首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Climate varies along altitudinal gradients and species performance may be affected in response to these variations. Climate change can modify these gradients and, at the lower limit of species distributions, individuals may become stressed and their general health and reproductive performance may decrease. Study and prediction of the effects of climate change on the distribution of species along these gradients is therefore necessary. Our model study species, Pinus pseudostrobus, is a widely distributed pine in Mexico, ranging from 1600 to 3200 masl in altitude. In order to explore changes in health condition and reproductive investment along an altitudinal gradient, ten reproductive trees were selected in each of four populations (at 2300, 2400, 2700 and 2900 masl). As a proxy of individual health, we conducted a rapid visual assessment for each tree, based on crown defoliation, dead branches and foliage discoloration. This stress condition index (SCI) ranges from zero to fifteen, and lower values indicate low stress and therefore better health conditions. We also evaluated reproductive (cone weight, number/weight of seeds) and progeny (germination/seedling growth) traits. In addition, the relationships between SCI and the reproductive/progeny traits were assessed. The lowest altitude population presented poor health, with higher values of SCI (mean ± SE = 6.3 ± 0.9) that reduced up to 4.8-fold in higher-altitude populations. Cone weight also differed among altitudes, with lighter cones in the lower population (mean ± SE = 38.2 ± 4.3 g), and 1.5-fold heavier cones found in the higher populations. In general, all of the reproductive/progeny traits differed among altitudes. The population of intermediate altitude (2700 masl) presented the highest values for all traits evaluated, indicating higher performance at this altitude. Finally, a negative relationship was found between stress condition and cone weight. Based on our results and climate change models and their predictions, an increase in physiological stress can be expected in individuals of low altitude populations. Furthermore, possible increases in pests and pathogens are likely to contribute to the decline of this population. It is therefore necessary to maintain efforts of stress condition assessment and population dynamics, as well as to permanently monitor the climate along altitudinal gradients.  相似文献   

2.
The aim of this study was to evaluate the chemical composition and the dynamic water vapour sorption properties of Eucalyptus pellita wood thermally modified in vacuum. For this purpose, wood samples were thermally modified in a vacuum oven at 160–240 °C for 4 h. Chemical composition were investigated by wet chemical analysis, elemental analysis, as well as Fourier transform infrared (FTIR) analysis, and dynamic water vapour sorption properties were evaluated by dynamic vapour sorption apparatus. The results showed that holocellulose and alpha-cellulose contents decreased and lignin and extractives contents relatively increased during the heat process. Elemental analysis showed a reduction in hydrogen content and an increase in carbon content. FTIR analysis indicated that the degradation of hemicellulose and condensation reactions of lignin occurred. In addition, the thermo-vacuum resulted in a reduction in the equilibrium moisture content of wood during the adsorption or desorption process. And the sorption hysteresis had a decreasing trend with increasing treatment temperature. The development of the hygroscopicity was related to the increase in the relative content of lignin, the degradation of the carbonyl groups in xylan and the loss of carbonyl group linked to the aromatic skeleton in lignin after heat treatment.  相似文献   

3.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

4.
Lignin is a potential precursor for low-cost carbon fiber production, but it is difficult to spin and spool lignin because of its complex and interconnected molecular structure. This disadvantage can be overcome by introducing g-polyacrylonitrile (PAN) to lignin. However, the resulting copolymer is insoluble in common organic solvents. In this study, kraft lignin (KL)-g-polyacrylonitrile copolymers with different KL/PAN proportions were prepared via atom transfer radical polymerization (ATRP) method and their solubility in ionic liquids (ILs) was investigated at different temperatures. 1-Ethyl-3-methylimidazolium acetate ([EMIM]Ac), 1,3-dimethylimidazolium methyl sulfate ([MMIM]MeSO4), 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), and 1-butyl-3-methylimidazolium bromide ([BMIM]Br) were used as the ILs. At all investigated temperatures, the highest solubility of KL-g-PAN was observed in [EMIM]Ac, with the order of [MMIM]MeSO4 > BMIM]Br > [BMIM]Cl. The solubility in BMIM]Br and [BMIM]Cl was remarkably low, reaching values of less than 4 g/Kg. The viscosity and surface tension of the KL-g-PAN/[EMIM]Ac solution increased and decreased, respectively, with increasing amounts of PAN and further by the addition of dimethylformamide (DMF) to the solution. FTIR spectra of KL-g-PAN copolymers before and after dissolution suggested that PAN was partially depolymerized from the copolymer during the dissolution process.  相似文献   

