首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Soil solutions were collected monthly by tension and zero-tension lysimeters in a low-elevation red spruce stand in east-central Maine from May 1987 through December 1992. Soil solutions collected by Oa tension lysimeters had higher concentrations of most constituents than the Oa zero-tension lysimeters. In Oa horizon soil solutions growing season concentrations for SO4, Ca, and Mg averaged 57, 43, and 30 μmol L?1 in tension lysimeters, and 43, 28, and 19 μmol L?1 in zero-tension lysimeters, respectively. Because tension lysimeters remove water held by the soil at tensions up to 10 kPa, solutions are assumed to have more time to react with the soil compared to freely draining solutions collected by zero-tension lysimeters. Solutions collected in the Bs horizon by both types of collectors were similar which was attributed to the frequency of time periods when the water table was above the Bs lysimeters. Concentrations of SO4 and NO3 at this site were lower than concentrations reported for most other eastern U.S. spruce-fir sites, but base cation concentrations fell in the same range. Aluminum concentrations in this study were also lower than reported for other sites in the eastern U.S. and Ca/Al ratios did not suggest inhibition of Ca uptake by roots. Concentrations of SO4, Ca, K, and Cl decreased significantly in both the Oa and Bs horizons over the 56-month sampling period, which could reflect decreasing deposition rates for sulfur and base cations, climatic influences, or natural variation. A longer record of measured fluxes will be needed to adequately define temporal trends in solution chemistry and their causes.  相似文献   

2.
The composition of soil solutions obtained from the field varies with the method of extraction. Variations in sampling methods and the difficulties in extracting representative samples from soils in space and time, can explain divergent results. In this study we compared soil solutions from a forest soil in northern Sweden obtained by a centrifuge drainage technique and by zero-tension monolith lysimeters. Zero-tension lysimeters were destructively sampled, and centrifuge solutions from this soil were compared with that from soil outside. In our study we found three major differences in the solute composition between the centrifugate and the lysimeter leachate: (i) larger concentrations of most solutes in the mor layer centrifugate than in the mor layer leachate, (ii) accumulation of nitrate in the lysimeters, and (iii) larger concentrations of base cations in the zero-tension lysimeters below 0.3 m depth. Water contents within the lysimeters were up to 3.5 times greater than under natural conditions and the water yields from the lysimeters indicate that water residence time ranged from < 1 to >5 years. This study shows that differences in results from the two methods are due to inherent differences in the methods themselves and not just to the collection of different soil waters. The hydrological anomaly and disturbance induced by the zero-tension lysimeters affects the solute chemistry and thus the applicability of the results to field conditions.  相似文献   

3.
A study was conducted to compare soil leachate chemistry and determine sample size requirements for tension vs pan (zero-tension) lysimeters. Analyses were performed on an annual and seasonal basis for one year of data collected at Pea Vine Hill, a forested site in southwestern Pennsylvania. On an annual basis, SO4 ?2, Ca+2, Mg+2, Mn+2, K+ and specific conductance were significantly higher in tension lysimeter samples but no chemical species were significantly higher in pan lysimeters. Seasonal comparisons indicated chemical differences between lysimeter types were variable with more significant deviations present during wet periods. Nearly all significant seasonal differences were comprised of higher concentrations in tension compared to pan lysimeters. Disparities in leachate chemistry between lysimeter types were ascribed to different sources of water collected by the instruments especially during wet periods. Sample size requirements were calculated for two biweekly periods for each lysimeter type at three confidence levels. Based upon calculated sample demands, pan lysimeter soil leachate chemistry could be characterized with fewer samples than tension lysimeters. Less than .30 samples were generally necessary for pan B-horizon lysimeters at the 70% confidence level. Sample requirements were usually unreasonable at higher confidence levels.  相似文献   

4.
The chemistry of soil solutions collected from plastic 0-tension and ceramic-cup tension lysimeters was compared. Except for NO?3 there was no systematic difference in the chemistry of major cations, anions, pH or Al speciation of the solutions collected by the two types of lysimeter. although there were some differences at both 25 and 75 cm depths, on such occasions the difference at the other depth was either in the apposite direction or non-significant. The concentration of NO?3 was significantly lower in the 0-tension lysi meters and, although the mechanism is not clearly understood, this may be due to uptake by micro-organisms feeding on fine organic matter particles in these solutions. The choice of lysimeter can be based on the objectives and constraints of the research project, rather than on the fact that the soil solution is more representative with one type of lysimeter than another.  相似文献   

