首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two commonly-used composts from dairy cow manure that are used to improve poor structure and fertility of desert soils have inhibitory effects on wheat seed germination, probably as a result of their high levels of humic acids. Inoculation of wheat seeds with two species of the plant growth-promoting bacteria Azospirillum brasilense Cd and A. lipoferum JA4 (separately) prior to sowing in these amended soils improved germination, similar to the natural level of germination of seeds in desert soil without compost amendment. Both compost amendments increased height of wheat seedlings in the range of 20–25%, increased shoot dry weight by 15–19%, but severely decreased (51–54% less) root dry weight. Inoculation of wheat seeds with A. brasilense Cd, but not with A. lipoferum JA4, significantly increased plant growth parameters (height, shoot and root dry weight) over control plants grown in soil-compost mixtures. This bacterial species could survive for a period of 20 days in compost humic acid solution, could increase its population when the humic acids served as the sole carbon source, and may change the composition of humic acids in which it grows. We suggest that inoculation with A. brasilense may alleviate noxious effects on germinating seeds caused by compost application by possibly transforming the composition of humic acids in the compost.  相似文献   

2.
Summary Eight commercial Israeli spring wheat cultivars (six Triticum aestivum and two T. turgidum) grown with 40 and 120 kg N/ha were tested for responses to inoculation with Azospirillum brasilense. At the low level of N fertilization (40 kg/ha), five cultivars showed significant increases in plant dry weight measured at the milky ripe stage; however, by maturation only the cultivar Miriam showed a significant increase in grain yield. Two cultivars, which had shown a positive inoculation effect at the earlier stages, had a significant decrease in grain yield. No significant effect of inoculation was found at the high N level. To confirm those results, four wheat (T. aestivum) cultivars were tested separately over 4 years in 4 different locations under varying N levels. Only Miriam showed a consistently positive effect of Azospirillum inoculation on grain yield. Inoculation increased the number of roots per plant on Miriam compared with uninoculated plants. This effect was found at all N levels. Nutrient (N, P and K) accumulation and number of fertile tillers per unit area were also enhanced by Azospirillum, but these parameters were greatly affected by the level of applied N. It is suggested that the positive response of the spring wheat cultivar Miriam to Azospirillum inoculation is due to its capacity to escape water stresses at the end of the growth season.  相似文献   

3.
Nitrogen-fixing plant growth-promoting rhizobacteria (PGPR) from the genus Pseudomonas have received little attention so far. In the present study, a nitrogen-fixing phytohormone-producing bacterial isolate from kallar grass (strain K1) was identified as Pseudomonas sp. by rrs (16S ribosomal RNA gene) sequence analysis. rrs identity level was high with an uncharacterized marine bacterium (99%), Pseudomonas sp. PCP2 (98%), uncultured bacteria (98%), and Pseudomonas alcaligenes (97%). Partial nifH gene amplified from strain K1 showed 93% and 91% sequence similarities to those of Azotobacter chroococcum and Pseudomonas stutzeri, respectively. The effect of Pseudomonas strain K1 on rice varieties Super Basmati and Basmati 385 was compared with those of three non-Pseudomonas nitrogen-fixing PGPR (Azospirillum brasilense strain Wb3, Azospirillum lipoferum strain N4 and Zoogloea strain Ky1) used as single-strain inoculants. Pseudomonas sp. K1 was detected in the rhizosphere of inoculated plants by enrichment culture in nitrogen-free growth medium, which was followed by observation under the microscope as well as by PCR using a rrs-specific primer. For both rice varieties, an increase in shoot biomass and/or grain yield over that of noninoculated control plants was recorded in each inoculated treatment. The effect of Pseudomonas strain K1 on grain yield was comparable to those of A. brasilense Wb3 and Zoogloea sp. Ky1 for both rice varieties. These results show that nitrogen-fixing pseudomonads deserve attention as potential PGPR inoculants for rice.  相似文献   

