首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A biotype of Sonchus oleraceus L. and two bio types of Sisymbrium orientate Torn., SSO 3 and NSO 1, are the first dicot weeds in Australia to develop resistance to ALS-inhibiting herbicides. The resistant biotypes had been exposed to va rying periods of selection with sulfonylurea her bicides. All three biotypes are resistant to a range of sulfonylurea and imidazolinone herbicides. The S. orientale biotypes are also resistant to the triazolopyrimidine herbicide, flumetsulam. LD50 ratios of resistant Sonchus oleraceus for sulfony lurea and imidazolinone herbicides are greater than 64-fold and 4.5-fold, respectively. GR50 ratios are greater than 9 for sulfonylureas and 7.4 for imazapyr. The LD50 ratios for both S. orien tale biotypes for chlorsulfuron, sulfometuron methyl, metsulfuron-methyl, flumetsulam and imazethapyr are greater than 110-, 15-, 7-, 24- and 29-fold, respectively. All resistant biotypes are susceptible to MCPA, diuron and diflufenican, herbicides which do not inhibit ALS.  相似文献   

2.
In southern Australia, oriental mustard (Sisymbrium orientale) has been controlled successfully by triazine herbicides for several decades. The screening of 40 populations that were collected from the southern grain belt of Australia during 2010 and 2013 for resistance to six different herbicides (glyphosate, diflufenican, imazamox, chlorsulfuron, atrazine and 2,4‐dichlorophenoxyacetic acid) identified two oriental mustard populations as highly resistant to atrazine. Compared to the known oriental mustard‐susceptible populations (S1 and S2), these two resistant populations (P17 and P18) from near Horsham, Victoria, Australia, were 311‐ and 315‐fold resistant to atrazine, as determined by a comparison of the LD50 values. However, there was no resistance to diuron detected in these populations. Sequencing of the chloroplast psbA gene identified a missense mutation of serine 264 to glycine in both herbicide‐resistant oriental mustard populations, which is known to confer high‐level atrazine resistance in other species.  相似文献   

3.
The sensitivity of 22 major crops, pastures and weeds from the north-east grain region of Australia to atrazine and chlorsulfuron residues was determined in a glasshouse using a soil-free bioassay system. A logistic equation was fitted to the seedling fresh weights as a function of the logarithm of herbicide concentration by non-linear regression and used to calculate the doses for 10%, 30% and 50% inhibition of seedling growth (ID10, ID30 and ID50). The ID50 for atrazine ranged from 0.03 to 0.04 mg a.i. L–1 for Salvia reflexa Hornem. and barley to 1.47 mg a.i. L–1 for sorghum. The ID50 for chlorsulfuron ranged from 0.19 to 0.21 μg a.i. L–1 for lucerne and snail medic to 102 μg a.i. L–1 for wheat. Based on ID50 values measured, the predicted responses of each species to a range of concentrations of atrazine and chlorsulfuron were classified into four categories ranging from no damage to severe damage. These sensitivity data will assist in planning cropping sequences in soils previously treated with atrazine or chlorsulfuron.  相似文献   

4.
Herbicide resistance poses a substantial threat to the agricultural industry throughout the world and during the past decade several reports regarding herbicide resistance have been published. Raphanus raphanistrum L., from two wheat farms located in the winter rainfall region of South Africa, showed indications of resistance to chlorsulfuron. Seeds from these suspected resistant biotypes as well as seeds from a susceptible biotype were collected and transported to the ARC-Small Grain Institute for herbicide resistance studies. Herbicides registered for R. raphanistrum control, i.e. chlorsulfuron, MCPA and bromoxynil, were used in this study. Significant differences in the degree of control were found between the susceptible and two resistant biotypes, when treated with chlorsulfuron. The LD50 values for the resistant biotypes (WR 1 & WR 2) were 45 and 11.3 g a.i. ha–1, respectively, whereas the LD50 value for the susceptible biotype was 5.6 g a.i. ha–1. The almost eightfold difference between the susceptible and resistant biotype (WR 1), indicated that resistance has developed to chlorsulfuron. Only twofold resistance was established between the other resistant biotype (WR 2) and the susceptible biotype. Significant differences between herbicide rates were also established with the MCPA and bromoxynil experiments. No significant difference could, however, be found between the susceptible and resistant biotypes when treated with MCPA and bromoxynil, indicating the importance of different modes of action of herbicide as a strategy to prevent herbicide resistance.  相似文献   

