首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinosad is an insect control agent that is derived from a naturally occurring soil bacterium and is effective on several classes of insects, especially Lepidopteran larvae. Spinosad is registered in many countries for use on a variety of crops, including cotton, corn, soybeans, fruits, and vegetables. Residue methods utilizing a magnetic particle-based immunoassay (IA) test kit have been developed and validated for determining spinosad in environmental and food matrices. These methods involve an extraction of the residues from the matrices with appropriate solvents. For some matrices, the sample extracts can be diluted and measured directly by IA without any cleanup. For other matrices, sample extracts are purified using liquid-liquid partitioning and/or solid phase extraction prior to measurement by IA. The methods determine the total residue of spinosad, which includes the active ingredients (spinosyns A and D) and several minor metabolites, including spinosyn B, spinosyn K, and N-demethylspinosyn D. The methods have validated limits of quantitation of 0.0001 microgram/mL in water, 0.05 microgram/g in sediment, and 0.010 microgram/g in crops, crop processed commodities, and animal tissues. This paper briefly summarizes the residue methodology and method validation data for spinosad in 34 food, feed, and environmental matrices.  相似文献   

2.
Spinosad is an insect control agent that is derived from a naturally occurring organism and is effective on a wide variety of crops, including citrus crops. A method is described for the determination of spinosad and its metabolites in citrus crops and orange processed commodities. The method determines residues of the active ingredients (spinosyns A and D) and three minor metabolites (spinosyn B, spinosyn K, and N-demethylspinosyn D). For dried orange pulp and orange oil, the method has a limit of quantitation (LOQ) of 0.02 microg/g and a limit of detection (LOD) of 0.006 microg/g. For all other sample matrices (whole fruit, edible fruit, juice, and peel), the method has an LOQ of 0.01 microg/g and an LOD of 0.003 microg/g. The analytes are extracted from the various sample types using appropriate solvents, and the extracts are purified by liquid-liquid partitioning and/or solid-phase extraction. All five analytes are determined simultaneously in the purified extracts by reversed-phase high-performance liquid chromatography with ultraviolet detection at 250 nm.  相似文献   

3.
Spinosad is a natural insecticide, produced via fermentation culture of the actinomycete Saccharopolyspora spinosa, with potential use against a number of forest pests including spruce budworm (Choristoneura fumiferana [Clem]). Persistence of spinosad was determined in terrestrial fate experiments conducted within a semimature stand of black spruce (Picea mariana [Mill.]) and balsam fir (Abies balsamea [L]) in the Acadian forest region of New Brunswick, Canada. Results of experiments established under full coniferous canopy and in a canopy opening indicated that spinosad dissipated rapidly following hyperbolic kinetics in both litter and soils and was not susceptible to leaching. Time to 50% dissipation estimates for spinosyn A ranged from 2.0 to 12.4 days depending upon matrix and experimental conditions. Spinosyn D dissipated to levels below quantitation limits (0.02 microg/g of dry mass) within 7 days in all cases. Sporadic low-level detection of the demethylated metabolites suggested that parent compounds were degraded in situ.  相似文献   

4.
Spinosad is a bacterially derived insect control agent consisting of two active compounds, spinosyns A and D. The objective of this paper is to describe the environmental fate of spinosad in aquatic systems. To this end, several studies performed to meet regulatory requirements are used to study the fate and degradation in individual environmental media. Specifically, investigations of abiotic (hydrolysis and photolysis) and biotic (aerobic and anaerobic aquatic) processes are described. Understanding developed from the laboratory-based studies has been tested and augmented by an outdoor microcosm study. Understanding of aquatic fate is a building block for a complete environmental safety assessment of spinosad products (Cleveland, C. B.; Mayes, M. A.; Cryer, S. A. Pest Manag. Sci. 2001, 58, 70-84). From individual investigations, the following understanding of dissipation emerges: (1) Aqueous photolysis of spinosad is rapid (observed half-lives of <1 up to 2 days in summer sunlight) and will be the primary route of degradation in aquatic systems exposed to sunlight. (2) Biotic transformations contribute to spinosad's dissipation, but less so than photolysis; they will be of primary importance only in the absence of light. (3) Spinosad partitions rapidly (within a few days) from water to organic matter and soil/sediment in aquatic systems but not so rapidly as to replace sunlight as the primary route of dissipation. (4) Abiotic hydrolysis is relatively unimportant compared to other dissipation routes, except under highly basic (artificial) conditions and even then observed half-lives are approximately 8 months. Degradation pathways are understood are follows: (1) Degradation primarily proceeds by loss of the forosamine sugar and reduction of the 13,14-bond on the macrolide ring under aqueous photolytic conditions. (2) Degradation to several other compounds occurs through biotic degradation. Degradation under anaerobic conditions primarily involves changes and substitutions in the rhamnose ring, eventually followed by complete loss of the rhamnose ring. Degradation under aerobic conditions was more extensive (to smaller compounds) with the loss of both the forosamine and rhamnose sugars to diketone spinosyn aglycon degradates. (3) Hydrolytic degradation involves loss of the forosamine sugar and water and reduction on the macrolide ring to a double bond at the 16,17-position.  相似文献   

