首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
撑麻7号竹地上部分生物量分配研究   总被引:3,自引:0,他引:3  
通过对成林撑麻7号竹竹秆、竹枝、竹叶生物量的研究,结果表明:竹秆、竹枝含水率随竹龄增大呈下降趋势,竹叶含水率不受竹龄影响,1年生、2年生立竹含水率高低依次为竹秆、竹枝、竹叶,3年生、4年生立竹含水率高低依次为竹叶、竹枝、竹秆;构建了不同年龄单株立竹各器官生物量与立竹胸径的数学优化模型,进而分析知竹林中2年生立竹生物量占竹林总生物量最大47.0%,3年生、4年生立竹生物量无显著差异。竹林立竹器官生物量大小依次为竹秆、竹枝、竹叶,其中竹秆占竹林总生物量的72.9%。  相似文献   

2.
阿帕斯立竹现存地上生物量及其构件因子关系研究   总被引:2,自引:0,他引:2  
对1~3年生阿帕斯立竹现存地上生物量和含水率进行了调查,结果表明:1~3年生立竹秆与竹枝含水率差异明显,随着竹龄的增大,含水率逐渐下降,而各年龄立竹叶含水率差异不大;地上生物量分配1年生立竹秆所占比重显著高于其他年份;立竹全高、胸径构件因子与地上各器官生物量之间相关显著,利用幂函数模型进行立竹胸径与各器官生物量回归分析,竹秆以及地上总生物量模型拟合程度较好,可用于该竹种生物量的估算.  相似文献   

3.
苦竹笋材兼用林地上部分生物量分配规律研究   总被引:1,自引:0,他引:1  
为了给苦竹林丰产培育提供理论依据,在笋材兼用集约经营苦竹林中进行了林分结构和地上部分器官生物量调查,结果表明:立竹全高、枝下高是立竹胸径的从属因子;随着立竹年龄的增大,地上部分器官含水率降低,1~2 a立竹器官含水率竹叶>竹枝>竹秆;1~2 a单株立竹竹秆、竹枝、竹叶生物量与立竹胸径呈线性或二项式关系,1 a立竹竹秆>竹叶>竹枝,2 a立竹竹秆>竹枝>竹叶,随着立竹年龄的增大,竹秆生物量比例降低,竹枝、竹叶生物量比例提高;1~2 a立竹和林分的器官生物量比例竹秆>竹枝>竹叶,随着立竹年龄的增大,竹秆、竹枝、竹叶生物量显著提高.  相似文献   

4.
通过对四季竹立竹构件因子和地上生物量的调查,分析了立竹地上现存生物量分配格局及立竹构件因子与构件生物量的关系。结果表明:地上现存生物量分配格局1年生立竹为竹秆>竹叶>竹枝,2年生立竹为竹叶>竹秆>竹枝,2年生立竹竹秆和竹叶生物量分配比例较1年生立竹分别极显著减少和增加,而竹枝生物量分配比例不同年龄立竹间无显著变化。2年生立竹各构件因子与构件生物量间大多呈显著或极显著相关,立竹全高、枝下高、枝盘数是立竹胸径的从属因子,立竹胸径对立竹构件生物量和地上部分总生物量起着决定作用,两者具有极显著的三次曲线函数关系。四季竹在资源分配时对竹叶构件的倾斜有利于种群对已占领生境的巩固和新生境的开拓。  相似文献   

5.
花吊丝竹地上部分生物量分配及立竹生态构件关系特征   总被引:1,自引:0,他引:1  
在福建省华安县竹类植物园研究了1~3年生花吊丝竹地上部分生物量分配和主要生态构件因子间的关系。结果表明:立竹地上部分器官含水率为竹叶>竹枝>竹秆,竹秆、竹枝含水率随立竹年龄的增长而降低,不同年龄立竹竹叶含水率无显著差异;1~3 a立竹器官生物量分配比例均为竹秆>竹枝>竹叶,竹秆生物量比例随立竹年龄的增长呈"V"型变化,竹枝、竹叶生物量比例随立竹年龄的增长而提高;立竹全高、枝下高是立竹胸径的从属因子,器官和地上部分总生物量与立竹胸径、全高呈显著或极显著正相关,可以用生物量相对生长模型模拟;立竹壁厚率从竹秆基部到顶部呈高—低—高分布规律,与立竹胸径、立竹全高分别呈极显著、显著负相关,与立竹胸径的关系方程式为AWT=0.2899-0.0539D+0.0041D2。  相似文献   