4.
Production of common bean(Phaseolus vulgaris)is limited by the occurrence of damping off(rhizoctoniosis),which is caused by the fungus Rhizoctonia solani.However,the co-inoculation of plant growth-promoting rhizobacteria(PGPR)involved in biological control along with diatomic nitrogen(N2)-fixing rhizobia can enhance N nutrition and increase production.In this context,finding microorganisms with synergistic effects that perform these two roles is of fundamental importance to ensure adequate yield levels.The aim of this study was to evaluate the effects of co-inoculation of nodule endophytic strains of the genera Bacillus,Paenibacillus,Burkholderia,and Pseudomonas with Rhizobium tropici CIAT 899,an N2-fixing rhizobial strain,on the biocontrol of damping off and growth promotion in common bean plants.Greenhouse experiments were conducted under axenic conditions using the common bean cultivar Pérola.The first experiment evaluated the potential of the 14 rhizobacterial strains,which were inoculated alone or in combination with CIAT 899,for the control of R.solani.The second experiment evaluated the ability of these 14 rhizobacterial strains to promote plant growth with three manners of N supply:co-inoculation with CIAT 899 at low mineral N supply(5.25 mg N mL^-1),low mineral N supply(5.25 mg N mL^-1),and high mineral N supply(52.5 mg N mL^-1).The use of rhizobacteria combined with rhizobia contributed in a synergistic manner to the promotion of growth and the control of damping off in the common bean.Co-inoculation of the strains UFLA 02-281/03-18(Pseudomonas sp.),UFLA 02-286(Bacillus sp.),and UFLA 04-227(Burkholderia fungorum)together with CIAT 899 effectively controlled damping off.For the common bean,mineral N supply can be replaced by the co-inoculation of CIAT 899 with plant growth-promoting strains UFLA 02-281/02-286/02-290/02-293.Nodule endophytes UFLA02-281/02-286 are promising for co-inoculation with CIAT 899 in the common bean,promoting synergy with rhizobial inoculation and protection against disease.  相似文献   

5.
Summary This study examined the response of rice (Oryza sativa L.) plants at the pretransplant/nursery stage to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi and fluorescent Pseudomonas spp., singly or in combination. The VAM fungi and fluorescent Pseudomonas spp. were isolated from the rhizosphere of rice plants. In the plants grown in soil inoculated with fluorescent Pseudomonas spp. alone, I found increases in shoot growth, and in root length and fine roots, and decreases in root growth, and P and N concentrations. In contrast, in the plants colonized by VAM fungi alone, the results were the reverse of those of the pseudomonad treatment. Dual inoculation of soil with VAM fungi and fluorescent Pseudomonas spp. yielded plants with the highest biomass and nutrient acquisition. In contrast, the plants of the control treatment had the lowest biomass and nutrient levels. The dual-inoculated plants had intermediate root and specific root lengths. The precentages of mycorrhizal colonization and colonized root lengths were significantly lower in the dual-inoculated treatment than the VAM fungal treatment. Inoculation of plants with fluorescent Pseudomonas spp. suppressed VAM fungal colonization and apparently reduced photosynthate loss to the mycorrhizal associates, which led to greater biomass and nutrient levels in dual-inoculated plants compared with plants inoculated with VAM fungi alone. Dual inoculation of seedlings with fluorescent Pseudomonas spp. and VAM fungi may be preferable to inoculation with VAM alone and may contribute to the successful establishment of these plants in the field.  相似文献   