5.
Epidermal peeling (EPT) and steam-heating (SHT) treatments are two widely processing methods in bamboo industry. Moso bamboo (Phyllostachys pubescens Mazel) and makino bamboo (Phyllostachys makinoi Hayata) are important economical bamboo species in Taiwan and China. The subject of this study was to access the changes of chemical and mechanical properties in moso and makino bamboo culms, which were collected from Taiwan and China after EPT and SHT. As regard to chemical properties, the amounts of extractives and ash were increased both in moso and makino bamboos after EPT and SHT. In contrast, the contains of holocellulose and α-cellulose were decreased after EPT and SHT for two bamboos. Moso bamboo collected from China contained the lowest cellulose content but the highest amount of hemicellulose by SHT. The lignin contents of all samples were no significant different after SHT, and it might due to the structure of lignin did not destroy at 120 °C. For the mechanical properties, the density of all makino and moso bamboo samples was reduced after SHT; moreover, the decreasing trend of density was similar to the reducing of holocellulose, α-cellulose, hemicellulose, and equilibrium moisture content (EMC). All bamboo samples without EPT presented the highest modulus of elasticity (MOE) and modulus of rupture (MOR) whether SHT or not. Both MOE and MOR of all bamboo samples were decreased after SHT. The integrity of the bamboo skin is important for the dimensional stability of the bamboo, and the water absorption ability would be increased after EPT; however, SHT decreased the water absorption of bamboo.  相似文献   

6.
The fast growth of Tetracentron sinense is a potential valuable timber resource, but whether its anatomy and chemical components are suitable for timber is unknown. We used light microscopy and SEM to examine the anatomical structure and FITR to measure the chemical components of the phloem and xylem of this tree. Radial variations in growth ring width and tracheid dimensions were also evaluated. The sieve tube, phloem parenchyma cell and sclereids clusters were the main cells in phloem, and the tracheid was the fundamental cell in xylem. An unusual tracheid type, fiber-tracheids or vessel-liked elements was visible. Wood rays nonstoried, uniseriate and multiseriate, including heterogeneous II, occasionally I, and usually 3–6 cells wide. The mean growth-ring width was 2.53 ± 0.46 mm, and the percentage of late wood was over 60%. For radial variation, growth-ring width increased at an early growth stage, and reached the largest increment during years 11–15, then decreased. The maximum growth-ring width was 5.313 mm. During late growth (60–85 years), trees also maintained a high radial growth increment. Radial variation in the percentage of late wood was uniform, about 50–70%, throughout the growth years. Growth patterns in the length and width of early and late wood were similar as the trees aged. From the FTIR results, the chemical components differed significantly between xylem and phloem, hemicellulose in particular was higher in the xylem than in the phloem, where it was apparently absent. All of these suggest that the composition of phloem in T. sinense is very similar to that of hardwood, and it has higher growth ratio and uniform wood properties.  相似文献   

7.
Morphological variation based on eight measured and four derived traits was studied to establish whether there was significant variation between populations and to identify the influence of the altitude on morphological differentiation among 44 natural stands of common oak (Quercus robur L.) in Bosnia and Herzegovina, ranging from 82 to 860 m. The results point to significant intra- and inter-population differences. Elevation-related variation is less pronounced and determined largely by microclimatic factors. The results could provide management strategies for species reintroduction in the study area. There are no differences in leaf morphology between the different branches of individual trees. However, there are important variations between the altitudinal groups and closely linked to environmental factors in all traits. An important recommendation is to use seeds from oak with attention to their altitudinal origin.  相似文献   

8.
Thermal modification of wood is an environment-friendly alternative method for improving several properties of wood without the use of chemicals. This paper deals with the examination of color and chemical changes in spruce (Picea abies L.) and oak wood (Quercus robur F.) that occur due to thermal treatment. The thermal modification was performed at 160, 180, and 210 °C according to thermowood process. The color changes were measured by the spectrophotometer and described in the L*a*b* color system. Chemical changes were examined by wet chemistry methods, infrared spectroscopy and liquid chromatography. During the experiment, oak samples showed smaller color changes than spruce samples at all temperature values. During thermal modification, the content of cellulose, lignin, and extractives increases; however, the hemicellulose content drops by 58.85% (oak) and by 37.40% (spruce). In addition to deacetylation, new carbonyl and carboxyl groups are formed as a result of oxidation. Bonds in lignin (mainly β-O-4) and methoxyl groups are cleaved, and lignin is condensed at higher temperatures.  相似文献   