5.
A selective and sensitive method utilizing liquid chromatography-mass spectrometry (LC-MS) has been developed for determining residues of the natural insect control agent spinosad in several crop matrices that are difficult to analyze by HPLC with UV detection. The method determines the active ingredients (spinosyns A and D) and three minor metabolites (spinosyns B and K and N-demethylspinosyn D) in alfalfa hay, wheat hay, wheat straw, sorghum fodder, and corn stover. The analytes are extracted from the samples with an acetonitrile/water solution, and the extracts are purified by solid phase extraction with a C(18) disk and a silica cartridge. All five analytes are determined simultaneously in a single injection using positive atmospheric pressure chemical ionization LC-MS with selected ion monitoring. The average recoveries ranged from 69 to 96% with standard deviations ranging from 4 to 15%. The method has a validated limit of quantitation of 0. 01 microgram/g and a limit of detection of 0.003 microgram/g. The LC-MS method can also provide residue confirmation in addition to quantitation.  相似文献   

6.
Residues of spinosad in meat, milk, and eggs   总被引:1,自引:0,他引:1  
Spinosad is an insect control agent that is derived from a naturally occurring soil bacterium and has a high level of activity against insects that infest a variety of crops. Dairy and poultry feeding studies were conducted to determine the magnitude of spinosad residues in animal products that would result from the consumption of typical feed commodities containing residues of spinosad. Dairy cows were dosed for 28 days with spinosad at rates equivalent to 0, 1, 3, and 10 microg/g in the diet. Chicken hens were dosed for 42 days with spinosad at rates equivalent to 0, 0.1, 0.3, 1, and 5 microg/g in the diet. Milk, eggs, and tissue samples were analyzed by high-performance liquid chromatography and/or immunoassay methods. Spinosad residues occurred in all of the sample types but were lowest in eggs, skim milk, and lean meat and were highest in the fat.  相似文献   

7.
The principles of modern pesticide residue chemistry were articulated in the 1950s. Early authors pointed out the advantages of systematizing and standardizing analytical methods for pesticides so that they could be widely practiced and the results could be reproduced from one laboratory to the next. The availability of improved methods has led to a much more complete understanding of pesticide behavior and fate in foods and the environment. Using methods based largely upon gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled increasingly with mass spectrometry (MS) and MS(n) as the detection tool, residues can be measured at parts per billion levels and below in a variety of food and environmental matrices. Development of efficient extraction and cleanup methods, techniques such as ELISA, efficient sample preparation techniques such as QuEChERS, and automated laboratory and field instrumentation has also contributed to the tools available for use in modern pesticide residue analysis. As a result, great strides have been made in improving food and worker safety and in understanding environmental behavior and fate of pesticides. There are many challenges remaining in the field of pesticide residue chemistry that will continue to stimulate analytical chemists. New chemistries are emerging, often patterned on complex natural products. Analyzing for the parent chemicals and potentially multiple breakdown products will require analytical ingenuity. The development of more sensitive bioassays and knowledge of unintended side effects will challenge residue chemistry as well, as in the case of following the fate of environmental endocrine disruptors associated with some pesticides as well as nonpesticide contaminants from packaging materials and other familiar articles. Continued funding and other resources to ensure better training, international cooperation, and accelerated research and development activities will be a constant need in pesticide residue chemistry as it is for all areas of science that aim to mitigate or eliminate contaminants that can affect human and environmental health and safety.  相似文献   

8.
The behavior in the field and the transfer from olives to olive oil during the technological process of imidacloprid, thiacloprid, and spinosad were studied. The extraction method used was effective in extracting the analytes of interest, and no interfering peaks were detected in the chromatogram. The residue levels found in olives after treatment were 0.14, 0.04, and 0.30 mg/kg for imidacloprid, thiacloprid, and spinosad, respectively, far below the maximum residue levels (MRLs) set for these insecticides in EU. At the preharvest interval (PHI), no residue was detected for imidacloprid and thiacloprid, while spinosad showed a residue level of 0.04 mg/kg. The study of the effect of the technological process on pesticide transfer in olive oil showed that these insecticides tend to remain in the olive cake. The LC/DAD/ESI/MS method showed good performance with adequate recoveries ranging from 80 to 119% and good method limits of quantitation (LOQs) and of determination (LODs). No matrix effect was detected.  相似文献   

