首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two experiments were conducted to evaluate the effect of dietary Se and P levels on Se retention in postweaning swine. A 20% protein corn-soybean meal diet at two dietary Se levels (.3 and 5.0 ppm) and four total P levels (.50, .70, .90, 1.10%) were fed. Supplemental Se was provided from sodium selenite with inorganic P from dicalcium phosphate. In Exp. I, 151 pigs weaned at 4 wk of age were allotted by sex, litter and weight and fed their treatment diets for 28 d after a 7-d adjustment to a basal diet. Dietary Se level had no effect on performance measurements. As dietary P level increased, there was an increase in daily gain, feed intake and a decrease in feed to gain ratio. Dietary P resulted in similar plasma, longissimus muscle and kidney tissue Se values within each dietary Se level, while liver Se declined as dietary P level increased. Dietary P level had no effect on plasma, heart or liver glutathione peroxidase (GSH-Px) activity. In Exp. II, 32 barrows, after being fed their diets for a 28-d period, were placed in individual metabolism crates where a balance trial was conducted. Dietary P level reduced absolute and percentage Se retention, particularly at dietary P levels of .90 and 1.10%. Phosphorus retention was not affected by dietary Se. Neither dietary P nor Se level had any effect on N retention. These results suggest an effect of dietary P level on Se retention and liver Se, particularly at dietary P levels above the pig's P requirement, while the effect is minimal at or below the pig's P requirement.  相似文献   

2.
A total of 72 pigs weaned at 4 wk of age were allotted by litter and weight to nine treatment groups and fed 20% protein cornsoybean meal diets supplemented with various levels of inorganic Se during a 37-d postweaning period. Eight groups were fed diets with 0, 2.5, 5.0, 7.5, 10, 15, 20 or 40 ppm Se provided as sodium selenite, while a ninth was offered the 0- and 40-ppm Se diets in separate feeders. Gains and feed intakes were similar during the trial for the 0- and 2.5-ppm Se diets. Both gain and feed intake declined as dietary Se levels above 5.0 ppm increased. At a dietary Se concentration of 40 ppm, feed consumption ceased within a few days of feeding and subsequent gains were negative. Pigs offered both the 0- and 40-ppm Se diets preferentially selected the basal as compared with the 40-ppm Se diet. When the feeders were switched at 28 d they refused the 40-ppm Se diet within a few hours. After a 17-d period, pigs fed the 20- or 40-ppm Se diet were not able to coordinate their walk, with many exhibiting an inability to stand. Alopecia was demonstrated in pigs fed 15 ppm Se or higher at 17 d, but was evident in the 5.0-ppm group at 37 d. At the termination of the trial, abnormal hoof formation at the coronary band was evident in pigs fed diets containing Se greater than or equal to 5 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Biochemical and physiological indicators of selenium status in animals   总被引:1,自引:0,他引:1  
Selenium (Se) concentrations in animal tissues vary with the tissue and with the amount and chemical form of Se in the diet. In cattle, sheep and swine, Se concentrations rank in kidney greater than liver greater than heart greater than skeletal muscle greater than adipose tissue. Selenium concentrations (wet basis) in skeletal muscle of swine (.03 to .52 ppm) reflect natural dietary Se concentrations ranging from .03 to .49 ppm. Inorganic Se additions to diets low in natural Se (.05 ppm) increase skeletal muscle Se concentrations until dietary Se levels are adequate. After a period of Se repletion, skeletal muscle Se concentrations should be at least .08 ppm on a wet basis. Selenium concentrations in plasma, serum or whole blood are also related to inorganic Se intake and rise in direct relation to each other in the deficient to adequate range. Plasma or serum Se concentrations of .08 to .12 ppm are consistent with dietary adequacy. Selenium-dependent glutathione peroxidase (GSH-Px) activity of plasma or whole blood may also be used to assess Se status in some animals since plasma or whole blood Se concentrations are positively correlated with GSH-Px activity in animals that are low to adequate in dietary inorganic Se. However, inter-laboratory variation in GSH-Px values is large, and it is doubtful that limits of normalcy developed in one laboratory are applicable in others. In certain tissues it is important to distinguish between GSH-Px and glutathione (GSH) S-transferases, which can reduce organic hydroperoxides but which are not Se-dependent. It is also important that the instability of GSH-Px be considered so that losses in activity during handling and storage may be minimized. Urinary Se excretion and Se retention as percentages of Se intake may be helpful in assessing Se status when facilities for metabolism studies are available.  相似文献   