5.
This paper presents aluminium (Al)-solubility data for two acid forest soils (Inceptisol and Spodosol), obtained in connection with lysimeter measurements (tension-cup and zero-tension lysimeters) and batch equilibrium experiments. The solubility of Al obtained in the batch experiments was used as a reference to test whether Al3+in soil solutions collected by the lysimeters was in equilibrium with secondary forms of solid-phase Al (Al(OH)3or organically bound Al). The relation between pH and Al3+activity found for the zero-tension lysimeter solutions collected from the Inceptisol agreed well with that obtained in the batch experiment. This suggests that Al3+in the lysimeter solutions were in, or close to, equilibrium with the solid phase, whether this was organically bound Al (A horizon) or an Al(OH)3phase (B horizon). For the tension-cup lysimeters, solutions obtained from the Inceptisol B and Spodosol Bs1 horizons were generally close to equilibrium with respect to secondary solid-phase Al (apparently Al(OH)3; average ion activity product was 109.3and 108.8, respectively), whereas the Inceptisol A and Spodosol Bh solutions were not. The Al solubility in Inceptisol A and Spodosol Bh horizons was consistently higher than that obtained in the batch equilibrium experiment, indicating that the sampled solution partly originated from the underlying horizons. Thus, tension-cup lysimeters should be used with care in soils (or in parts of soil profiles) having steep solute concentration gradients because the soil volume from which the sample is drawn with this lysimeter type seems to be poorly defined.  相似文献   

6.
The determination of the average soil solution concentrations in forest soils is hindered by the spatial heterogeneity of the soil conditions and the stand structure on all scales. The aim of this paper is to investigate the spatial heterogeneity of the soil solution chemistry within a mature stand of Norway spruce and to evaluate the implication of this heterogeneity for the sampling design for soil solutions. The site is a 140 years old Norway spruce stand of 2.5 ha located in the German Fichtelgebirge at 800 m elevation on granitic, deeply weathered bedrock. At 35 cm soil depth, 59 ceramic suction lysimeters (5 cm length, 2 cm diameter) were installed in a systematic grid of 25 · 25 m and soil solution was sampled at 3 dates in June and July 1994. The solutions were analysed for major cations and anions. Semi-variance of the concentrations at a given date revealed no systematic spatial patterns. The coefficients of variance of the element concentrations were between 36 and 298% with highest values for NH4 +-N. The implications of the observed heterogeneity for the appropriate number of replicates was investigated by Monte Carlo simulations. As an example, the probability that the measured average concentration of SO4 2?-S is outside a ±10% range (related to the ‘true’ 59 lysimeter average) is about 68% if only 3 replicates would have been used, 41% with 10 replicates and 25% with 20 replicates. Due to the generally large spatial heterogeneity of the soil solution chemistry in forest soils the number of lysimeters used must be carefully adjusted to site conditions and the specific question.  相似文献   

7.
Core lysimeters containing undisturbed coarse sandy soil (from grassland) were amended with a high rate of anaerobically digested sewage sludge (equivalent to >1,000 t ha–1). Water, at a rate equivalent to the mean weekly rainfall for the soil, was applied to amended and control lysimeters for 30 weeks and the leachate analysed for anions and cations. Lysimeters were also destructively sampled at intervals throughout the experiment and soil samples were analysed for extractable NH4+-N, NO3-N and PO43–-P. Ammonium N leached for about 11 weeks from the amended lysimeters, then abruptly stopped. A similar amount of NO3-N leached, but leaching was continuing when the experiment finished. The control lysimeters leached as much NO3-N as those that were amended, but no NH4+-N. The amended lysimeters also leached NO2-N. Negligible PO43–-P, but large amounts of SO42– were leached from the amended lysimeters. Concentrations of extractable NH4+-N and PO43–-P were very high in the amended soils, but NO3-N concentrations remained low throughout the experiment, indicating that nitrification rates were low and/or that denitrification rates were high.  相似文献   