9.
多杀菌素对小菜蛾及其天敌的毒力研究   总被引:3,自引:0,他引:3  
研究评价多杀菌素(菜喜)对小菜蛾及其主要天敌的毒力结果表明,菜喜对小菜蛾具有很高的毒力和良好的田间防治效果,菜喜对青翅蚁型隐翅虫和菜蛾绒茧蜂具有直接杀伤作用,其1000倍稀释液24h使菜蛾绒茧蜂死亡率达62.2%,36h死亡率达88.7%,药液直接处理寄生蜂茧或饲喂均导致很高的死亡率,但对拟环纹狼蛛影响较小。多杀菌素对小菜蛾有很好的控制效果,但对小菜蛾天敌,特别是寄生蜂有相当的负面影响。  相似文献   

10.
Triazines are a class of important pre-emergent weed herbicides. Some members of this class of herbicides exhibit carcinogenic and immunotoxicity properties, which make their use controversial in areas where animal feed crops are grown. It is therefore important to determine if triazine residues are transported to animal food products in order to ascertain the extent of human exposure. Most of the current herbicide residue extraction methods are time-consuming and solvent intensive. Supercritical fluid extraction (SFE) using CO(2) has been used as a alternative for other residue extraction methods as a replacement for hazardous organic solvents. In this study, 10 triazines were extracted from eggs fortified at 100 ppb using unmodified supercritical CO(2) at a pressure of 10000 psi and a temperature of 50 degrees C with off-line collection on a solid phase extraction cartridge containing Florisil. Atrazine recovery averaged 90.4% with an RSD of 3.3%. The other triazines were recovered at mean levels >73%. In a separate feeding study, atrazine and two of its dealkyl metabolites were detected in the egg. The results indicate that SFE is a viable technique for isolating triazine residues from eggs, requiring only 8 mL of solvent for each analysis.  相似文献   

11.
A wide variety of enzyme‐linked immunosorbent assays (ELISAs) are commercially available for gluten detection in food, including new formats and assays with antibodies against relevant gluten epitopes. Nevertheless, problems persist to accurately determine the gluten content of products. In this study, the performance of a set of 14 ELISA kits for gluten detection, representative of the current ELISA methods available on the market, was evaluated. These tests were used to determine gluten content in a series of relevant food matrices varying in complexity. Our results show that, currently, there is no single ELISA method that can accurately detect and quantify gluten in all different matrices. This includes the current type I method R5 as recommended by Codex Alimentarius. We conclude that further improvements are urgently needed and recommend focusing on competitive formats, improving extraction methods, and the detection of relevant gluten peptides (in order of priority).  相似文献   

12.
Field trials have been carried out to determine the variability of residue levels of fenitrothion and its main metabolites fenitrothion-oxon and 3-methyl-4-nitrophenol in individual kaki fruits versus composite samples, in peel versus flesh, and in whole uncooked versus whole cooked fruits. Residue levels have been determined by gas chromatography with thermionic specific detection after extraction with ethyl acetate and without further cleanup. At harvest, residue levels of fenitrothion were below maximum residue levels (MRLs) and the two metabolites 3-methyl-4-nitrophenol and fenitrothion-oxon could be quantified with average amounts of 0.080 and 0.012 mg/kg, respectively. Levels of fenitrothion decreased 88% after peeling, whereas temperature did not result in a high variation. The ratios of the highest residue level in the individual fruits to the corresponding mean of residue levels in the composite samples for fenitrothion were <3. This value is lower than that recommended by the World Health Organization as default value for consumer risk assessment.  相似文献   