6.
Plant growth-promoting rhizobacteria, particularly those from the genus Azospirillum spp., may affect root functions such as growth and nutrient/water uptake, which in turn may affect shoot growth. Calculations based on data from literature on shoot and root mass of crop grasses (79 plant/bacteria associations were analyzed) revealed that inoculation with Azospirillum spp. increased the shoot-to-root (S/R) ratio in about half of reported cases and decreased the S/R ratio in the other half. In 11 of 35 cases, the S/R ratio increased when the shoot mass increased more than the root mass. In 23 of 35 cases, the root mass did not increase, yet the S/R ratio still increased. Thus, the increase in the S/R ratio indicated that shoot growth responds to inoculation more than root growth. A decrease in the S/R ratio occurred when (a) root growth dominated shoot growth even though both increased (16 of 36 cases), or (b) root growth either increased or remained unchanged, and shoot growth was either unaffected or even decreased (19 of 36 cases). This analysis suggests that: (a) Azospirillum spp. participates in the partitioning of dry matter (both carbon compounds and minerals) at the whole plant level by affecting root functions, and (b) the bacteria affect crop grass through multiple mechanisms operating during plant development.  相似文献   

7.
Summary Field experiments were conducted to assess the effects of the application of P on growth and N yield of inoculated and indigenous blue-green algae (BGA). Addition of 17.4 kg P ha–1 in split applications led to the highest BGA biomass and N yield, 162 kg dry weight ha–1 and 6 kg N ha–1 per 15 days, respectively. When inoculum of Aulosira spp., Aphanothece spp., Gloeotrichia spp. were compared separately, Gloeotrichia spp. grew faster but Aulosira spp. fixed more N. The growth rate and N yield of Aulosira spp. decreased with high P applications, although growth continued until the application of 34.8 kg P ha–1. The effects of P on inoculum production by local species compared with those collected from other states showed the superiority of the local culture. Applications of P also enhanced the growth and N yield of indigenous BGA, with Wollea spp. showing the best results.  相似文献   

8.
The effects of inoculating field peas (Pisum sativum L.) with Rhizobium leguminosarum and field beans (Phaseolus vulgaris L.) with R. phaseoli, alone or in combination with Pseudomonas syringae R25 and/or P. putida R105, were assessed under gnotobiotic conditions in growth pouches and in potted soil in a growth chamber. Inoculation of peas with P. syringae R25 or P. putida R105 alone had no effect on plant growth in pouches. In soil, however, the isolate R25 inhibited nitrogenase activity (as assessed by acetylene reduction assay) of nodules formed by indigenous rhizobia; strain R105 stimulated pea seedling emergence and nodulation. P. syringae R25 inhibited the growth of beans in either plant-growth system. P. putida R105, however, had no effects on beans in pouches, but reduced plant root biomass and nodulation by indigenous rhizobia in soil. Coinoculation of pea seeds with R. leguminosarum and either of the pseudomonads significantly (P<0.01) increased shoot, root, and total plant weight in growth pouches, but had no effect in soil. Co-inoculation of field beans with R. phaseoli and P. putida R105 had no effects on plant biomass in growth pouches or in soil, but the number of nodules and the acetylene reduction activity was significantly (P<0.01) increased in the soil. In contrast, co-inoculation of beans with rhizobia and P. syringae R25 had severe, deleterious effects on seedling mergence, plant biomass, and nodulation in soil and growth pouches. Isolate R25 was responsible for the deleterious effects observed. Although plant growth-promoting rhizobacteria may interact synergistically with root-nodulating rhizobia, the PGPR selected for one crop should be assessed for potential hazardous effects on other crops before being used as inoculants.  相似文献   

9.
Summary Inoculated seeds of maize (Zea mays) with 11 Azotobacter strains, sown in the fields receiving no fertilizer and fertilizers (N and P at the rate of 125 and 40 kg ha–1 respectively) increased the grain yield by 19.63% and 15.89% respectively over the corresponding control. The effect was greater in unfertilized than in fertilized soil. The increase in yield due to fertilizers was 21.2% without inoculation and 37.09% with inoculation. The correlations between total yield, and N, P and K uptake were highly significant and comparable among themselves. This indicated that increase in yield due to inoculation was not due to N2 fixation but that some other mechanisms like production of growth hormones by this bacterium may be responsible.  相似文献   