6.
四川盆地梁山慈竹地上部分生物量的研究   总被引:3,自引:0,他引:3  
对梁山慈竹地上部分生物量的结构进行了研究,并对其各器官与胸径和竹高的相关模型进行了拟合。结果表明:梁山慈竹各器官含水率大小排列为:竹叶>竹枝>竹杆;在各器官生物量的分配中,竹杆所占比例最大,为地上部分总生物量的68%;梁山慈竹各器官生物量与胸径和竹高均有较高的相关性,其中竹杆与竹高和胸径拟合的最佳模型为:W=0.034(D2H)0.755,单株地上部分生物量拟合的最佳模型为:W=0.092(D2H)0.685。  相似文献   

7.
【目的】测定中国重要丛生竹的热值,结合其生物量计算对应的能量现存量,比较其现状差异,并探究丛生竹系统中具有发展生物质能源优势的竹种,为今后丛生竹生物质能源的开发利用、发展及相关研究提供基础资料。【方法】以中国8种重要丛生竹(青皮竹、粉单竹、麻竹、绿竹、黄竹、龙竹、缅甸竹、慈竹)的竹叶、竹枝、竹秆等器官为对象,分析其单位面积生物量,利用量热仪测定干物质热值,计算单位面积能量现存量。【结果】8种丛生竹单位面积生物量为16.68~77.72 t·hm-2,其中龙竹最高,麻竹最小;各器官单位面积生物量表现为竹秆竹枝竹叶,不同丛生竹生物量分配不同;8种丛生竹各器官干物质热值为16.407~19.948 k J·g-1,相同器官的干物质热值随竹龄增大而略有降低,竹种间器官平均干物质热值均以缅甸竹最高,最低的为绿竹的竹叶(16.652 k J·g-1)和竹枝(17.522 k J·g-1)及慈竹的竹秆(17.710 k J·g-1);除慈竹外,其他丛生竹的热值均表现为竹叶竹枝竹秆,慈竹表观为竹叶竹秆竹枝;各丛生竹地上部分单位面积能量现存量(MJ·m-2)表现为龙竹(142.17)粉单竹(115.41)慈竹(112.97)缅甸竹(95.26)青皮竹(87.50)绿竹(85.31)黄竹(85.14)麻竹(31.34)。【结论】丛生竹是潜在的能源竹种,受林分特征、气候因素和竹种本身特性等因素的影响,8种丛生竹的热值、生物量及其分配差异显著。8种丛生竹的生长环境条件各异,以能量现存量最为基本单位进行竹种间的比较更加可靠。8种丛生竹能量现存量及其分配存在差异,单位面积生物量差异是其主要影响因素。比较8种丛生竹能量现存量的现状,龙竹较其他竹种具有效大的优势,有利于今后丛生竹生物质能源的开发、利用及相关研究。  相似文献   

8.
以撑篙竹林作为研究对象,研究撑篙竹生物量分配规律,为竹林经营和竹材利用提供理论依据。通过采挖竹蔸、砍伐立竹,每竹检尺、分段称重,分析竹秆鲜重与胸径、高度之间的相关性,分析每段竹秆鲜重的分配,以及竹蔸、竹秆、枝梢以及竹叶分配规律。结果单株竹秆鲜重(W/kg)与胸径(D/cm)、高度(H/m)之间的最优回归方程为W=0. 122 DH+0. 001(DH)2(R2=0. 992);单株鲜重与胸径的最优回归方程为W=0. 199 D+0. 358 D2(R2=0. 985)。竹蔸的重量占了全株的6. 29%,竹秆重量占72. 96%,第1~5秆段鲜重依次减少,竹叶份量最少,占全株重的3. 65%。各器官以及竹秆各段重量分配规律可供撑篙竹秆合理利用作科学参考。在竹林生产经营中,可利用胸径、高度及采伐量预测竹林产量,同时可以通过秆重估算竹蔸、枝梢叶的生物量。  相似文献   