13.
Several rapid extraction methods were evaluated for use with a monoclonal antibody-based competitive inhibition ELISA (cELISA) to detect sulfadimethoxine (SDM) in chicken liver tissue. These methods included extraction of the samples with (1) aqueous buffer with or without ultrafiltration, (2) acetonitrile/water, (3) methanol/water, or (4) acetone. The organic extraction methods were evaluated with or without solvent evaporation prior to dilution into assay buffer for the cELISA. The aqueous-based extraction methods were compatible with the cELISA. However, of the organic extraction methods, only the acetone liver extract with solvent evaporation prior to analysis was compatible with the cELISA. The cELISA method coupled to aqueous- or acetone-based sample extraction as well as an HPLC method was evaluated for the analysis of chicken liver tissues fortified with SDM at levels from 0.2 to 0.025 ppm. Mean SDM recoveries for the HPLC method and for the cELISA method using samples prepared by aqueous extraction, aqueous extraction and ultrafiltration, or acetone extraction, evaporation, and reconstitution were 68.9, 95.7, 60.1, and 52.5%, respectively. For the analysis of samples obtained from an SDM incurred residue study, HPLC and cELISA analysis of the same organic extract gave results that were highly correlated (R(2) = 0.976; p < 0.0001). However, results obtained from the analysis of aqueous extracts by cELISA did not correlate well with those obtained by HPLC (R(2) = 0.61, p > 0. 0006). This was attributed to the coextraction of cross-reactive SDM-related residues that were not quantified by the HPLC method. The presence of these residues should be considered during data interpretation when ELISA methods coupled with rapid aqueous extraction of samples are used in SDM residue monitoring programs.  相似文献   

14.
Supercritical fluid extraction (SCFE), based on the utilization of a fluid under supercritical conditions, is a technology suitable for extraction and purification of a variety of compounds, particularly those that have low volatility and/or are susceptible to thermal degradation. The interest in SCFE is promoted by legal limitations of conventional solvents for food and pharmaceutical uses. The physicochemical properties of supercritical CO2 (higher diffusivity, lower viscosity, and lower surface tension than conventional solvents) facilitate mass transfer and allow an environmentally friendly operation. This article presents a comprehensive compilation of data on the supercritical CO2 extraction of antioxidant compounds from vegetal materials, with particular attention to those of a phenolic nature. Aspects concerning the supercritical operation for extraction and fractionation of antioxidants compounds are considered, including equilibrium solubility of pure compounds and effects of the operational conditions on the antioxidant activity of isolated fractions. The data are compared to those reported for synthetic antioxidants and natural extracts obtained by conventional solvent extraction from vegetal matrices.  相似文献   

15.
16.
A prototype multiresidue method based on fast extraction and dilution of samples followed by flow injection mass spectrometric analysis is proposed here for high-throughput chemical screening in complex matrices. The method was tested for sulfonylurea herbicides (triflusulfuron methyl, azimsulfuron, chlorimuron ethyl, sulfometuron methyl, chlorsulfuron, and flupyrsulfuron methyl), carbamate insecticides (oxamyl and methomyl), pyrimidine carboxylic acid herbicides (aminocyclopyrachlor and aminocyclopyrachlor methyl), and anthranilic diamide insecticides (chlorantraniliprole and cyantraniliprole). Lemon and pecan were used as representative high-water and low-water content matrices, respectively, and a sample extraction procedure was designed for each commodity type. Matrix-matched external standards were used for calibration, yielding linear responses with correlation coefficients (r) consistently >0.99. The limits of detection (LOD) were estimated to be between 0.01 and 0.03 mg/kg for all analytes, allowing execution of recovery tests with samples fortified at ≥0.05 mg/kg. Average analyte recoveries obtained during method validation for lemon and pecan ranged from 75 to 118% with standard deviations between 3 and 21%. Representative food processed fractions were also tested, that is, soybean oil and corn meal, yielding individual analyte average recoveries ranging from 62 to 114% with standard deviations between 4 and 18%. An intralaboratory blind test was also performed; the method excelled with 0 false positives and 0 false negatives in 240 residue measurements (20 samples × 12 analytes). The daily throughput of the fast extraction and dilution (FED) procedure is estimated at 72 samples/chemist, whereas the flow injection mass spectrometry (FI-MS) throughput could be as high as 4.3 sample injections/min, making very efficient use of mass spectrometers with negligible instrumental analysis time compared to the sample homogenization, preparation, and data processing steps.  相似文献   

17.
Two direct enzyme-linked immunosorbent assays (ELISAs) have been developed for detection of sulfonamide antibiotic residues in milk samples. One of them is using magnetic nanoparticles (MNP) for target capture/enrichment (Ab-MNP-ELISA), and the second is performed using microtiter plates. Selective polyclonal antibodies, raised against 5-[6-(4-amino-benzenesulfonylamino)-pyridin-3-yl]-2-methyl-pentanoic acid (SA1), used in combination with an enzyme tracer prepared with the same hapten, has allowed us to reach a limit of detection (LOD) lower than 0.5 microg L(-1) for both ELISA formats. Sulfapyridine, sulfamethoxypyridazine, sulfathiazole, and sulfachloropyridazine are detected below the maximum residue limits established by the European Union for these antibiotics in milk (100 microg L(-1)). Matrix effects and accuracy studies performed with full-cream milk and hair extracts indicated a lack of interference from these sample matrices and very good recovery values, especially when using the Ab-MNP format. Milk samples and hair extracts can be measured without any previous treatment. The results demonstrate the high potential of these methods as screening tools for food safety and inspection controls.  相似文献   