9.
In this study, molding moso bamboo strips to a curved shape using hot-press molding operation was explored. Bamboo strips with different thickness and moisture content (MC) were subjected to press molding under 120–210 °C for different time. Changes in the chemical components of bamboo were analyzed by Fourier-transform infrared spectroscopy (FTIR). Effect of MC on thermal mechanical behavior of bamboo was investigated using dynamic mechanical analysis (DMA). Results showed that the influencing degree of four variables on compression and recovery ratios decreased as: temperature?>?time?>?thickness?>?MC. Compression ratio increased and recovery ratio decreased dramatically when pressing temperature exceeded 180 °C. FTIR analysis indicated that polysaccharide (especially hemicelluloses) underwent a progressive thermal degradation during compression at 180 and 210 °C for 40 min, whereas relative content of lignin increased. DMA results showed that bamboo samples with a higher MC had a lower storage modulus value, confirmed water had a plasticizing effect. The loss factor of bamboo with higher MC (12 and 16%) exhibited two major transitions centred around 100 °C (α1) and 50 °C (α2), respectively. The temperature of these α transitions kept almost unchanged as moisture level increased from 12 to 16%. These findings provide fundamental information for the future preparation of curved bamboo as profiled components in engineered products.  相似文献   

10.
Gardenia jasminoides and Rosa chinensis are economically important horticultural plants in China. Frankliniella occidentalis and Thrips hawaiiensis are serious coexisting pests that previously demonstrated opposite population trends on G. jasminoides and R. chinensis flowers. To further study the different performances between F. occidentalis and T. hawaiiensis, we investigated their population dynamics in the field (for 5 years) and their life history characteristics on the two flowers in the laboratory. In the field, the density of F. occidentalis was lower than that of T. hawaiiensis on G. jasminoides but was higher than that of T. hawaiiensis on R. chinensis. Under laboratory conditions, F. occidentalis showed significantly slower development, and lower survival and fecundity levels than T. hawaiiensis on G. jasminoides, but the opposite was true on R. chinensis. Significant differences in the net reproductive rate (R 0) between F. occidentalis and T. hawaiiensis were observed, with respective values of 38.66 ± 2.85 and 47.91 ± 2.70 on G. jasminoides, and 55.64 ± 2.15 and 32.45 ± 2.16 on R. chinensis. The intrinsic rates of increase (r m ) of F. occidentalis and T. hawaiiensis were 0.156 ± 0.008 and 0.198 ± 0.007, respectively, on G. jasminoides, and 0.172 ± 0.003 and 0.165 ± 0.002, respectively, on R. chinensis. Thus, the performances of both thrips with respect to population size in the laboratory were in accordance with those in the field, suggesting that the innate capacity for insect population increases may directly impact their population dynamics in fields. Thus, the population performance of different thrips species on flowers is species-dependent, which could be exploited in thrips control programs by breeding pest-resistant cultivars.  相似文献   

11.
The study investigated and compared the behaviour of four wood species, originating from Europe and China, in terms of temperature-induced artificial ageing. It was conducted at 100 °C for a total period of 288 h. Ageing effects were evaluated by colour measurements in the CIE Lab system and by FTIR analysis. Colour changes were then related to chemical changes in the wood. The investigated wood species were European ash (Fraxinus excelsior), European walnut (Juglans regia), Chinese ash (Fraxinus mandshurica) and Chinese walnut (Juglans mandshurica). Colour changes were maximum for European ash and minimum for Chinese ash, while European walnut and Chinese walnut evolved quite similarly. Main chemical changes due to temperature ageing were reduction of hydroxyl groups, increase of the unconjugated carbonyl groups and an apparent slight increase of lignin, more evident for European ash and delayed for European walnut. Formation of aromatic carbonyl conjugated groups as quinoid structures as a result of oxidative reactions was revealed especially for European ash. The different behaviour of the studied wood species may be explained by their different chemical composition, especially hemicelluloses, lignin and extractives content.  相似文献   