5.
JAMES  HOLLAND  RAHMAN  & LU 《Weed Research》1999,39(2):137-147
The degradation rates of two sulfonylurea herbicides, chlorsulfuron and triasulfuron, were determined at two application rates, 15 and 30 g a.i. ha–1, in a sandy loam soil of volcanic origin under controlled environment and field conditions. Residues were measured using a modified gas chromatographic (gc) determination method. Both herbicides degraded rapidly in the acidic soil (pH 5.7) with high organic matter levels (7.3% o.m.), generally according to first-order rate kinetics. The respective half-lives ranged from 22 to 38 d for chlorsulfuron and from 31 to 44 d for triasulfuron under five controlled temperature/soil moisture regimens, ranging from 10 to 30 °C and between 40% and 80% maximum water-holding capacity. Half-lives in the field were considerably shorter (13 d for chlorsulfuron and 12–13 d for triasulfuron). The degradation rates of the herbicides were influenced more by soil temperature than by soil moisture content. Bioassays using white mustard ( Sinapis alba L.) and forage sorghum [ Sorghum bicolor (L.) Moench] were also used to determine the persistence of phytotoxic residues of both herbicides in the field, and the results showed that the effects of chlorsulfuron disappeared within 8 weeks. Triasulfuron residues disappeared within 9 and 14 weeks for the 15 and 30 g a.i. ha–1 rates respectively.  相似文献   

6.
As herbicide‐resistant weeds have spread in the agricultural fields of grain‐exporting countries, their seeds could be introduced into other countries as contaminants in imported grain. The spread of resistance genes through seed and pollen can cause significant economic loss. In order to assess the extent of the problem, we investigated the contamination by herbicide‐resistant annual ryegrass (Lolium rigidum) of wheat imported from Western Australia into Japan. Annual ryegrass seeds were recovered from wheat shipments and seed bioassays were conducted to identify resistance to the herbicides that are commonly used in Australia: diclofop‐methyl, sethoxydim, chlorsulfuron, and glyphosate. Nearly 4500 ryegrass seeds were detected in 20 kg of wheat that was imported in both 2006 and 2007. About 35% and 15% of the seeds were resistant to diclofop‐methyl, 5% and 6% were resistant to sethoxydim, and 56% and 60% were resistant to chlorsulfuron in 2006 and 2007, respectively. None was resistant to glyphosate in either year. As the contamination of crops by herbicide‐resistant weeds is probably a common phenomenon, the monitoring of incoming grain shipments is necessary to stem the further spread of herbicide‐resistant weeds into importing countries.  相似文献   

7.
Mesotrione is a new callistemone herbicide that inhibits the HPPD enzyme (p-hydroxyphenylpyruvate dioxygenase) and introduces a new naturally selective tool into weed-management programmes for use in maize. Mesotrione provides control of the major broad-leaved weeds, and it can be used in integrated weed-management programmes depending on the grower's preferred weed-control strategy. At post-emergence rates of 150 g AI ha-1 or less, mesotrione provides naturally selective control of key species that may show triazine resistance (TR), e.g. Chenopodium album L, Amaranthus species, Solanum nigrum L, as well as species of weed that show resistance to acetolactase synthase (ALS) inhibitors e.g. Xanthium strumarium L, Amaranthus spp and Sonchus spp. The data presented show that resistant and susceptible biotypes of these species with resistance to triazine herbicides, such as atrazine, simazine, terbutylazine and metribuzin, or ALS-inhibitor herbicides, such as imazethepyr, remain susceptible to mesotrione. These results confirm that there is no cross-resistance in biotypes with target site resistance to triazine or ALS-inhibiting herbicides. It is important that herbicide choice and rotation becomes an integral part of planning weed management, so as to minimise the risks of crop losses from weed competition, build-up of weed seed in the soil and the further development of weed resistance across a range of herbicide modes of action.  相似文献   