4.
A total of 64 weanling pigs was used in a randomized complete-block experiment to evaluate the efficacy of various inorganic Se levels on weekly Se balance measurements over a 5-wk post-weaning period. Four-week-old weaned pigs were fed a 20% protein, corn-soybean meal diet supplemented with 0, .3, .5 or 1.0 ppm Se from sodium selenite. Eight pigs were allotted by weight, litter and sex to each metabolism crate. A 2-d preliminary period followed by a 5-d collection period was conducted for five weekly periods. Feed intake was provided ad libitum but was similar between dietary Se levels. Fecal Se excretion increased each week and with increasing dietary Se level. Apparent digestibility of Se was relatively constant for each period when inorganic Se was fed, averaging approximately 70%, whereas it ranged between 30 to 40% for pigs fed the basal diet during wk 2 through 5. Urinary Se decreased during the postweaning periods for pigs fed the basal diet, but increased linearly as dietary Se increased during the initial 2-wk postweaning period and then quadratically during wk 3 through 5. There was a net loss of Se from the body when the Se-unsupplemented basal diet was fed during the initial 2 wk postweaning, whereupon, it became positive. Selenium retention in pigs supplemented with inorganic Se increased each week of the trial. When Se retention was expressed in relation to Se intake, the resulting regression was linear (R2 = .99), suggesting that Se retention in the postweaning pig increased in direct proportion to the amount consumed when diets contained up to 1.0 ppm Se.  相似文献   

5.
This research evaluated the efficacy of inorganic and organic Se sources for growing-finishing pigs, as measured by performance and various tissue, serum, carcass, and loin quality traits. A total of 351 crossbred pigs were allotted at an average BW of 20.4 kg to six replicates of a 2x4 factorial experiment in a randomized complete block design. Pigs were fed diets containing Se-enriched yeast (organic) or sodium selenite (inorganic), each at .05, .10, .20, or .30 mg Se/kg diet. A non-Se-fortified basal diet was a ninth treatment group. Five pigs per pen were bled initially and at 30-d intervals with serum analyzed for Se and glutathione peroxidase (GSH-Px) activity. At 55 kg BW, one pig per pen from each of three replicates was killed, and tissues were collected for Se analysis. At 105 kg BW, the remaining pigs in the three replicates were killed, carcass measurements were collected, tissues were analyzed for Se, and loin quality was evaluated for pH, drip loss, and lightness. No performance or carcass measurement benefit resulted from either Se source or dietary Se levels. Pigs had a lower serum Se concentration and GSH-Px activity when the basal diet was fed, but both increased as dietary Se level increased (P<.01). Serum GSH-Px activities were increased by pig age and reached a plateau when the diet contained approximately .10 mg Se/kg (P<.01) at d 30, and 60 of the trial, and at .05 mg Se/kg diet at d 90 of the trial. The organic Se group fed .05 and .10 mg Se/kg had serum GSH-Px activities that tended to be lower than those of pigs fed the inorganic Se source, but GSH-Px activities in both groups were similar at higher Se levels. Tissue Se contents increased linearly as the dietary Se level increased, but the increase was markedly higher when organic Se was fed, resulting in an interaction (P<.01) response. Loin drip loss, pH, and lightness were unaffected (P>.15) by organic Se source or level, but there was a trend for a higher drip loss (P = .11) and a linear (P<.01) increase in loin paleness when the inorganic Se level increased. These results indicate that neither Se source nor Se level had an effect on pig performance or carcass measurements, but organic Se source increased tissue Se concentrations. Inorganic Se may, however, have a detrimental effect on loin quality, as reflected by higher drip loss and a paler color. Using serum GSH-Px activity as the measurement criterion, the supplemental dietary Se requirement did not seem to exceed .10 and .05 mg Se/kg diet for the growing and finishing phases, respectively, when added to a basal diet containing .06 mg Se/kg.  相似文献   