10.
Summary The present status and merits of inoculating rice with N2-fixing bacteria are discussed in the light of recent advances. Bacterial inoculation improves plant growth and rice yield but not uniformly. The yield response to inoculation is more pronounced in the presence of moderate levels of fertilizer N. Evidence for the establishment and activity of the inoculated bacteria is limited, and the poor survival of the inoculum under field conditions further complicates the effects of inoculation. There is no clear evidence that improved growth and mineral content following inoculation are due to increased N2 fixation. Beneficial effects of the inoculum on rice, such as plant growth promotion, N2 fixation and antagonism effects against pathogens need to be further investigated under laboratory and field conditions. Improved management practices, such as organic amendments, suitable water and soil management, selection of efficient microbial strains, selection of effective breeding lines with high associative nitrogen fixation, and better management of agrochemicals are some of the measures suggested for deriving benefits from bacterial associations with rice.  相似文献   

11.
Field and controlled environmental tests indicated that the 49 accessions of closely related species and 12 landraces of wheat (Triticum aestivum L. em. Thell.) from the National Gene Bank of China showed different reactions to powdery mildew (Blumeria graminis (DC.) E. O. Speer. f. sp. tritici) and stripe rust (Puccinia striiformis Westend f. sp. tritici) at adult and seedling stages. Unknown Pm genes or alleles were postulated with Triticum baeoticum Boiss. accessions BO 3 and Triticum monococcum L. MO 4 and MO 5 when inoculated with 21 powdery mildew isolates at seedling stage. Fourteen accessions of T. baeoticum, T. monococcum, Triticum durum, and wheat landraces were inoculated with 30 stripe rust isolates at seedling stage. Unknown Yr genes or alleles were postulated with T. baeoticum Boiss. accession BO 5, as well as wheat landraces Xiaobaimai, Laomangmai, and Shaanxibai. Heterogeniety in reaction to powdery mildew isolates and stripe rust races were observed in related species and landraces of wheat.  相似文献   

12.
This study was conducted with sugar beet in greenhouse and field at two soil type with different organic matter (containing 2.4 and 15.9% OM, referred as the low- and high-OM soil) conditions in order to investigate seed inoculation of sugar beet, with five N2-fixing and two phosphate solubilizing bacteria in comparison to control and mineral fertilizers (N and P) application. Three bacterial strains dissolved P; all bacterial strains fixed N2 and significantly increased growth of sugar beet. In the greenhouse, inoculations with PGPR increased sugar beet root weight by 2.8-46.7% depending on the species. Leaf, root and sugar yield were increased by the bacterial inoculation by 15.5-20.8, 12.3-16.1, and 9.8-14.7%, respectively, in the experiment of low- and high-OM soil. Plant growth responses were variable and dependent on the inoculants strain, soil organic matter content, growing stage, harvest date and growth parameter evaluated. The effect of PGPR was greater at early growth stages than at the later. Effective Bacillus species, such as OSU-142, RC07 and M-13, Paenibacillus polymyxa RC05, Pseudomonas putida RC06 and Rhodobacter capsulatus RC04 may be used in organic and sustainable agriculture.  相似文献   

13.
Summary Wheat cultivars assumed to be non-susceptible to vesicular-arbuscular (VA) mycorrhizae became colonized, and this effect persisted under different growth conditions. Colonization of all cultivars was similar regardless of the amount of inoculum and the time interval of inoculation. Different plant growth temperatures and the support given by the culture media, inoculation with different endophytes, and inoculation with sterilized and unsterilized spores affected VA colonization levels, although the level of colonization reached in cv. Champlein was similar to that reached in cv. 7-Cerros under each condition. VA mycorrhizal colonization was also affected by different plant growth conditions. After VA reinoculation, the plant dry weight of Castan and 7-Cerros increased, but not Negrillo and Champlein cultivars. VA mycorrhizae increased the shoot dry weight of 7-Cerros only, but not of Champlein, when grown at 35/24°C, and had no effect on the dry weight of either cultivar grown at 18/12°C and 42/24°C. Inoculation with Glomus mosseae increased the dry weight of the cultivars more than inoculation with G. fasciculatum or G. agregatum. The effect on the plant dry weight was greater in plants grown in soil than in sand/vermiculite pots. Inoculation with sterilized and unsterilized spores of G. mosseae, either in soil pots or in sand/vermiculite tubes, did not increase the plant dry weight. Our results indicate that there was no close relationship between the level of root colonization and the effect on plant growth. The effects of accompanying microorganisms in the VA inoculum on VA mycorrhizal symbiosis are discussed.  相似文献   