9.
采用标准样方法研究了杂交竹各器官及不同龄级生物量配置,结果表明:①杂交竹单株平均生物量为5.0116 kg,林分平均生物量为34.1794 t.hm-2;②杂交竹单株和林分各器官生物量从高到低都表现为竹杆竹枝竹叶竹蔸竹根;③不同年龄杂交竹单株生物量大小排序为3 a2 a1 a,林分生物量表现为2 a1 a3 a;④杂交竹竹枝、竹杆、竹叶及全株以幂函数(W=cDaHb)为最优生物量模型,竹蔸、竹根则以多项式(W=c+aD+bH)为最优生物量模型。  相似文献   

10.
运用标准竹和间接收获法来测定12年生浙南绿竹地上生物量,分析了12年生浙南绿竹地上生物量,分析了12年生浙南绿竹地上部分含水率及生物量分配情况,以及竹秆各段含水率及生物量分配情况,结果表明:1年生地上部分各器官含水率以竹秆最高,2年生地上部分各器官含水率以枝为最高;12年生浙南绿竹地上部分含水率及生物量分配情况,以及竹秆各段含水率及生物量分配情况,结果表明:1年生地上部分各器官含水率以竹秆最高,2年生地上部分各器官含水率以枝为最高;12年生鲜、干生物量的分配以秆为最高;12年生鲜、干生物量的分配以秆为最高;12年生竹秆含水率随高度增加而逐渐降低,竹秆鲜、干生物量分配比例均从秆基部向梢部逐渐降低;运用线性函数拟合秆生物量数学模型的相关性较高,可以用来估算12年生竹秆含水率随高度增加而逐渐降低,竹秆鲜、干生物量分配比例均从秆基部向梢部逐渐降低;运用线性函数拟合秆生物量数学模型的相关性较高,可以用来估算12年生浙南绿竹竹秆生物量。  相似文献   

11.
对马来甜龙竹1年生、2年生、3年生3个龄级立竹不同径级地上部分各构件含水率和生物量进行测定分析,结果表明:1年生竹地上竹秆、枝条和叶片含水率明显高于2年生和3年生竹;同龄竹比较,竹秆含水率最高;竹秆生物量占地上部分生物量比例随竹龄增加而降低;马来甜龙竹地上各部分生物量之间呈极显著相关关系。经生长模型分析结果表明,可利用胸径和秆高估算立竹地上各部分生物量及总生物量。  相似文献   

12.
该文应用样方法、收获法以及地理信息系统技术研究了大熊猫"祥祥"野化培训圈内主食竹种的生长发育特性和生物量结构特征.大熊猫野化培训圈内主要分布有拐棍竹和短锥玉山竹两种主食竹类,拐棍竹占98%以上,种群密度两竹种分别为拐棍竹23.38株·m-2,短锥玉山竹4~10株·m-2.拐棍竹竹笋平均地径1.633 cm,竹高198.75 cm;幼竹地径0.928 cm,竹高278.00cm;成竹地径1.477cm,竹高373.04 cm.短锥玉山竹的地径0.475 cm,竹高90.65 cm.主食竹种拐棍竹无性系种群生物量平均为6.855kg·m-2,其中竹笋和成竹生物量最大,占总量的75%;不同器官生物量的排序为竹秆生物量>竹枝和竹叶,不同龄级生物量则以幼竹最低,仅占1.41%.拐棍竹生物量的垂直分布规律呈现出竹秆随高度的增加而递降的趋势,枝叶则表现为偏正态分布.通过各器官生物量的相关性分析表明,拐棍竹各器官生物量之间相关性极显著,由此建立了地径、株高与各器官生物量的估测模型.  相似文献   