6.
A study was conducted to evaluate the short-term effects of feeding two dietary Se sources at various Se levels on the transfer of Se to the dam's milk and nursing pig. Six dietary treatments were arranged in a 2 x 2 factorial arrangement with two additional treatments in a randomized complete block designed experiment. Inorganic (sodium selenite) or organic (Se-enriched yeast) Se sources were added to the diet at .15 or .30 ppm Se. A non-Se-fortified corn-soybean meal basal diet served as a negative control, and a sixth group was fed .15 ppm Se from both inorganic and organic Se sources. A total of 43 sows were fed their treatment diets at 2.2 kg/d from 6 d prepartum to parturition and at full feed through a 14-d lactation period. Ten sows were initially bled at 6 d prepartum, and three sows and three pigs from their litters were bled at 7 and 14 d postpartum. Serum was analyzed for its Se concentration and glutathione peroxidase (GSH-Px) activity. Colostrum was collected within 12 h postpartum and milk at 7 and 14 d of lactation. When the basal diet was fed, sow serum GSH-Px activity declined from 6 d prepartum and remained low throughout lactation. When dietary Se levels increased, sow serum Se concentration and serum GSH-Px activity increased (P < .05) at both 7 and 14 d postpartum. The short-term feeding of either Se source at .15 or .30 ppm Se did not affect colostrum Se content when inorganic Se was fed, but it was increased when organic Se was provided. This resulted in a significant Se source x Se level interaction (P < .01). Milk Se at 7 and 14 d postpartum was 2.5 to 3 times higher when the organic Se source was provided and resulted in a significant Se source x Se level interaction (P < .05). When the combination of inorganic and organic Se was fed at .15 ppm Se, colostrum and milk Se contents were similar to those of sows fed .15 ppm Se from the organic Se source. Pig serum GSH-Px activity was not affected at 7 and 14 d of age by dietary Se level or Se source fed to the sow, but serum Se increased (P < .05) as dietary Se level increased, particularly when sows had been fed organic Se. The results demonstrated that organic Se increased milk Se content more than did inorganic Se and increased the nursing pig's serum Se. These results indicate that inorganic Se was more biologically available for sow serum GSH-Px activity, but organic Se was more effectively incorporated into milk.  相似文献   

7.
A 2 x 3 factorial experiment conducted in three replicates of a randomized complete block design compared the effects of calcium selenite and sodium selenite at three different levels of Se (.3, 5, or 15 ppm) in the diets of growing swine on performance and tissue Se concentrations. Ninety pigs averaging 12.5 kg of BW were given ad libitum access to corn-soybean meal diets fortified with one of the treatment Se sources and dietary levels for a 35-d experimental period. Growth and feed intake were similar in pigs fed .3 and 5 ppm of Se but were lower (P less than .01) in those fed 15 ppm from either Se source. Serum Se increased (P less than .01) as dietary Se level increased with no difference between Se sources at each dietary Se level. Liver, kidney, and longissimus muscle Se concentrations increased (P less than .01) as the dietary level of Se increased and were similar when either Se sources was provided. These results indicate that calcium selenite was as effective as sodium selenite using the measurement criteria of growth, serum, and tissue Se concentrations and glutathione peroxidase activities of growing swine when fed at approved, marginally toxic, and toxic dietary Se levels.  相似文献   