18.
Three methods of DNA extraction from feed products and four detection methods for the 5'-junction fragment of genetically modified (GM) Roundup Ready soybean (RRS) were compared and evaluated. The DNA extraction methods, including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and guanidine hydrochloride (Kit), were assessed for their yields and purity of DNA, extraction time, and reagent cost. The DNA yields of CTAB, SDS, and Kit were 52-694, 164-1750 and 23-105 ng/mg sample, and their extraction time was 2.5-3, 2-2.5, and 1.5-2 h with reagent cost about US dollar 0.24, 0.13, and 1.9 per extraction, respectively. The SDS method was generally well suited to all kinds of feed matrices tested. The limits of detection for the four amplification protocols, including loop-mediated isothermal amplification (LAMP), hyperbranched rolling circle amplification (HRCA), conventional polymerase chain reaction (PCR), and real-time PCR, were 48.5, 4.85, 485, and 9 copies of the pTLH10 plasmid, respectively. The ranked results of the four detection methods were based on multiattribute utility theory as follows (from best to worse): HRCA, LAMP, PCR, and real-time PCR. This comparative evaluation was specifically useful for selection of a highly efficient DNA extraction or amplification method for detecting different GM ingredients.  相似文献   

19.
We have used monoclonal antibody technology to produce antibodies that recognize aflatoxins in order to develop noninvasive methods in conjunction with other chemical analytical techniques to monitor human exposure to environmental carcinogens. These methods require the ability to quantitate aflatoxins and their metabolites, including DNA and protein adducts, in readily accessible compartments such as serum and urine. The techniques permit efficient analysis of many samples in a relatively short time. Also, these monoclonal antibody affinity columns have been extremely useful for rapid isolation of aflatoxins from food and grain samples, as well as aflatoxin M1 from milk. Monoclonal antibody affinity methods are nondestructive to the aflatoxin molecule, so the sample aliquot can be used for confirmation. The use of monoclonal antibody preparative affinity columns represents a major, substantive breakthrough for analytical chemists and will be a generally applicable technology for isolation of many different substances.  相似文献   

20.
One way of investigating the function of soil is via the pool of low molecular weight organic compounds in the soil microbial biomass. This is because low molecular weight organic compounds have key roles in metabolism of soil microbes, can function in osmotic adjustment and other stress responses, and are intermediates in the breakdown of polymers to inorganic nutrients. Methods for measuring low molecular weight microbial metabolites in soil rely upon extracting total metabolites and then subtracting the contribution from metabolites in the soil extracellular matrix (i.e. microbial = total − extracellular). Recent studies have tested methods for extracting organic N monomers from the extracellular matrix of soil, but there has not been similar testing of methods for extracting total organic N monomers. The aims of this study were to examine methods for extracting total organic N monomers by a) contrasting chloroform gas fumigation with chloroform direct extraction, and b) examining whether it is possible to extract soil with two methods that combine quenching of metabolic activity with extraction, namely cold methanol/chloroform/water and hot aqueous ethanol. To evaluate methods, organic N compounds were extracted from soil and then capillary electrophoresis–mass spectrometry identified and quantified 42 organic N monomers including amino acids, quaternary ammonium compounds, nucleobases and nucleosides, amines and polyamines. Absolute concentrations of 32 out of the 42 quantified organic N monomers were significantly different between soil extracted by chloroform gas fumigation and chloroform direct extraction. These differences were probably a function of gains and losses of compounds due to oxidation, hydrolysis and deamidation during the two-day chloroform gas fumigation. Cold methanol/chloroform/water yielded large amounts of the extremely labile compound ergothioneine, probably because the extraction method rapidly quenched metabolic activity. The primary limitation of extraction with methanol/chloroform/water is that it was ineffective at extracting strongly cationic compounds (e.g. polyamines). Extraction with hot aqueous ethanol was unsuccessful with soil presumably because soil microbes are difficult to lyse. It is recommended that future studies examining organic N monomers in soil microbial biomass use chloroform direct extraction or cold methanol/chloroform/water rather than chloroform gas fumigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号