8.
Summary A biotype of Conyza albida resistant to imazapyr was discovered on a farm in the province of Seville, Spain, on land that had been continuously treated with this herbicide. This is the first reported occurrence of target site resistance to acetolactate synthase (ALS)-inhibiting herbicides in C. albida . In order to characterize this resistant biotype, dose–response experiments, absorption and translocation assays, metabolism studies, ALS activity assays and control with alternative herbicides were performed. Dose–response experiments revealed a marked difference between resistant (R) and susceptible (S) biotypes with a resistance factor [ED50(R)/ED50(S)] of 300. Cross-resistance existed with amidosulfuron, imazethapyr and nicosulfuron. Control of both biotypes using alternative herbicides was good using chlorsulfuron, triasulfuron, diuron, simazine, glyphosate and glufosinate. The rest of the herbicides tested did not provide good control for either biotype. There were no differences in absorption and translocation between the two biotypes, the maximum absorption reached about 15%, and most of the radioactivity taken up remained in the treated leaf. The metabolism pattern was similar and revealed that both biotypes may form polar metabolites with similar retention time (Rf). The effect of several ALS inhibitors on ALS (target site) activity measured in leaf extracts from both biotypes was investigated. Only with imazapyr and imazethapyr did the R biotype show a higher level of resistance than the S biotype [I50 (R)/I50(S) value of 4.0 and 3.7 respectively]. These data suggest that the resistance to imazapyr found in the R biotype of C. albida results primarily from an altered target site.  相似文献   

9.
Resistance to aryloxyphenoxypropionate (AOPP), cyclohexanedione (CHD) and phenylurea herbicides was determined in UK populations of Alopecurus myosuroides Huds. Two populations (Oxford AA1, Notts. A1) were highly resistant (Resistance indices 13-->1000) to the AOPP and CHD herbicides fenoxaprop, diclofop, fluazifop-P and sethoxydim, but only marginally resistant to the phenylurea, chlorotoluron. Analyses of acetyl coenzyme A carboxylase (ACCase) activity showed that an insensitive ACCase conferred resistance to all the AOPP/CHD herbicides investigated. Another population, Oxford S1, showed no resistance to sethoxydim at the population level, but contained a small proportion of plants (<10%) with an insensitive ACCase. Genetic studies on the Notts A1 and Oxford S1 populations demonstrated that target site resistance conferred by an insensitive ACCase is monogenic, nuclearly inherited with the resistant allele showing complete dominance. Investigations of the molecular basis of resistance in the Notts A1 population showed that sethoxydim resistance in A myosuroides was associated with the substitution of an isoleucine in susceptible with a leucine in resistant plants, which has also been found in three other resistant grass-weed species (Setaria viridis (L) Beauv, Avena fatua L, Lolium rigidum Gaud).  相似文献   