8.
This experiment evaluated the effect of high dietary Se levels using organic or inorganic Se on the selenosis responses in growing-finishing swine. A 2 x 4 factorial arrangement of treatments in a randomized complete block design was conducted in two replicates. Sodium selenite or Se-enriched yeast was added at 5, 10, 15, or 20 ppm Se to corn-soybean meal diets. A basal diet without added Se was a ninth treatment group. Ninety crossbred barrows initially averaging 24.7 kg BW were allotted at five pigs per pen. Pigs were bled at 3-wk intervals and plasma Se, glutathione peroxidase (GSH-Px) activity, glutamic oxalacetic transaminase (PGOT), hemoglobin, packed cell volume, and blood cell Se concentration were measured. After 12 wk, pigs were killed and various tissues and bile were collected for Se analyses. Pig body weights, daily gains, and feed intakes were similar for both Se sources when provided at < or = 5 ppm Se, but each measurement declined in a different manner for each Se source as the dietary Se level increased. The decline was more rapid when the inorganic rather than organic Se source was fed, resulting in interaction responses (P < 0.01). Hair loss (alopecia) and separation of the hoof at the coronary band site occurred at > or = 10 ppm inorganic Se but at > or = 15 ppm organic Se level. Plasma GSH-Px activity increased (P < 0.01) when high dietary Se levels of either Se source was fed. Plasma and blood cell Se increased at each period as dietary Se level increased (P < 0.01) and was greater when organic Se was provided (P < 0.05). Blood cell Se concentration reached a plateau when inorganic Se, but not when organic Se, was fed and increased as the experiment progressed. This resulted in a three-way interaction (P < 0.01). Plasma GOT activity at the 12-wk period was elevated when inorganic Se was provided at > or = 15 ppm Se but not when organic Se was fed, resulting in an interaction (P < 0.05). Tissue Se concentrations increased as dietary Se level increased and when organic Se was provided, resulting in interaction responses (P < 0.05). Bile was a yellow color when the basal diet was fed but was dark brown at > 10 ppm inorganic Se and at 20 ppm when organic Se was provided. Bile Se increased as dietary Se level increased (P < 0.01). These results suggest that dietary Se from inorganic or organic sources was toxic at > or = 5 ppm Se, but subsequent selenosis effects were more severe and occurred sooner when sodium selenite was the Se source.  相似文献   

9.
Pigs from sows fed a diet deficient in Se and low in vitamin E were fed a Torula yeast diet supplemented with 100 IU dl-alpha-tocopheryl acetate/kg of diet. Dietary treatments were levels of supplemental Se of 0, .025, .050, .075 or .100 ppm. Some death loss occurred in pigs receiving no supplemental Se at approximately 5 wk of age. Autopsy revealed liver and heart lesions typical of vitamin E-Se deficiency. Selenium supplement had no significant effect on average daily gain, feed intake or gain to feed ratio for the 4-wk experiment. Selenium status of pigs was determined by serum Se concentration and serum glutathione peroxidase (GSH-Px) activity. Serum Se increased linearly (P less than .01) with increasing supplemental Se. Serum GSH-Px activity increased linearly (P less than .01) and quadratically (P less than .05) with increasing supplemental Se. With time, the level of serum Se and GSH-Px activity decreased in unsupplemental pigs, but increased in pigs fed diets supplemented with Se and resulted in significant interactions (P less than .01) between dietary Se level and time on experiment. The correlation between serum Se concentration and GSH-Px activity was .81 (P less than .01).  相似文献   

10.
Growing male Synthetic I (1/2 Finnish Landrace x 1/4 Dorset x 1/4 Rambouillet) lambs were used in two experiments (64 lambs in Exp. 1 and 63 in Exp. 2) to test the hypothesis that dietary CP level (9 or 14% of diet as fed) and(or) clinoptilolite (clino; 0 or 2% of diet) affects growth and tissue mineral concentrations of growing lambs fed supplemental Cu. Lambs were individually fed their respective diets ad libitum and killed after 12 wk (Exp. 1) or 16 wk (Exp. 2) to obtain carcass measurements, organ weights and liver mineral concentrations. In Exp. 1, 20 ppm added Cu (as CuSO4.5H2O) increased mortality and depressed BW gain (P less than .01) and daily feed intake (P less than .05) in the presence or absence of clino and at both levels of CP. Liver Cu concentration was greater (P less than .01) in lambs fed added Cu than in those not fed Cu (408 ppm vs 110 ppm, respectively). Neither CP nor clino affected liver Cu concentration. Clinoptilolite increased daily gain of lambs fed high CP but not low CP (P less than .01). In Exp. 2, clino in the diet had no effect on daily gain or daily feed, but 20 ppm Cu addition depressed daily gain (P less than .01) and gain/feed (P less than .07). Organ weights and levels of trace elements other than Cu in the liver generally were not affected by diet in either experiment. It is concluded that high dietary CP or 2% dietary clino did not protect against toxic signs of Cu when Cu was added to the basal diet (10 ppm Cu) at 10 or 20 ppm.  相似文献   