12.
13.
Raffia palm fibers are potential reinforcement materials for making cost-effective polymer-based composite. This paper presents the results obtained from a study of physical, chemical, thermal and mechanical properties of raffia palm fibers (RPFs) derived from the raffia palm tree (Raphia farinifera). The as-received RPFs had their remnant binders manually removed and was subsequently cleaned in a 2% detergent solution before drying in an air oven at 70 °C for 24 h. Evaluation of the properties of the dried samples was carried out using a combination of characterization techniques including chemical composition determination, density measurement, moisture adsorption and water absorption measurements, tensile testing, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Raman spectroscopy, X-ray diffractometry, and Fourier transform infrared spectromicroscopy. The main constituents of RPFs were found to be cellulose, hemicellulose and lignin. The average diameter and average density were 1.53?±?0.29 mm and 1.50?±?0.01 g/cm3, respectively. The average breaking strength of the fibers ranged from 152?±?22 to 270?±?39 MPa; it did not vary significantly with fiber length and cross-head speed during tensile testing. The results of scanning electron microscopic investigation of the fibers showed that they comprise several elemental fibers which are tightly packed together with each having its own lumen. Synchrotron-based Fourier-transform infrared spectromicroscopy of a cross-section of the fiber showed that lignin is concentrated mostly on the outside while cellulose and pectin are concentrated in the mid-section. A two-stage water sorption behavior was observed for the fibers.  相似文献   

14.
In the present work, for the first time, the chemical components of essential oils (EOs) and extracts from wood branch (WB) resulted from the tree pruning wastes of Schinus molle L. grown in Egypt were evaluated for their antioxidant and antibacterial activities. EOs, methanol (ME), dichloromethane (DCME) and water (WE) extracts as antioxidant and antibacterial activities were measured. Total phenolic and flavonoid contents as well as analysis of extracts by gas chromatography–mass spectrometry (GC–MS) were reported. The major components in EOs were α-elemol, β-pinene, and α-phellandrene, in ME were 6-(4-chlorophenyl)-3-cyano-4-(N-benzylpiperazino)-2H-pyran-2-one, and 2-naphthalene methanol, decahydro-α,α,4a-trimethyl-8-methylene, in DCME were 12-methyl-E,E-3,13-octadecadien-1-ol, and 1,2-benzenedicarboxylic acid, dioctyl ester, and in WE were β-eudesmol, and (Z,Z,Z)-9,12,15-octadecatrienoic acid, 2,3-dihydroxypropyl ester. The highest total antioxidant activity was found with EOs (90 ± 1.23 %) and WE (86.30 ± 1.40 %). The lowest IC50 values of 13.11 ± 3.00, and 12.66 ± 2.15 μg/mL were found with WE and EOs, respectively. EOs and WE were observed to have good antibacterial activity against Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Sarcina lutea, Pseudomonas aeruginosa, and Micrococcus luteus. In conclusion, the Schinus molle L. WB EOs and extracts might, indeed, be used as a potential source for pharmaceutical or food industries.  相似文献   

15.
The effects of chemical treatments (H2O2 + CH3COOH, acidified NaClO2, and NaOH) and freeze-drying on bamboo fibers were studied at a submicron level, to characterize chemical and mechanical changes to the secondary cell wall. Specifically, a field emission environmental scanning electron microscope (FE-ESEM) and imaging fourier transform infrared spectroscopy (FTIR) were used to demonstrate degradation in morphology and molecular structure, and nanoindentation was used to track changes in micromechanical properties. The results showed that cellular structures after chemical treatments clearly displayed wrinkles, pores, and microfibrils. The decreased bands at 1508 cm-1 and 1426 cm?1 showed that lignin was degraded on treatment of H2O2 + CH3COOH and acidified NaClO2, which directly resulted in a decrease in hardness (H) in the secondary cell wall for treated fibers. In addition, a diminishing peak at 1733 cm?1 caused by NaOH solution indicated that hemicellulose was seriously degraded. It resulted in a decreased modulus (E r) by 13.71 % in bamboo fibers, while no obvious reduction was observed in the first two steps.  相似文献   