14.
We identified 161 Gram-negative bacterial strains isolated from the root surface of wheat grown under different soil conditions. The strains were divided into seven groups based on major morphological and physiological properties. Taxonomic allocation of the groups was verified by guanine+cytosine contents of DNA. Except for one group, which may be assumed to include bacteria belonging to the genera Flavobacterium and Cytophaga, the various groups were taxonomically united. The distribution of the groups changed with soil improvement. Pseudomonads predominated in unimproved soil, but Flavobacterium and Cytophaga spp. were predominant in the most improved soil. As all the strains were non-fermentative by Hugh and Leifson's test, API 20NE identification was applied. However, many strains were misidentified by this system, especially in the Flavobacterium and Cytophaga spp. group. For ecological studies, the strains were classified to species level by the API 20 NE system and by the results of a combination of guanine+cytosine (mol%) and isoprenoid quinone data. The pattern of distribution of the bacteria on the root surface of wheat varied at species level within one genus depending on soil conditions.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

15.
Carbon isotope discrimination (Δ) has been proposed as physiological criterion to select C3 crops for yield and water use efficiency. The relationships between carbon isotope discrimination (Δ), water use efficiency for grain and biomass production (WUEG and WUEB, respectively) and plant and leaf traits were examined in 20 Iranian wheat genotypes including einkorn wheat (Triticum monococcum L. subsp. monococcum) accessions, durum wheat (T. turgidum L. subsp. durum (Desf.) Husn.) landraces and bread wheat (T. aestivum L. subsp. aestivum) landraces and improved cultivars, grown in pots under well-watered conditions. Carbon isotope discrimination was higher in diploid than in hexaploid and tetraploid wheats and was negatively associated with grain yield across species as well as within bread wheat. It was also positively correlated to stomatal frequency. The highest WUEG and grain yield were noted in bread wheat and the lowest in einkorn wheat. Einkorn and bread wheat had higher WUEB and biomass than durum wheat. WUEG and WUEB were significantly negatively associated to Δ across species as well as within bread and durum wheat. The variation for WUEG was mainly driven by the variation for harvest index across species and by the variation for Δ within species. The quantity of water extracted by the crop, that was closely correlated to root mass, poorly influenced WUEG. Environmental conditions and genetic variation for water use efficiency related traits appear to highly determine the relationships between WUEG and its different components (water consumed, transpiration efficiency and carbon partitioning).  相似文献   

16.
We identified 108 Gram-positive bacterial strains isolated from the root surface of wheat grown under different soil conditions. The strains were divided into four groups based on morphological and physiological characteristics, but most appeared to be coryneform. The taxonomic position of the various groups was verified by the guanine+cytosine DNA contents of the strains. In general, the ranges of these values agreed with those described for the respective taxonomic positions in the literature, with a few exceptions. With soil improvement the distribution of the various groups on the root surface changed, with the coryneform group becoming dominant. This group was further divided into five subgroups, according to cell wall components, cellulose-decomposition, and morphological characteristics, and were identified to genus level. The distribution of these subgroups on the root surface of wheat did not alter with soil improvement. The genus Arthrobacter, the dominant subgroup, predominated in every plot.  相似文献   

