首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Doping of semiconductors by impurity atoms enabled their widespread technological application in microelectronics and optoelectronics. However, doping has proven elusive for strongly confined colloidal semiconductor nanocrystals because of the synthetic challenge of how to introduce single impurities, as well as a lack of fundamental understanding of this heavily doped limit under strong quantum confinement. We developed a method to dope semiconductor nanocrystals with metal impurities, enabling control of the band gap and Fermi energy. A combination of optical measurements, scanning tunneling spectroscopy, and theory revealed the emergence of a confined impurity band and band-tailing. Our method yields n- and p-doped semiconductor nanocrystals, which have potential applications in solar cells, thin-film transistors, and optoelectronic devices.  相似文献   

2.
Incorporating nanocrystals into future electronic or optoelectronic devices will require a means of controlling charge-injection processes and an understanding of how the injected charges affect the properties of nanocrystals. We show that the optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the quantum-confined states of the nanocrystal leads to an electrochromic response, including a strong, size-tunable, midinfrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions, and a quench of the narrow band-edge photoluminescence.  相似文献   

3.
New physics occurs in semiconductors when one or more dimensions of the crystal are reduced to a size comparable to bulk electron delocalization lengths (tens to hundreds of angstroms). The properties of "quantum dots" or semiconductor nanocrystals are now being studied, as techniques to fabricate the crystallites are developed. Temperature-dependent electron diffraction studies on nanocrystals of CdS show a large depression in the melting temperature with decreasing size, as a larger fraction of the total number of atoms is on the surface. Thermal stability may play a role in determining the uses of semiconductor nanocrystals.  相似文献   

4.
Lorenz MR 《Science (New York, N.Y.)》1968,159(3822):1419-1423
Electroluminescence from semiconductor diode light sources can occur as a result of the application of a direct current at a low voltage to a suitably doped crystal containing a p-n junction. In recent years, it has become apparent that in some materials the efficiency of conversion of electric energy to visible light can be appreciably high. Since light-emitting diodes are compatible with the present electronic circuitry, they have many potential applications.  相似文献   

5.
Colloidal nanocrystal shape and size control: the case of cobalt   总被引:1,自引:0,他引:1  
We show that a relatively simple approach for controlling the colloidal synthesis of anisotropic cadmium selenide semiconductor nanorods can be extended to the size-controlled preparation of magnetic cobalt nanorods as well as spherically shaped nanocrystals. This approach helps define a minimum feature set needed to separately control the sizes and shapes of nanocrystals. The resulting cobalt nanocrystals produce interesting two- and three-dimensional superstructures, including ribbons of nanorods.  相似文献   

6.
Quantum dots for live cells, in vivo imaging, and diagnostics   总被引:3,自引:0,他引:3  
Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.  相似文献   

7.
Reversible electrochemical injection of discrete numbers of electrons into sterically stabilized silicon nanocrystals (NCs) (approximately 2 to 4 nanometers in diameter) was observed by differential pulse voltammetry (DPV) in N,N'-dimethylformamide and acetonitrile. The electrochemical gap between the onset of electron injection and hole injection-related to the highest occupied and lowest unoccupied molecular orbitals-grew with decreasing nanocrystal size, and the DPV peak potentials above the onset for electron injection roughly correspond to expected Coulomb blockade or quantized double-layer charging energies. Electron transfer reactions between positively and negatively charged nanocrystals (or between charged nanocrystals and molecular redox-active coreactants) occurred that led to electron and hole annihilation, producing visible light. The electrogenerated chemiluminescence spectra exhibited a peak maximum at 640 nanometers, a significant red shift from the photoluminescence maximum (420 nanometers) of the same silicon NC solution. These results demonstrate that the chemical stability of silicon NCs could enable their use as redox-active macromolecular species with the combined optical and charging properties of semiconductor quantum dots.  相似文献   

8.
Fluorescent semiconductor nanocrystals (quantum dots) have the potential to revolutionize biological imaging, but their use has been limited by difficulties in obtaining nanocrystals that are biocompatible. To address this problem, we encapsulated individual nanocrystals in phospholipid block-copolymer micelles and demonstrated both in vitro and in vivo imaging. When conjugated to DNA, the nanocrystal-micelles acted as in vitro fluorescent probes to hybridize to specific complementary sequences. Moreover, when injected into Xenopus embryos, the nanocrystal-micelles were stable, nontoxic (<5 x 10(9) nanocrystals per cell), cell autonomous, and slow to photobleach. Nanocrystal fluorescence could be followed to the tadpole stage, allowing lineage-tracing experiments in embryogenesis.  相似文献   

9.
REVIEW The role of defects as essential entities in semiconductor materials is reviewed. Early experiments with semiconductors were hampered by the extreme sensitivity of the electronic properties to minute concentrations of impurities. Semiconductors were viewed as a family of solids with irreproducible properties. Scientific efforts overcame this idiosyncrasy and turned the art of impurity doping into today's exceedingly useful and reproducible technology that is used to control precisely electrical conductivity, composition, and minority-carrier lifetimes over wide ranges. Native defects such as vacancies and self-interstitials control basic processes, foremost self- and dopant diffusion. The structural properties of dislocations and higher dimensional defects have been studied with atomic resolution, but a thorough theoretical understanding of their electronic properties is incomplete. Reactions between defects within the host lattices are increasingly better understood and are used for gettering and electrical passivation of unwanted impurities. Metastable defects such as DX centers and the EL2-related arsenic antisite are briefly discussed. The recent development of isotopically controlled semiconductors has created new research opportunities in this field.  相似文献   