11.
Three hundred eighty-four growing-finishing pigs were used in two experiments to determine the effect of dietary fluorine (F) on growth, blood and bone physical characteristics. Fourteen dietary treatments were formulated by supplementing F (as NaF) to a milo-soybean meal basal diet (7 ppm F) to provide levels of 7, 132, 257, 382, 507 and 632 ppm F for Exp. 1, and 7, 25, 43, 61, 79, 97, 115 and 133 ppm F for Exp. 2. Average daily gain (ADG) and average daily feed intake (ADFI) were not affected (P greater than .09) when F was fed at levels between 7 and approximately 132 ppm. Average daily gain and ADFI were reduced (P less than .0001) for pigs consuming diets with F concentrations greater than 132 ppm (Exp. 1). Feed conversion was not affected (P greater than .17) by any level of F fed. Serum F and alkaline phosphatase concentrations increased (P less than .01) with increasing dietary F levels. Serum and bone Ca and P concentrations were not affected (P greater than .13) by dietary F levels (Exp. 1). In Exp. 1 and 2, bone F increased (P less than .0001) and metatarsal stress and modulus of elasticity decreased (P less than .0001) as level of F increased in the diet. Bone thickness decreased quadratically (P less than .02) in Exp. 1 and linearly (P less than .0007) in Exp. 2 with increased dietary F levels. Scanning electron microscopy showed an increase in porosity of bones from pigs fed the higher levels of F. Growing-finishing pigs were able to tolerate approximately 132 ppm F for growth, but all of the F levels (greater than or equal to 7 ppm) fed in these two experiments affected bone integrity.  相似文献   

12.
The effect of dietary riboflavin (B2) supplementation and selenium (Se) source on the performance and Se metabolism of weanling pigs was studied. Pigs fed a B2-supplemented (10 mg/kg) casein-glucose diet for 18 d gained faster than pigs fed the B2-unsupplemented diet. Percentage active erythrocyte glutathione reductase (GR) declined rapidly when pigs were placed on the B2-unsupplemented diet and was lower (P less than .01) than that of B2-supplemented pigs after 12 d on test. Percentage active erythrocyte GR values fell below 50% before other B2 deficiency signs became evident. Supplementation of diets with 10 mg B2/kg resulted in increased kidney and muscle glutathione peroxidase (GSH-Px) activity. The Se concentration of liver and heart increased and plasma Se levels decreased with dietary B2 supplementation. Riboflavin supplementation and Se source did not alter apparent Se absorption, but B2 supplementation decreased urinary Se and thus increased Se retention. Also, there was less urinary Se excretion when selenomethionine was the dietary Se source and consequently more Se was retained than when sodium selenite was the dietary Se source. In a final trial, B2 supplementation increased kidney, muscle, heart and brain GSH-Px activity when sodium selenite was the dietary Se source, but not when selenomethionine was the dietary Se source.  相似文献   