13.
对浙江省平阳县大木竹及吊丝单竹1年生、3年生和5年生样竹的不同器官和不同生长部位的干质量热值进行研究.结果表明:1)大木竹、吊丝单竹各个器官的干质量热值存在较大差异,2个竹种地上部分均为竹秆>竹枝>竹叶,地下部分细根的干质量热值最小;2)大木竹、吊丝单竹各器官不同生长部位的平均干质量热值无显著差异,表明热值与植物器官生长部位没有显著关系;3)大木竹、吊丝单竹不同生长年龄竹株的各器官平均干质量热值差异不显著;4)大木竹与吊丝单竹相比较,秆、枝、叶、蔸、细根等各器官的干质量热值均是大木竹高于吊丝单竹.  相似文献   

14.
大头典竹地上部分生长指标与生物量关系研究   总被引:4,自引:0,他引:4  
对大头典竹1a、2a、3a及〉3a4个龄级立竹地上部分各器官含水率和生物量调查分析,结果表明:1a生大头典竹竹秆与枝条含水率最高,随着竹龄的增长秆和枝含水率逐渐下降,以秆含水率下降最明显。竹秆生物量占地上部分生物量比例随竹龄增加而降低,枝条生物量占地上部分生物量比例随竹龄增加而升高。各龄级立竹胸径、全高均与地上器官生物量和地上部分总生物量呈显著相关关系。利用相对生长模型回归分析,得出回归方程,通过F检验,均达到显著水平,可用以估算大头典竹生物量。  相似文献   

15.
为深入了解箭竹群落生态学过程,探索大熊猫栖息地承载量,研究了北川小寨子沟自然保护区3种箭竹属植物油竹子、华西箭竹和糙花箭竹地上生物量分配格局,并建立了各器官生物量与基径和竹高的拟合模型。结果表明:(1)3种箭竹地上各器官中,竹秆的生物量最大,其次为竹枝和竹叶;其中在竹秆生物量分配中油竹子>华西箭竹>糙花箭竹,在竹枝生物量分配中糙花箭竹>油竹子>华西箭竹,在叶片生物量分配中糙花箭竹>华西箭竹>油竹子。(2)3种箭竹各器官生物量与基径(BD)有较好的相关性,其中基径(BD)与油竹子、华西箭竹、糙花箭竹鲜秆质量(W1)的拟合模型分别为W1=1/[7.761+(-29.385e-B)]、W1=0.367B2.614、W1=1/[4.804+(-11.414e-B)],根据这些模型可以较准确地估算出这3种箭竹群落的生物量,进而估算出大熊猫栖息地的承载量。  相似文献   

16.
以3年生勃氏甜龙竹、龙竹、麻竹、泰竹、小叶龙竹与黄皮绿筋竹的竹叶与竹秆为研究对象,分析了6个竹种竹秆及竹叶中的灰分含量及二氧化硅含量。结果表明:6种竹材间无论是竹叶还是竹秆,其灰分含量及二氧化硅含量均存在明显差异,其原因可能为竹种及生长环境的差异所致;同一竹种竹叶中的灰分含量和二氧化硅含量大于竹秆中的含量;竹秆不同部位二氧化硅含量表现为自顶部至基部逐渐减小的变化趋势。  相似文献   

17.
采用样木法对清西陵侧柏人工林林分不同林龄生物量进行了调查,结果显示:单株侧柏因林龄不同,其各器官生物量分布规律也有差异(树干大于树枝大于树叶),且随年龄增大而增大,侧柏的树干、树枝及树叶占地上总生物量的比例因林龄的增加而产生变化,其中,树干生物量占全株地上总生物量的比例会随林龄增加而增加,由11a生的50.6%增加到20a生的54.8%,32a生侧柏林以后的增长趋于平稳;侧柏单株树枝生物量占地上总生物量的比例随林龄增加变化不明显;侧柏单株树叶生物量占地上总生物量的比例随林龄增加而逐渐减少,由11a生的23.5%降至45a生的13.5%。单株树干所占总生物量比例随年龄增加而增大,枝所占总生物量比例有所增大,而叶所占总生物量比例有所减少;林分乔木层各器官生物量及地上部分总生物量随林龄的增加而增加。  相似文献   

