.73)h, total body clearance (Cl(T)) was 0.17 (0.16-0.21)lh kg(-1). The volume of distribution at steady state (V(SS)) was 0.31 (0.21-0.39)l(-1)kg(-1), the volume of the central compartment of the two compartment pharmacokinetic model (V(C)) was 0.15 (0.11-0.17)l kg(-1). Five metabolites of diclofenac were tentatively identified in urine and were excreted mainly in conjugate form. The main metabolite was identified as hydroxy diclofenac. Both diclofenac and hydroxy diclofenac, appear to be the main elimination route for diclofenac when administered i.v. in camels. Diclofenac could be identified up to 4 days following i.v. administration in camels using a sensitive gas chromatography/mass spectrometry (GC/MS) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号