17.
Many soil properties influence earthworm populations and activity. To determine which properties are of significance, a broad collection of soils was investigated. Samples from these different soils were kept bare at one site in large plots (3 Mg soil per plot) to liminate crop and weather interference and to isolate the dominating mechanisms of earthworm effects. Earthworm density, biomass, and tunnelling activity were assessed after 5 years of bare fallow. All earthworm parameters varied strongly. Earthworms increased soil respiration by their tunnelling activity, and in turn increased microbial activity and propagated the loss of organic C. Earthworm abundance ranged from 12 to 274 m-2 and was about 10 times greater than on cropped soils. The range in abundance was mainly caused by variations in the numbers of juveniles. The average soil moisture content was the only soil property among the many properties investigated that was consistently correlated with earthworm abundance and biomass. Even after 5 years of bare fallow with almost no addition of fresh plant biomass and with little water loss by plant transpiration, the earthworm population was controlled by water stress and not by food stress. We therefore conclude that high water consumption by productive crops may degrade the habitat for geophagous earthworms.  相似文献   

18.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

19.
西瓜根际促生菌筛选及生物育苗基质研制   总被引:1,自引:0,他引:1  
通过从西瓜根际分离筛选具根际定殖能力的植物根际促生菌,将其保活添加至普通育苗基质研制生物育苗基质,以确保功能菌株能够在苗期定殖根际,进而在移栽后发挥促生功能。结果表明,分离获得一株同时具有产吲哚乙酸(IAA)和NH_3,且对尖孢镰刀菌和茄科劳尔氏菌均有拮抗作用的植物根际促生菌(PGPR)菌株N23;在三季育苗试验中,与普通基质处理(CK)相比,添加菌株N23的生物育苗基质所育种苗,在多项苗期生长指标上均表现出稳定的促生作用;盆栽试验表明,除叶绿素相对含量测量值(SPAD)外,生物基质所育西瓜种苗的其他检测指标均显著高于对照(普通育苗基质所育种苗,下同);田间试验表明,生物基质所育种苗西瓜、黄瓜、辣椒和番茄种苗移苗后,在苗期植株株高和茎粗均显著优于对照,在产量上均增产10%以上。结合形态、生理生化特征和16S rDNA基因序列分析,初步鉴定菌株N23为芽孢杆菌属细菌(Bacillus sp.)。综上,利用芽孢杆菌N23研制的生物育苗基质能够有效促进所育不同作物种苗质量,增强移栽后作物的生长和田间产量。因此,本研究能够为根际有益微生物的应用提供新的思路,为生物育苗基质的研制提供理论支撑。  相似文献   

20.
A phenanthrene-degrading bacterial strain Pseudomonas sp. GF3 was examined for plant-growth promoting effects and phenanthrene removal in soil artificially contaminated with low and high levels of phenanthrene (0, 100 and 200 mg kg−1) in pot experiments. Low and high phenanthrene treatments significantly decreased the growth of wheat. Inoculation with bacterial strain Pseudomonas sp. GF3 was found to increase root and shoot growth of wheat. Strain GF3 was able to degrade phenanthrene effectively in the unplanted and planted soils. Over a period of 80 days the concentration of phenanthrene in soil in which wheat was grown was significantly lower than in unplanted soil (p<0.05). At the end of the 80-d experiments, 62.2% and 42.3% of phenanthrene had disappeared from planted soils without Pseudomonas sp. GF3 when the phenanthrene was added at 100 and 200 mg kg−1 soil, respectively, but 84.8% and 70.2% of phenanthrene had disappeared from planted soils with the bacterial inoculation. The presence of vegetation significantly enhances the dissipation of phenanthrene in the soil. There was no significant difference in soil polyphenol oxidase activities among the applications of 0, 100 and 200 mg kg−1 of phenanthrene. However, the enzyme activities in planted and unplanted soils inoculated with the strain Pseudomonas sp. GF3 were significantly higher than those of non-inoculation controls. The bacterial isolate was also able to colonize and develop in the rhizosphere soil of wheat after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号