18.
试验采用L16(45)正交试验设计对马山县古寨乡喀斯特丘陵坡地麻竹林进行尿素、钙镁磷肥、沸石3种肥料的施肥试验,研究不同施肥组合对单株或单位面积的地上生物量分配影响。结果表明:施肥对提高新竹地上生物量具有一定的促进作用,以施用尿素500 g+钙镁磷肥1 000 g+沸石5 000 g、钙镁磷肥4 000 g+沸石5 000 g效果显著,且极显著高于不施用的处理,但在低P、低Si、无N或无P或无Si等3种情况下,杆重比例均为较低。各处理以竹秆所占的比例最大,为61.0%~88.8%,其次是枝。各器官比例与肥料施用比例没有直接的关系。初步认为,单株或单位面积地上部分总生物量、杆重达到较高时,秆、枝、叶较适合比例为73%~74%、18%~19%、8%。杆重比例的高低与单株或单位面积杆重、地上部分总生物量的关系无规律性,而单株杆重是影响单位面积杆重、地上部分总生物量的主要因子,随着各处理单株杆重增加,单株或单位面积地上部分总生物量也增加。枝、叶所占比例无规律变化,但各处理中杆、枝比例表现出高杆低枝或低杆高枝的趋势。杆、枝和地上部分总生物量的增减与叶量比例的关系无规律性变化,叶片数量对单株或单位面积的竹杆、竹枝和地上部分总生物量影响不显著,这可能与麻竹生物学特性有关。认为留好母竹,合理施用肥料是提高喀斯特丘陵坡地麻竹产量的最佳途径。  相似文献   

19.
麻竹枝叶生长对钩梢的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解冠层生物量积累、分配及枝叶大小对麻竹立竹受营林措施干扰(钩梢)后的响应,对不同竹龄全梢、钩梢麻竹地上构件生物量、生物量比、单叶特征、大小枝生物量分配比例及商品竹叶数量进行了调查.结果表明:麻竹立竹地上现存生物量分配格局为秆>枝>叶.叶生物量、叶/枝和叶/秆生物量比为2年生>3年生>1年生.随着竹龄的增加,枝、秆生物量、地上生物量和枝/秆生物量比总体上呈增加的趋势.2年生和3年生立竹枝、叶生物量分配比例显著高于1年生立竹,秆生物量分配比例显著小于1年生立竹.此外,随着竹龄的增加,立竹减少了对0 ~8 mm枝生物量的分配,增加了对8~16 mm、16 mm以上枝生物量的投入,以提高空间拓展能力,截获更多光资源.钩梢强烈影响了生物量分配格局,显著减小了麻竹立竹枝、叶、秆、地上生物量.钩梢后麻竹立竹增加了枝、叶生物量分配比例,减少了秆生物量的分配比例,同时提高了单叶叶面积和单叶干质量,增加了8~16 mm、16 mm以上枝生物量分配比例,减小0~8 mm枝生物量分配比例,以权衡枝叶的生长,提高立竹对环境的适合度.钩梢后立竹叶/枝、叶/秆、枝/秆生物量比升高,表明生物量分配更多地向叶和枝倾斜.钩梢麻竹商品竹叶数量较全梢麻竹增加29.68%,且发生部位明显降低,钩梢后冠层下部商品竹叶数量增加79.73%,中部商品竹叶数量增加25.81%,降低了采摘高度.在钩梢后的一个生长季内,钩梢影响了麻竹立竹资源利用策略,表现为枝与叶之间关系的变化,但随钩梢年限的增加其变化规律如何尚需进一步研究.  相似文献   

20.
优良经济竹种红竹生物量的研究   总被引:14,自引:2,他引:14  
对设置在安吉竹种园的红竹林试验样地进行了生物量测定。红竹1~5年生秆、枝和叶的平均含水率分别为50.4%、44.1%和53.8%。秆、枝和叶均以基部含水率最高,向上逐渐减小。其各自的生物量占地上部分总生物量以秆为最高(达70.3%~79.3%),叶最小(仅占6.5%~12.1%)。竹秆的生物量分布中心集中在秆基部,向梢部锐减,而枝和叶集中在分枝中部。地下部分生物量和竹林凋落物生物量占竹林总生物量分别为16.7%和8.9%。红竹林生物量地上和地下部分分配格式和疏林与灌丛生态系统相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号