8.
9.
为探究微塑料输入与秸秆添加对农田土壤氮淋溶的影响,以潮土和黄棕壤为研究对象,每种土壤各设置8个处理,包括对照(CK)、低量微塑料(PE1)、中量微塑料(PE2)、高量微塑料(PE3)、秸秆(S)、秸秆+低量微塑料(S+PE1)、秸秆+中量微塑料(S+PE2)、秸秆+高量微塑料(S+PE3),研究了添加秸秆与不添加秸秆条件下,不同微塑料输入量对土壤氮淋溶的影响。结果表明,仅添加微塑料条件下,与对照(CK)相比,潮土PE1、PE2、PE3处理总氮(TN)淋溶量均无显著差异,黄棕壤仅PE1处理显著增加了TN淋溶量。在添加秸秆(S)处理中,与对照(CK)相比,潮土添加秸秆后显著降低了硝态氮(NO3--N)、铵态氮(NH4+-N)、TN淋溶量,分别降低了31.15%、13.45%、15.26%,黄棕壤添加秸秆后显著增加了TN淋溶量,增加了22.56%。添加秸秆处理相较于不添加秸秆处理,潮土各浓度微塑料输入下NO3--N、NH4+-N、TN的累计淋溶量呈降低趋势,而黄棕壤低量微塑料输入降低了TN淋溶量,高量微塑料输入增加了TN淋溶量。偏最小二乘路径模型(PLS-PM)分析表明,在潮土中添加秸秆主要通过影响淋溶液pH和NO3--N淋溶量影响氮素淋溶,微塑料添加量对氮淋溶无显著影响;在黄棕壤中添加秸秆主要通过影响淋溶液NO3--N、NH4+-N淋溶量影响氮淋溶,微塑料添加量主要通过影响淋溶液NH4+-N淋溶量影响氮淋溶。研究结果可为农田土壤微塑料污染风险的管控及减少土壤氮素的淋失提供依据。  相似文献   

10.
Soil freeze-thaw cycles in the winter-cold zone can substantially affect soil carbon, nitrogen and phosphorus cycling, and deserve special consideration in wetlands of cold climates. Semi-disturbed soil columns from three natural wetlands (Carex marsh, Carex marshy meadow and Calamagrostis wet grassland) and a soybean field that has been reclaimed from a wetland were exposed to seven freeze-thaw cycles. The freeze-thaw treatments were performed by incubating the soil columns at −10 °C for 1 d and at 5 °C for 7 d. The control columns were incubated at 5 °C for 8 d. After each freeze-thaw cycle, the soil solution was extracted by a solution extractor installed in each soil layer of the soil column, and was analyzed for dissolved organic carbon (DOC), NH4+-N, NO3-N and total dissolved phosphorus (TDP). The results showed that freeze-thaw cycles could increase DOC, NH4+-N and NO3-N concentrations in soil solutions, and decrease TDP concentrations. Moreover, the changes of DOC, NH4+-N, NO3-N and TDP concentrations in soil solutions caused by freeze-thaw cycles were different in various sampling sites and soil layers. The increments of DOC concentrations caused by freeze-thaw cycles were greater in the wetland soil columns than in the soybean field soil columns. The increments of NH4+-N concentrations caused by freeze-thaw cycles decreased with the increase of soil depth. The depth variation in the increments of NO3-N concentrations caused by freeze-thaw cycles in the wetland soil columns was different from that in the soybean field soil columns. The decrements of TDP concentrations caused by freeze-thaw cycles were greater in columns of Carex marsh and Carex marshy meadow than in columns of Calamagrostis wet grassland and the soybean field. The study results provide information on the timing of nutrient release related to freezing and thawing in natural versus agronomic soils, and have implications for the timing of nutrient application in farm fields in relation to water quality protection.  相似文献   

11.
减氮配施有机物质对麦田土壤性质和小麦产量的影响   总被引:1,自引:0,他引:1  
探究氮肥减量配施有机物质的情况下对氮素利用状况及土壤肥力和小麦产量的影响,为我国华北平原区小麦生产中提高氮肥利用效率、实现节肥增效提供理论基础。通过田间试验,设置5个处理:不施氮肥(CK)、农民习惯施氮肥(FN)、减氮20%(80%FN)、减氮20%+生物有机肥(80%FN+OM)、减氮20%+生物炭(80%FN+BC),研究小麦生长关键期土壤容重、有机质、NO3-—N和土壤微生物多样性的变化,测定小麦产量并计算氮素利用效率。结果表明,土壤容重受施入有机物质影响显著,成熟期0—20,20—40 cm的80%FN+OM、80%FN+BC的土壤容重较80%FN分别下降3.83%~4.58%和2.96%~5.07%。成熟期0—40 cm的土壤有机质均以80%FN+OM最高,较其他施氮肥处理提高2.13%~18.81%。土壤NO3-—N受施氮肥影响显著,挑旗期80%FN+OM和80%FN+BC处理的0—40 cm土壤NO3-—N较高;灌浆期80%FN+BC处理的0...  相似文献   