13.
In two separate experiments, 72 crossbred ewes were fed hay, haylage (50% dry matter) and corn diets with ad libitum salt-mineral mixtures (SMM; Exp. 1) or salt (Exp. 2). Calcium phosphates (Ca X P) and(or) zinc (Zn) were added in a 2 X 2 factorial arrangement to salt + trace minerals for ewes 7 mo prepartum through lactation in Exp. 1 and to salt only for ewes 3 mo prepartum through lactation in Exp. 2. The diets fed were estimated to contain 23 and 28 mg Zn/kg dry diet (ppm), respectively, and .08 and .05 ppm Se. Large variations (up to fivefold) were found in SMM intake per month between replicates and from month-to-month within treatment; thus, monthly variations of up to sevenfold occurred in Zn and Se intakes of supplemented groups. There were no significant treatment effects on SMM intake. Small but significant Zn treatment effects were detected for plasma and wool Zn of ewes and lambs, but all values were in the normal range. There was no significant treatment effect on plasma alkaline phosphatase activity. In Exp. 2, erythrocyte glutathione peroxidase (GSH-Px) activity was significantly lower in all treatment groups compared with a Se-supplemented control group but only rare occurrences of subclinical muscular dystrophy were found. There was no significant treatment effect on GSH-Px activity, whole blood Se in ewes and lambs or plasma creatine phosphokinase activity in lambs. These results indicate large animal and seasonal variability in SMM intake and no significant treatment effects of Ca X P on SMM intake or on Zn and Se status. Zinc addition to SMM had no effect on Se status.  相似文献   

14.
Five 28- to 33-d experiments involving 460 crossbred pigs weaned at 28 +/- 2 d of age (initial weight, 6.7 to 8.1 kg) were conducted to determine the effects of feeding high dietary levels of Cu sulfate (CuSO4) or Cu oxide (CuO) on rate and efficiency of gain and liver Cu stores of weanling pigs. The pigs were housed in groups of five to six/pen and fed a fortified, unmedicated, corn-soybean meal-dried whey basal diet (1.1% lysine, 30 ppm Cu). In Exp. 1 and 2, pigs (eight replicates) were fed the basal or the basal plus 125 or 250 ppm Cu from CuSO4 or CuO for 28 d. In Exp. 3 and 4, four replications were fed the same diets as in Exp. 1 and 2 plus two additional diets (500 ppm Cu from CuSO4 or CuO). In Exp. 5, dietary levels of 0, 125, 250, 375 or 500 ppm Cu from CuSO4 were evaluated using four replications. At the end of each experiment, the liver from one pig in each pen was collected for Cu analysis. Overall, rate and efficiency of gain were improved (P less than .01) by feeding 125 or 250 ppm Cu as CuSO4, with the 125 ppm dietary level being about 75% as effective in stimulating growth as 250 ppm. Performance of pigs was not different from controls when the highest (500 ppm) level of Cu (from CuSO4) was fed. Liver Cu increased 10- to 70-fold when 250 to 550 ppm Cu from CuSO4 was included in the feed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Three factorial experiments were conducted to evaluate the effects of various Ca:P ratios (1:1, 2:1 and 3:1) in diets having deficient (.3%), adequate (.6%) and excess (.9%) levels of dietary P on rate and efficiency of gain and bone strength of 192 pigs from 18 to 40 kg BW. A corn-soybean meal diet fortified with minerals and vitamins (but not vitamin K) was fed. Levels of Ca and P were achieved by adjusting the amounts of dicalcium phosphate and ground limestone in the diet. The corn was free of detectable mycotoxins. A hemorrhagic condition occurred in Exp. 1 in pigs fed the higher dietary Ca levels; all eight of the pigs fed 2.7% dietary Ca died of internal hemorrhage within the initial 28 d of the experiment. Vitamin K (5 mg menadione [as menadione dimethylpyrimidinole bisulfite]/kg) was added to half of the diets of the remaining animals and the experiment was continued for an additional 14 d. Prothrombin and whole blood clotting times were increased (P less than .01) in pigs fed high Ca without vitamin K but were normal in pigs fed high Ca with added vitamin K. Similar trends in clotting times occurred in a second experiment. A third experiment was conducted to determine whether the addition of vitamin K could reverse the hemorrhagic condition induced by feeding high dietary Ca for 28 d. As in the other two experiments, clotting times were increased (P less than .01) in pigs fed high Ca and no vitamin K. Addition of vitamin K after 28 d resulted in a return to basal prothrombin values by d 50. In regard to the original objectives, increasing the Ca:P ratio from 1:1 to 2:1 or 3:1 tended to reduce rate and efficiency of gain at all levels of P. Increasing the Ca:P ratio to 2:1 resulted in increased bone strength only when P was at or above the dietary requirement.  相似文献   