16.
Seeds of Celtis australis were collected from 13 different sources, ranging from 550 to 1980 masl, in Central Himalaya, India. Significant (p = 0.05) variations were observed for seed traits among provenances. However, among various characters, seed weight exhibited maximum variation between seed populations compared to other morphological characters. Between provenances, seed weight ranged from 47.8 to 83.1 g/1000 seed, with mean value of 66.9 ± 10.7 g/1000 seed. Significant (p = 0.01) positive correlation was found between morphological characters of seeds including seed weight and elevational range of seed source. For one year old seedlings, average shoot and root growth was 61.1 ± 13.3 and 30.5 ± 5.4 cm, respectively, irrespective of provenance variation. Inter-comparing biomass yield of the seedlings with altitude, average biomass production was 8.4 ± 2.5, 9.4 ± 3.3 and 12.7 ± 1.7 g/plant, respectively, for low (550–1000 masl), middle (1050–1250 masl) and high (1350–1980 masl) altitudinal populations. Significant (p = 0.01) positive correlation between growth performance of seedlings and altitude of the seed source was recorded. Across the provenances, shoots had the highest proportion of total biomass (42.3%), followed by leaves (32.6%) and roots (24.6%). Among various provenances, Badiyargaon, Agroda, Guptakashi, Jakholi, Gajeli, Srinagar and Palampur populations produced heavier seedlings and grew faster compared to seedlings of other sources.  相似文献   

17.
The codling moth (Cydia pomonella L.) is a significant pest of pome fruit throughout the world. Behavioral and ovicidal activities of five non-host plant extracts (Arctium lappa, Bifora radians, Humulus lupulus, Verbascum songaricum, Xanthium strumarium), synthetic sex pheromone, (E,E)-8,10-dodecadienol (codlemone), and the plant volatile lure, (2E,4Z)-2,4-decadienoate (pear ester) were evaluated against the codling moth, C. pomonella L. Codlemone elicited the greatest electroantennogram (EAG) response (6.2 ± 1.2 mV) of the compounds tested from male C. pomonella while pear ester elicited 1.7 ± 0.1 mV EAG response in female moths. Codlemone attracted 34.5% of male C. pomonella in olfactometer studies, and it was followed by the X. strumarium extract with 24.8%. There was a significant difference between the behavior of unmated and mated females. V. songaricum extract was the most active extract, attracting 25.4% of unmated females. However, mated C. pomonella females exhibited greatest attraction to pear ester. In a wind tunnel bioassay, combining X. strumarium with codlemone significantly increased the response of male upwind flight and source contact as compared with codlemone alone. All plant extracts, except for V. songaricum, significantly reduced the number of eggs laid. The plant extracts exhibited some toxic effects to eggs, and hatching rate of eggs was reduced as compared with the control. Our results indicate that some of the plant extracts tested are potential candidates for practical use after elucidation and characterization of active compound(s).  相似文献   

18.
Thermoplastic processing of lignin is restricted by its high glass transition temperature (T g). In this study, lignin was modified with polyethylene glycol (PEG) during steam explosion to improve its thermoplastic properties, and the effects of steam explosion and PEG on the chemical structure and thermal properties of lignin were investigated. Structure characterization using Fourier transform infrared spectroscopy showed that hydroxyl and ether functional groups increased and the activity of lignin was improved by steam explosion. In addition, steam explosion treatment was more effective than heat treatment for promoting the reaction of PEG with lignin. Solid-state 13C NMR revealed that PEG was grafted onto lignin. The T g of raw lignin was 164.1 °C; after steam explosion, lignin exhibited more than one T gs. The T g of lignin was reduced when the steam explosion temperature increased and decreased further, to around 60 °C, when PEG was used to modify lignin. Therefore, this work provides an effective approach to reducing the high T g of lignin.  相似文献   

19.
Bamboo was carbonized at different temperatures ranging from 200℃ to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Fourier Transform Infrared (FTIR) spectra of the residual solid products.The results showed:(1)Below 200℃,hemicellulose in bamboo wasdecomposed and a large amount of hydroxyl groups are dislocated from hemicellulose and cellulose,accompanied by the evolution of water to escape.(2)200℃-250℃,cellulose in bamboo was brastically decomposed whereas the net structure of lignin keep stable,with the except of the dislocation of methoxyl groups from lignin.(3)250℃-400℃,the net structure of lignin collapse,up to 400℃,followed by that the more position in aryl groups are substituted.(4)For bamboo carbonization,the aromatization of residual carbon has approximately completed at the temperature as high as 600℃.But the fusion of aromatic rings possibly does not occur.  相似文献   

20.
We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil’s semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season. Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant (R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号