10.
Formation of hollow nanocrystals through the nanoscale Kirkendall effect   总被引:1,自引:0,他引:1  
Hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form because of the difference in diffusion rates between two components in a diffusion couple. Starting with cobalt nanocrystals, we show that their reaction in solution with oxygen and either sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of a large number of compounds. A simple extension of the process yielded platinum-cobalt oxide yolk-shell nanostructures, which may serve as nanoscale reactors in catalytic applications.  相似文献   

11.
Magnetic neutron scattering provides evidence for nucleation of antiferromagnetic droplets around impurities in a doped nickel oxide-based quantum magnet. The undoped parent compound contains a spin liquid with a cooperative singlet ground state and a gap in the magnetic excitation spectrum. Calcium doping creates excitations below the gap with an incommensurate structure factor. We show that weakly interacting antiferromagnetic droplets with a central phase shift of pi and a size controlled by the correlation length of the quantum liquid can account for the data. The experiment provides a quantitative impression of the magnetic polarization cloud associated with holes in a doped transition metal oxide.  相似文献   

12.
Multiple exciton generation, the creation of two electron-hole pairs from one high-energy photon, is well established in bulk semiconductors, but assessments of the efficiency of this effect remain controversial in quantum-confined systems like semiconductor nanocrystals. We used a photoelectrochemical system composed of PbS nanocrystals chemically bound to TiO(2) single crystals to demonstrate the collection of photocurrents with quantum yields greater than one electron per photon. The strong electronic coupling and favorable energy level alignment between PbS nanocrystals and bulk TiO(2) facilitate extraction of multiple excitons more quickly than they recombine, as well as collection of hot electrons from higher quantum dot excited states. Our results have implications for increasing the efficiency of photovoltaic devices by avoiding losses resulting from the thermalization of photogenerated carriers.  相似文献   

13.
A remarkable dependence of the friction force on carrier concentration was found on doped silicon substrates. The sample was a nearly intrinsic n-type Si(100) wafer patterned with 2-micrometer-wide stripes of highly B-doped p-type material. The counter surface was the tip of an atomic force microscope coated with conductive titanium nitride. The local carrier concentration was controlled through application of forward or reverse bias voltages between the tip and the sample in the p and the n regions. Charge depletion or accumulation resulted in substantial differences in friction force. The results demonstrate the capability to electronically control friction in semiconductor devices, with potential applications in nanoscale machines containing moving parts.  相似文献   

14.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics.  相似文献   

15.
A bottleneck limiting the widespread application of semiconductor nanocrystal solids is their poor conductivity. We report that the conductivity of thin films of n-type CdSe nanocrystals increases by many orders of magnitude as the occupation of the first two electronic shells, 1Se and 1Pe, increases, either by potassium or electrochemical doping. Around half-filling of the 1Se shell, a peak in the conductivity is observed, indicating shell-to-shell transport. Introducing conjugated ligands between nanocrystals increases the conductivities of these states to approximately 10(-2) siemens per centimeter.  相似文献   

16.
Structures in which electrons are confined to move in two dimensions (quantum wells) have led to new physical discoveries and technological applications. Modification of these structures to confine the electrons to one dimension (quantum wires) or release them in the third dimension, are predicted to lead to new electrical and optical properties. This article discusses techniques to make quantum wires, and quantum wells of controlled size and shape, from compound semiconductor materials, and describes some of the properties of these structures.  相似文献   

17.
Multiple exciton generation (MEG) is a process that can occur in semiconductor nanocrystals, or quantum dots (QDs), whereby absorption of a photon bearing at least twice the bandgap energy produces two or more electron-hole pairs. Here, we report on photocurrent enhancement arising from MEG in lead selenide (PbSe) QD-based solar cells, as manifested by an external quantum efficiency (the spectrally resolved ratio of collected charge carriers to incident photons) that peaked at 114 ± 1% in the best device measured. The associated internal quantum efficiency (corrected for reflection and absorption losses) was 130%. We compare our results with transient absorption measurements of MEG in isolated PbSe QDs and find reasonable agreement. Our findings demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells, providing ample incentive to better understand MEG within isolated and coupled QDs as a research path to enhancing the efficiency of solar light harvesting technologies.  相似文献   

18.
基于铁电移相器材料的应用,通过掺入MgO和La2O3,以进一步优化BST材料性能。采用XRD、SEM测试手段对La2O3掺杂的BST/MgO复合陶瓷材料进行了微观结构分析。用电容法和谐振腔微扰法测试其介电性能。测试结果表明,掺入MgO和La2O3能显著降低BST材料的介电常数和损耗,而且样品在2kV/mm的电场下调谐率能达到10%以上,基本能满足用于制备铁电移相器材料的要求。  相似文献   

19.
Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional vapor compressor systems, they can be miniaturized without loss of efficiency. More efficient thermoelectric materials need to be identified, especially for low-temperature applications in electronics and devices. The material CsBi(4)Te(6) has been synthesized and its properties have been studied. When doped appropriately, it exhibits a high thermoelectric figure of merit below room temperature (ZT(max) approximately 0.8 at 225 kelvin). At cryogenic temperatures, the thermoelectric properties of CsBi(4)Te(6) appear to match or exceed those of Bi(2-x)Sb(x)Te(3-y)Se(y) alloys.  相似文献   

20.
采用ROHF对(BN)2C4纳米管进行构型全优化,并用密度泛函理论的DFT/ROB3LYP方法计算了(BN)2C4纳米管的电子态分布.根据其前沿分子轨道能量数据、电子态分布曲线和成键电子云密度分布图形,研究讨论了掺入硼氮对碳纳米管导电性的影响,并与BNC2纳米管作了比较.结果表明:(BN)2C4纳米管具有掺杂窄带半导体的导电性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号