16.
One hundred seventy-six crossbred weaned pigs (4 to 5 wk old) were used in two growth trials to determine the effect of excess arginine on pig growth and plasma amino acid levels. In the first 28-d growth trial, two lysine levels (1.03 and 1.26%) and three arginine levels (.94, 1.29 and 1.63%) were used in a nested treatment arrangement. Lysine supplementation improved daily gains (P less than .05), tended to improve feed efficiency (P less than .12) and caused a general reduction in plasma essential amino acid levels. Arginine had no effect on daily gain or feed intake, but pigs fed 1.03% lysine and 1.63% arginine had reduced gain/feed (P less than .05). Arginine did not affect gain/feed of pigs fed 1.26% lysine. Plasma lysine levels were reduced (P less than .06) by excess arginine in pigs fed 1.26% lysine, but not in pigs fed 1.03% lysine. The four treatments for the second 26-d growth trial consisted of three diets containing .92% lysine and either .72, 1.10 or 1.61% arginine and a positive lysine control (1.10% lysine, .72% arginine). Lysine was the limiting amino acid in the basal diet, but arginine had no effect on daily gain, daily feed intake, gain/feed or plasma lysine levels. Plasma threonine and methionine levels were reduced by excess arginine in both experiments, while the other plasma essential amino acid levels were not affected by dietary arginine. Conclusions are that large excesses of added arginine may affect lysine utilization, but pig performance was affected only when excess arginine was combined with a lysine deficiency. The arginine levels similar to those found in grain-soybean meal swine diets had no effect on pig performance in these experiments.  相似文献   

17.
Fifteen second-parity sows were used to determine the importance of vitamin E (E) and selenium (Se) supplementation of the sow's diet and colostrum consumption by the neonatal pig on tolerance to parenteral iron. Selenium (.1 ppm) and E (50 IU/kg) supplementation of the diet of the sow increased plasma tocopherol and Se concentrations, but did not increase plasma glutathione peroxidase (GSH-Px) activity. Colostrum had greater concentrations of E (primarily alpha-tocopherol) and Se than milk. Plasma biological antioxidant status (tocopherol level and GSH-Px activity) of pigs at birth was very low, but by 2 d of age had increased, especially in alpha-tocopherol (nearly a 20-fold increase). Liveability and body weight gain of pigs were not affected by the pre-colostrum iron injection (200 mg Fe as gleptoferron); however, plasma tocopherol concentrations of Fe-injected pigs were lower and plasma Se concentration and GSH-Px activities were higher at 2 d of age than values of pigs not receiving parenteral Fe. Supplementation of the dam's diet with E and Se maintained high tocopherol and Se levels in her colostrum and milk and a high biological antioxidant status in her pigs throughout the nursing period.  相似文献   

18.
A 2 X 2 factorial arrangement with two levels (0, 660 ppm) of vitamin C and two levels (0, 55 ppm) of carbadox supplementation was used in two experiments with 112 crossbred pigs weaned between 4 and 5 wk of age. An 18% protein corn-soybean meal-oats-dried whey starter diet was used as the basal diet. Each diet was fed ad libitum for a 4-wk period to three replicates of four pigs in Exp. 1 and to four replicates of four pigs in Exp. 2. Vitamin C supplementation produced a significantly higher plasma vitamin C concentration in weanling pigs, but, contrary to results of our previous study, failed to improve average daily gain of the pigs. Daily gain was, however, improved significantly by carbadox supplementation. Carbadox also produced a significantly higher plasma vitamin C concentration in pigs after a 7-d lag period. Plasma Fe concentration of pigs was not affected by supplemental vitamin C, but was significantly higher in those fed carbadox-supplemented diets. Plasma ceruloplasmin concentration increased significantly in all treatment groups from the initial sampling period (d 0) to subsequent periods. No interactions between supplemental vitamin C and carbadox were observed in daily gain, feed efficiency and the measured plasma constituents.  相似文献   