12.
The soil solution chemistry of a podzolized soil in the north of Sweden was monitored for four years using percolation lysimeters. Weak organic acids were a major constituent of the soil solution and are important because of their ability to form complexes with aluminium. Dissolved organics leached from the mor layer enhance the weathering rate in the eluvial horizon by forming complexes with aluminium, especially during the autumn when the leaching of dissolved organics was greatest. The weak organic acids were titrated and their pKa values were evaluated. Aluminium was speciated with an ion-exchange method and by applying equilibrium calculations. Formation constants for the organic aluminium complexes were calculated to be log KAlong=5.42±0.32 m ?1 (n=13) in spring and summer and log KAlorg=4.87±0.14 m ?1 (n=6) in autumn. Equilibria of Al3+ with solid phases were also examined using solubility constants. Percolation lysimeters below undisturbed and cut-off mor layers were compared.  相似文献   

13.
Three years of N application to a Cambic arenosol (Typic Udorthent) in two lysimeter series, one with and one without young saplings of Pinus sylvestris L. have produced significant changes in soil solution and leachate chemistry. An application of 30 kg N/ha*yr?1 significantly increased NO3 ? leaching from the soil. This N load was also sufficient to significantly increase the mobility of the phyto-toxic elements Al3+ and Mn2+, likewise to increase leaching of the important plant nutrients Ca2+, Mg2+ and K+. At a N load of 90 kg N/ha*yr?1 significant increase in NH4 + leaching was observed, but total leaching of NH4 + was still very low compared to NO3 ? leaching. No significant treatment effects were found for SO4 2?, Fe2+ and Cl? in the leachate. Trees grown in the lysimeters buffered the acidifying effect of N application and increased the leachate pH by 0.2 pH units compared to lysimeters without trees.  相似文献   

14.
Abstract

In this paper, we proposed a new approach for on-site colorimetric analysis of ferrous ions (Fe2+) and ammonium-nitrogen (NH4 +-N) using a soil color meter as an alternative method to conventional spectrophotometry. The soil color meter we used can express solution color numerically on the basis of L*a*b* color space. After coloring of water by the 1, 10 phenanthroline method and the Indophenol blue method, the color of solution was measured by the soil color meter. A linear relationship between Fe2+ and a* or b* values, and systematic change of NH4 +-N with L* value, enable us to make a calibration curve. The Fe2+ and NH4 +-N concentrations in groundwater samples (Fe2+: 0.3–1.3 mg L?1; NH4 +-N: 0.02–0.62 mg L?1) determined by the proposed method agreed well with those determined by conventional spectrophotometry with the difference being ± 0.05 mg L?1 and ± 0.02 mg L?1, respectively. Since a similar apparatus is widely used in the soil science field, this technique would facilitate field surveys.  相似文献   

15.
The estimation of plant-available nitrate nitrogen (NO3-N) is essential for any nutrient-management plan but can be time-consuming and expensive. However, the efficacy of rapid methods to determine soil NO3-N levels designed for grower use has received mixed reviews in the literature. Therefore, the objectives of this study were to (1) evaluate the Cardy electrode-based meter for measuring soil solution NO3-N concentrations under a perennial peanut living mulch in two mixed orchard systems on O'ahu and (2) determine the influence of soil type on measurement accuracy and precision under laboratory conditions. To achieve the first objective, 24 lysimeters were installed 15–30 cm deep at each of two fruit tree orchards with different soils and climate on Oahu island. For the second objective, a replicated column study was conducted, in which NO3-N solutions of varied concentrations were leached through three representative agricultural soils (Wahiawa, Loleka'a, and Waialua series). Field soil solution and column leachate were analyzed using the portable electrode-based meter and a standard laboratory colorimetric method. In the field samples, soil solution NO3-N ranged from <1 to 110 mg/L, and there was a strong correlation (r2?=?0.92) between the portable meter and colorimetric values. Similarly, a strong correlation between the Cardy meter and the laboratory methods was observed in the column study, although r 2 values varied with soil type. The data suggest that the Cardy meter can be used to rapidly and accurately measure soil solution NO3-N, if its concentrations are relatively high and concentrations of interfering ions such as chloride (Cl?) are low. Overall, the primary value of this rapid method may be in estimating relative changes in soil nitrate in response to nutrient management at a single site.  相似文献   