10.
BACKGROUND: The increasing use of ACCase‐inhibiting herbicides has resulted in evolved resistance in key grass weeds infesting cereal cropping systems worldwide. Here, a thorough and systematic approach is proposed to elucidate the basis of resistance to three ACCase herbicides in a Lolium multiflorum Lam. (Italian rye grass) population from the United Kingdom (UK24). RESULTS: Resistance to sethoxydim and pinoxaden was always associated with a dominant D2078G (Alopecurus myosuroides Huds. equivalent) target‐site mutation in UK24. Conversely, whole‐plant herbicide assays on predetermined ACCase genotypes showed very high levels of resistance to diclofop‐methyl for all three wild DD2078 and mutant DG2078 and GG2078 ACCase genotypes from the mixed resistant population UK24. This indicates the presence of other diclofop‐methyl‐specific resistance mechanism(s) yet to be determined in this population. The D2078G mutation could be detected using an unambiguous DNA‐based dCAPS procedure that proved very transferable to A. myosuroides, Avena fatua L., Setaria viridis (L.) Beauv. and Phalaris minor Retz. CONCLUSION: This study provides further understanding of the molecular basis of resistance to ACCase inhibitor herbicides in a Lolium population and a widely applicable PCR‐based method for monitoring the D2078G target‐site resistance mutation in five major grass weed species. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Sulfonylurea resistance in Stellaria media [L.] Vill.   总被引:1,自引:1,他引:1  
A sulfonylurea resistant biotype of common chickweed (Stellaria media L. Vill.) was found in a field treated with chlorsulfuron or metsulfuron for eight consecutive years. In pot experiments the biotype was resistant to postemergence treatments with the following acetolactate synthase (ALS) inhibitors: chlorsulfuron, metsulfuron, tribenuron, triasulfuron, rimsulfuron, sulfometuron, flumetsulam and imazapyr. The level of resistance to chlorsulfuron and sulfometuron was higher than to the other sulfonylurea herbicides. Whereas the level of cross resistance to the triazolopyrimidine herbicide, flumetsulam was comparable to that of metsulfuron, that of imazapyr was significantly lower. In contrast to imazapyr the biotype was not resistant to imazethapyr, an other imidazolinone herbicide. ALS in vitro assays revealed that resistance was due to an ALS enzyme that was less sensitive to ALS inhibiting herbicides. Herbicides with different modes of action were equally effective on the susceptible and resistant biotypes.  相似文献   

12.
Three Australian Sisymbrium orientale and one Brassica tournefortii biotypes are resistant to acetolactate synthase (ALS)-inhibiting herbicides due to their possession of an ALS enzyme with decreased sensitivity to these herbicides. Enzyme kinetic studies revealed no interbiotypic differences within species in Km (pyruvate) (the substrate concentration at which the reaction rate is half maximal) but a greater Vmax (the rate when the enzyme is fully saturated with substrate) for two of the resistant S orientale biotypes over susceptible levels. F1 hybrids from reciprocal crosses between resistant and susceptible biotypes of S orientale showed an intermediate response to chlorsulfuron compared to the parental plants. ALS herbicide resistance in S orientale segregated in a 3:1 (resistant:susceptible) ratio in F2 plants with a single rate of chlorsulfuron, indicating that resistance is inherited as a single, incompletely dominant nuclear gene. Two regions of the ALS structural gene known to vary in ALS-resistant biotypes were amplified and sequenced. Resistant S orientale biotypes NS01 and SS03 contained a single nucleotide substitution in Domain B, predicting a Trp (in susceptible) to Leu (in resistant) amino acid change. Two adjacent nucleotide substitutions (CC T to AT T) predicting a Pro (in susceptible) to Ile (in resistant) change in the primary amino acid sequence were identified in Domain A of resistant S orientale biotype SS01. Likewise, a single nucleotide substitution at the same site in the resistant B tournefortii biotype predicts a Pro (in susceptible) to Ala (in resistant) substitution. No other interbiotypic nucleotide differences predicted amino acid changes in the sequenced regions, suggesting that the amino acid substitutions reported above are responsible for resistance to ALS-inhibiting herbicides in the respective biotypes. © 1999 Society of Chemical Industry  相似文献   

13.
抗药性杂草与治理   总被引:7,自引:0,他引:7  
抗药性杂草对农田杂草治理和农业生产构成严重威胁,成为备受全球关注的严重问题。随着长期、大量使用相对有限的化学除草剂,全球抗药性杂草发展迅猛,目前已有217种杂草对化学除草剂产生了抗药性,我国抗药性杂草发展也十分迅猛。本文在介绍杂草抗药性基本概念、抗药性杂草发展过程、抗药性杂草现状的基础上,重点描述了抗药性杂草治理策略,以期为我国抗药性杂草研究和治理提供参考。  相似文献   