19.
Two experiments were conducted with young pigs to determine the efficacy of ornithine (Orn) or citrulline (Cit) as precursors of arginine (Arg). In Exp. 1, pigs were individually fed an Arg-deficient, semipurified diet (.18% Arg) supplemented with .3% Arg or an equimolar quantity of Orn or Cit. Supplemental Arg or Cit increased rate and efficiency of weight gain, but Orn addition was without effect. Free Arg in plasma 3 h post-prandial was increased by addition of either Arg or Cit to the basal diet. Liver Arg was elevated by dietary addition of Arg, Orn or Cit; kidney Arg and Orn were elevated only in pigs receiving supplemental Cit. Arginine or Cit addition to the diet increased Arg concentration in muscle tissue, but muscle Orn was unresponsive to any of the supplements fed. In Exp. 2, pigs were again fed the Arg-deficient, semipurified diet supplemented with .3% Arg or four times an isomolar quantity of ornithine. Arginine addition to the diet increased weight gain and feed efficiency, while Orn supplementation was without effect. Plasma Orn was increased by excess Orn, while plasma Cit was unaffected by supplemental Arg or Orn. Moreover, excess Orn increased free Orn and proline (Pro) in liver, kidney and muscle. Free Cit, however, increased only in liver from feeding excess Orn. In addition, excess Orn decreased both plasma ammonia and free glutamine (Gln) concentration in brain. Arginase activity was roughly 10, 40 and 100 times greater in hepatic tissue than in renal cortex, renal medulla or intestinal mucosa, respectively, while hepatic ornithine transcarbamoylase (OTC) activity was about 15 times greater than the activity present in mucosa tissue. Renal OTC activity was too low to be accurately measured.  相似文献   

20.
An experiment evaluated the effects of feeding either a basal non-Se-fortified diet, two Se sources (organic or inorganic) each providing 0.15 and 0.30 ppm Se, or their combination (each providing 0.15 ppm Se) on gilt growth and sow reproductive performance. The experiment was a 2 x 2 + 2 factorial conducted in a randomized complete block design in three replicates. One hundred twenty-six crossbred gilts were started on one of the six treatment diets at 27.6 kg BW. During the grower phase, animals were bled at 30-d intervals with three gilts killed per treatment at 115 kg BW for tissue Se analysis. Fifteen gilts per treatment were bred at 8 mo of age and were continued on their treatment diets for four parities. Sow serum collected within parity was analyzed for Se and glutathione peroxidase (GSH-Px) activity. Tissue Se was determined from five 0-d-old pigs per treatment from fourth-parity sows. Three sows per treatment were killed after the fourth parity for tissue Se analysis. Similar treatment performance responses occurred from 27 to 115 kg BW. Serum Se (P < 0.01) and GSH-Px activity (P < 0.05) increased for both Se sources to 0.30 ppm Se during the grower and reproductive periods. Serum Se and GSH-Px activity decreased from 70 to 110 d postcoitum in all treatment groups, but increased at weaning (P < 0.01) in the Se-fortified groups. The number of pigs born (total, live) increased (P < 0.05) with the 0.15 ppm Se level for both Se sources. Tissue and total body Se content of 0-d-old pigs increased with Se level (P < 0.01) and also when the organic Se source (P < 0.01) was fed to the sow. When sows were fed either Se source, pig serum Se (P < 0.01) and GSH-Px activity (P < 0.05) increased at weaning. Colostrum and milk Se concentrations increased (P < 0.01) with Se level for both Se sources, but were substantially greater (P < 0.01) when sows were fed organic Se. The combination of Se sources had sow milk and tissue Se values that were similar to those of sows milk and fed 0.15 ppm organic Se. The fourth-parity sows had greater tissue Se concentrations when organic Se level was increased (P < 0.01), more so than when sows were fed inorganic Se. These results suggest that both Se sources resulted in similar sow reproductive performances at 0.15 ppm Se, but sows fed the organic Se source had a greater transfer of Se to the neonate, colostrum, milk, weaned pig, and sow tissues than sows fed inorganic Se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号