16.
为精确测定、准确模拟阿克苏地区滴灌枣树腾发过程,基于大型称重式蒸渗仪测定枣树全生育期逐时及逐日腾发强度(ET),利用水量平衡方程、PM公式及经典统计原理,分析不同时间尺度下叶面积指数(LAI)、气象因素[温度(I)、风速(V)、净辐射(Rn)]、表层土壤含水率(W)与枣树腾发强度的相关关系并建立预测模型。结果表明:枣树日内腾发强度呈单峰型变化趋势,夜间变化幅度较小且腾发贡献率低。枣树全生育期逐日腾发强度变化呈先增大后减小的趋势,花期的腾发强度最大,为4.42 mm·d-1;全生育期腾发总量为640.83 mm,其中花期和果实生长发育期耗水量占比较大,分别为38.61%和32.72%。在小时和日时间尺度上,影响腾发强度的主要因素不完全相同,且影响程度有所差异。综合考虑各影响因素,以萌芽期、花期、果实发育期为基础,分别建立以小时、日尺度下估算腾发强度的经验模型ET1(h)=0.153+0.004T+0.012V+0.176Rn+0.002W+0.067LAI、ET2(d)=-3.325+0.081T+0.163Rn+0.069W+2.089LAI,拟合度R2均在0.7以上,以果实发育期与成熟期数据对模型进行检验,纳什效率系数分别达0.63、0.80。经偏相关检验,冠层净辐射(Rn)对两种尺度的腾发强度均影响最显著,因此以枣树全生育期数据量为基础,仅建立冠层净辐射(Rn)与腾发强度的回归模型ET1(h)=-0.063 3Rn2+0.361 2Rn—0.003 7、ET2(d)=-0.018 3Rn2+0.684 7Rn–1.642 1,R2分别为0.704 7与0.743 6,可满足缺少数据支撑情况下的腾发过程估算。这些模型明确了阿克苏地区滴灌枣树腾发机制及影响程度,可为水分管理精准化提供计算基础。  相似文献   

17.
A monitoring study on precipitation and soil solution was conducted to analyze soil acidification processes at the Rolling Land Laboratory (RLL), Hachioji, Tokyo based on the spatial variability of the soil solution chemistry around the Hinoki cypress (Chamaecyparis obtusa) trunk. Soil solution samples were taken at various distances from the tree trunks and at various depths. Soil solution pH at the depth of 10 cm decreased to 4.1–4.2 on the downslope side of large tree trunks, presumably due to the heterogeneity of throughfall input and extensive infiltration of acidic stemflow. Ammonium ions brought by throughfall and stemflow were nitrified and provided large amounts of H+. Protons were replaced with exchangeable cations. When base cations were depleted, aluminum ion became the dominant cation species. On the average, Ca2+ concentration in the soil solutions at the depth of 10 cm decreased from 0.28 mmolc L-1 at the reference site to 0.18 mmolc L-1 on the downslope side and Mg2+ concentration decreased from 0.30 mmolc L-1 to 0.15 mmolc L-1. Arithmetic mean aluminum concentration at the depth of 10 cm on the downslope side was 0.35 mmolc L-1. Here aluminum dissolution was the main acid sink. Based on the spatial variability of the soil solution chemistry, soil solution acidification processes were divided into four stages.  相似文献   