14.
3种莠去津复配剂对玉米田杂草的防除效果   总被引:2,自引:0,他引:2  
为降低莠去津对后茬作物的危害及环境的污染,选用3种莠去津复配制剂(20%烟嘧·莠去津可分散油悬浮剂、25%硝磺草酮·莠去津悬浮剂、50%硝磺草酮·莠去津·乙草胺悬乳剂)进行玉米田杂草防除效果研究,为田间合理选用除草剂提供依据。结果显示,3种复配剂对玉米地田间杂草群体防效均较好,药后45 d杂草群体株防效在84.00%以上、鲜质量防效在97.00%以上,25%硝磺草酮·莠去津悬浮剂对狗尾草防效较差,说明各复配剂能有效防除玉米地田间杂草且对玉米生长安全。  相似文献   

15.
Piperonyl butoxide (PB) is a known Synergist which enhances the activity of insecticides by inhibiting their biotransformation to less active products. We have evaluated the possible use of PB as a herbicide synergist using triazine herbicides in sensitive, tolerant, and resistant plants. The effects of PB, triazine herbicides, and their combinations were examined in whole plants as well as in chloroplasts isolated from triazine-sensitive (S) and -resistant (R) weed biotypes. PB itself, applied postemergence (0.1–0.5%, v/v), was slightly toxic to the plants tested. However, foliar application of PB combined with atrazine, terbutryn or prometryn to maize seedlings significantly increased the phytotoxicity of the herbicides. Low rates of atrazine, prometryn, and terbutryn in a tank-mixture with PB, effectively controlled Solatium nigrum L. and Abutilon theophrasli Medik. PB enhanced atrazine efficacy in both S and R biotypes of Lolium rigidum Gaud. The synergistic effect of PB was evident also in vitro when atrazine and methabenzthiazuron were used to inhibit photosystem II electron transport in chloroplasts isolated from resistant weeds. These data demonstrate the potential of PB as a herbicide synergist and its possible utilization as an aid for improving the activity of triazine herbicides in sensitive, tolerant and resistant plants.  相似文献   

16.
Raphanus raphanistrum L has evolved widespread resistance to sulfonylureas in the Western Australia (WA) wheat belt. With the introduction of imidazolinone-tolerant (IT) wheat (Tritcum aestivum L) and IT canola (Brassica napus L) in the WA wheat belt, it is important to understand the status of cross-resistance in this weed to sulfonylurea and imidazolinone (Imi) herbicides. A study was conducted to examine cross-resistance between chlorsulfuron and Imi herbicides (a mixture of imazapic and imazapyr) in 46 R raphanistrum populations collected from across the WA wheat belt. Plants were treated with herbicides and assessed for phytotoxicity under glasshouse conditions. Of the 46 R raphanistrum populations, 32 were resistant to chlorsulfuron and four were resistant to imazapic + imazapyr. Of the 70% chlorsulfuron-resistant populations, 13% showed cross-resistance to imazapic + imazapyr. However, the cross-resistant populations treated with imazapic + imazapyr showed a lower resistance level than the chlorsulfuron-treated populations. These results suggest that weed populations with such cross-resistance will not be controlled effectively by Imi herbicides. Although the resistance levels of the cross-resistant populations to Imi herbicides were low, the cross-resistance levels of R raphanistrum should be determined before growing IT crops, particularly IT canola.  相似文献   

17.
Repeated use of ACCase‐ and ALS‐inhibiting herbicides in northern Greece has resulted in the evolution of a population of Lolium rigidum resistant to diclofop and chlorsulfuron. The biotype from Athos was highly resistant to diclofop and also exhibited differential cross‐resistance to clodinafop, fluazifop, tralkoxydim and sethoxydim. Assay of ACCase activity confirmed that the resistant biotype was tenfold more resistant to diclofop than the susceptible biotype, suggesting that the resistance mechanism could involve an altered target site. The diclofop‐resistant biotype has also exhibited multiple resistance to chlorsulfuron and the mechanism for this is unknown. Seed‐bioassay was found to be a rapid, cheap and reliable method to identify populations of L rigidum resistant to ACCase inhibitors and chlorsulfuron. Moreover, root elongation in the seed bioassay was more sensitive to ACCase inhibitors and chlorsulfuron than shoot elongation. © 2000 Society of Chemical Industry  相似文献   

18.
乙酰羟基酸合成酶(AHAS)是磺酰脲类、咪唑啉酮类、三唑嘧啶磺酰胺类及水杨酸类除草剂的作用靶标,大田使用中杂草对这几类除草剂产生抗性的主要因素是AHAS酶的突变。利用大肠杆菌AHAS Ⅱ中464位的色氨酸突变体(W464A、W464F、W464L、W464Y),研究了野生型和突变酶对商品化除草剂(氯嘧磺隆、氯磺隆、咪唑乙烟酸、咪唑喹啉酸)以及烷硫基磺酰脲的敏感性。野生型E. coli AHAS Ⅱ对这些化合物的抑制作用较为敏感,而突变酶对其呈现出不同程度的抗性,使商品化除草剂的抑制常数增加了10~1.0×104倍不等,烷硫基磺酰脲的抑制常数增加幅度较小。烷硫基磺酰脲 1a 对W464L突变酶的高抑制活性,暗示着发展针对靶酶抗性的除草剂的可能性。  相似文献   

19.
SARMAH  KOOKANA  & ALSTON 《Weed Research》1999,39(2):83-94
The degradation of chlorsulfuron and triasulfuron was investigated in alkaline soils (pH 7.1–9.4) spiked at 40 μg a.i. kg–1 under laboratory conditions at 25 °C and a moisture content corresponding to 70% field capacity (–33 kPa), using high-performance liquid chromatography. Degradation data for the two herbicides did not follow first-order kinetics, and observed DT50 values in surface soils ranged from 19 to 42 days and from 3 to 24 days for chlorsulfuron and triasulfuron respectively. Disappearance of both chlorsulfuron and triasulfuron was faster in non-sterile than in sterile soil, demonstrating the importance of microbes in the breakdown process. The persistence of chlorsulfuron increased with increasing depth, which can be attributed to the decline in the microbial populations down the profile. The DT50 value for chlorsulfuron at 30–40 cm depth was nearly four times higher than that in the top-soil. The results obtained show that persistence of these herbicides in alkaline surface soils at 25 °C and at a moisture content of 70% field capacity is similar to those reported in other European and North American soils. The study shows that if these herbicides are contained in surface soil layers, the risk of residue carry-over under southern Australian conditions is small. However, the rate of their degradation in alkaline subsoils is very slow, and under conditions conducive to leaching their prolonged persistence in the soil profile is possible.  相似文献   

20.
During the period January-March 1989, 15 greenhouses at 12 sites in Israel were surveyed for the presence of fungicide-resistant strains of Botrytis cinerea , using a fungicide-amended Botrytis -selective medium. Resistance to benzimidazoles (BenR) and to dicarboximides (DicR) was frequent in most sites. Resistance to carbendazim + diethofencarb (BenR NPCR) was found in all eight sites in which a mixture of these fungicides had been used against grey mould, but not in other sites. A new phenotype of multiple fungicide resistance was found among these isolates. The new phenotype, designated BenR DicR NPCR, combines the three previously described characteristics of resistance to benzimidazole, dicarboximide and N -phenylcarbamate fungicides. It was found only in cucumber greenhouses that had been sprayed with the fungicide mixture carbendazim + diethofencarb against grey mould. Isolates of this phenotype were pathogenic in artificial inoculation of cucumber cotyledons treated with carbendazim, iprodione or carbendazim + diethofencarb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号