18.
Extensive use of chemical fertilizers in agriculture can induce high concentration of ammonium nitrogen(NH4+-N) in soil. Desorption and leaching of NH4+-N has led to pollution of natural waters. The adsorption of NH4+-N in soil plays an important role in the fate of the NH4+-N. Understanding the adsorption characteristics of NH4+-N is necessary to ascertain and predict its fate in the soil-water environment, and pedotransfer functions(PTFs) could be a convenient method for quantification of the adsorption parameters. Ammonium nitrogen adsorption capacity, isotherms, and their influencing factors were investigated for various soils in an irrigation district of the North China Plain. Fourteen agricultural soils with three types of texture(silt, silty loam, and sandy loam) were collected from topsoil to perform batch experiments. Silt and silty loam soils had higher NH4+-N adsorption capacity than sandy loam soils.Clay and silt contents significantly affected the adsorption capacity of NH4+-N in the different soils. The adsorption isotherms of NH4+-N in the 14 soils fit well using the Freundlich, Langmuir, and Temkin models. The models’ adsorption parameters were significantly related to soil properties including clay,silt, and organic carbon contents and Fe2+ and Fe3+ ion concentrations in the groundwater. The PTFs that relate soil and groundwater properties to soil NH4+-N adsorption isotherms were derived using multiple regressions where the coefficients were predicted using the Bayesian method. The PTFs of the three adsorption isotherm models were successfully verified and could be useful tools to help predict NH4+-N adsorption at a regional scale in irrigation districts.  相似文献   

19.
Processes governing the mobilization of Al and Cd in podzols and cambisols of S. Sweden having different tree layer vegetation (Picea abies, Fagus sylvatica, or Betula pendula) were investigated. Speciation of Al and Cd in soil solutions were performed by a column cation exchange procedure (cf. Driscoll, 1984) in combination with thermodynamic calculations. Podzols in spruce and beech stands were characterized by a high release of organic compounds from the O/Ah horizons, resulting in a high organic complexation of Al (c. 93%) in the soil solution from the E horizon (15 cm lysimeters). Organic complexes were mainly adsorbed/precipitated in the upper Bh horizon and the overall transport of Al at 50 cm depth was governed by a pH dependent dissolution of a solid-phase Al pool. In the cambisols, inorganic Al forms were predominant at both 15 and 50 cm depth, and Al solubility was closely related to solution pH. Secondary minerals like synthetic gibbsite, jurbanite, kaolinite or imogolite could generally not explain measured solution Al3+ activities. Results instead indicated that the relatively large organically bound solid-phase Al pools present in both soil types could do so. The column fractionation procedure could be used only qualitatively for Cd, but results strongly indicated that Cd-organo complexes contributed significantly to the overall mobilization of Cd in the podzol E horizons. In all other soil solutions, Cd2+ was the predominant species. Both solid-phase and solution chemistry suggests that ion exchange processes controlled the Cd2+ activities in these solutions. All reactive solidphase Cd was extractable by NH4Cl and Cd2+ activities could in most cases effectively be modeled by the use of ion exchange equations. Solubilized Al3+ efficiently competed for exchange sites and played an important role for the Cd mobilization in these soils.  相似文献   

20.
Abstract

Two lysimeter experiments were conducted on annual leaching losses of calcium (Ca), potassium (K), sodium (Na), chloride (Cl), sulphate‐sulphur (SO4‐S), and magnesium (Mg) (one experiment only) from a sandy soil in central England during 1988–1995 to provide information on typical nutrient losses under arable agriculture below 1.2 m (Experiment 1) or 1.5 m (Experiment 2). Total annual losses, in the absence of manure additions, were highly dependent on the amount of drainage; flow‐weighted average concentrations were similar between years within experiments. Concentrations, averaged over the duration of the experiments were 74 and 78 mg L‐1 Ca, 17 and 27 mg L‐1 Na, 11 and 8 mg L‐1 K, 74 and 77 mg L‐1 Cl, and 57 and 38 mg L‐1 SO4‐S for the two experiments respectively; Mg concentration was 17 mg L‐1. Applications of chicken litter were made to some of the lysimeters in the last three years, and all nutrients showed increased leaching as a result. Application rates akin to disposal (rather than for crop fertilization) produced the largest losses. Following a total application of 125 t ha‐1 over three years, average concentrations in water draining below 1.5 m in the final year were 57 and 277 mg L‐1 Ca, 22 and 75 mg L‐1 Cl, 7 and 14 mg L‐1 K, 22 and 57 mg L‐1 Na, 27, and 125 mg L‐1 SO4‐S for the untreated and manured soils, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号