首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The upper horizons of old vineyard soils have substantial copper contents due to the traditional use of copper-based fungicides. Total copper levels in eight vineyard soils in the Rías Baixas area of Galicia (northwestern Spain) ranged from 60 to 560 mg kg(-1) (mean +/- SD = 206 +/- 170 mg kg(-1)). The adsorption of the fungicides metalaxyl (pK(a) = 1.41) and penconazole (pK(a) = 2.83) by these soils was determined using fungicide solutions of pH 2.5 and 5.5, and desorption of fungicide adsorbed at pH 5.5 was also determined. In all cases, Freundlich equations were fitted to the data with R (2) > 0.96. Penconazole was adsorbed and retained more strongly than metalaxyl, with K(F) values more than an order of magnitude greater. In the desorption experiments, both fungicides exhibited hysteresis. Soil copper content hardly affected the adsorption of metalaxyl, but K(F) values for adsorption of penconazole increased at a rate of about 0.1 mL(n) (microg of penconazole)(1-n) (microg of Cu)(-1), which is attributed to the formation of Cu(2+)-penconazole complexes with greater affinity for soil colloids than penconazole itself. Because the dependence of K(F) for penconazole adsorption on copper content was the same at both pH values, complex formation appears not to have been affected by the solubilization of 6-17% of soil copper at pH 2.5. A similar copper dependence, or lack of dependence, was observed when 100-1000 mg kg(-1) of copper was added as Cu(NO(3))(2).2H(2)O to the solutions from which the fungicides were adsorbed.  相似文献   

2.
Copper fungicide residues in Australian vineyard soils   总被引:2,自引:0,他引:2  
Copper (Cu) concentrations were measured in Australian vineyard soils to assess the extent and magnitude of Cu accumulation resulting from the use of Cu-based fungicides and to indicate the likely risks to long-term soil fertility. Soil samples were collected from 98 vineyards across 10 grape-growing regions of Australia and analyzed for total Cu concentrations. Ninety-six percent of vineyards surveyed had elevated Cu concentrations in soil compared to the background Cu concentrations in nearby soil in its native state. Concentrations of total B, Co, Cr, Pb, and Zn were similar to background concentrations and below reported toxicity guideline values. Cu concentrations in Australian vineyard soils were generally much lower (6-150 mg kg (-1)) than those reported in the soils of vineyards in parts of Europe (i.e., 130-1280 mg kg (-1)). Concentrations of total Cu were generally below those concentrations reported to cause lethal effects to soil invertebrates; however, Cu exceeded concentrations known to cause sublethal effects (i.e., inhibit growth, affect reproduction, induce avoidance behavior) to those (or related) invertebrates.  相似文献   

3.
In the present work, a study was made of the effect of the addition of liquid and solid wine distillery wastes (WLW and WSW) to vineyard soils on the adsorption and leaching of penconazole and metalaxyl, two fungicides of different hydrophobic character that are widely used in vine cultivation. The study of these processes is of great interest, since currently the green filter system is implemented simultaneously in vine cultivation and as an alternative to classic purification methods of such organic wastes. Three vineyard soils selected from the La Rioja region (NW Spain) were used. Adsorption isotherms of the 14C-labeled fungicides by the soils in aqueous medium and in WLW medium were obtained, together with the percolation curves of the fungicides in packed soil columns under saturated flow conditions. The adsorption and leaching of metalaxyl in a soil amended with WSW were also studied. The Freundlich Kf constants indicated an increase in the adsorption of both fungicides by the soils in WLW medium as compared to aqueous medium. The amounts of penconazole leached in the three soils when they were washed with water and WLW ranged between 3.18 and 39.3% and between 2.00 and 10.4%, respectively, of the total fungicide added to the columns. In the case of metalaxyl, these amounts represented 69.1-100 and 91.6-117%. Variations were also observed in the shape and parameters of the breakthrough curves obtained in both systems and in the presence of WSW. The soluble organic compounds of WLW must be retained by the soil components, creating new adsorbent hydrophobic surfaces, which increase the retention in the soil of the highly hydrophobic compound penconazole. In the case of metalaxyl, which is very water soluble, the soluble organic compounds of WLW seem to contribute to the increase in its leaching, whereas the WSW favors the opposite effect. The results obtained, indicating modifications in the adsorption and leaching of penconazole and metalaxyl in the presence of WLW and WSW, show that further studies should be carried out on the adsorption and mobility of the fungicides in soils from the vineyard zone, which in turn are used as a green filter purification system of wine wastes.  相似文献   

4.
Abstract

The adsorption and mobility of herbicide, metamitron, in 41 soils samples from the province of Salamanca (Spain) was studied. Thirty‐four of the samples assayed were from irrigated soils and seven were from natural, uncultivated soils with organic matter contents above 3%. The correlations between the Freundlich K constants, Kd distribution coefficients, and Rf mobility parameters and the soils parameters were determined. Considering all the soils, the soils with organic matter contents above 2% or the soils with organic matter contents below 2%, significant correlations (p<0.001 to p<0.05) were found between K and Kd and the organic matter content of the soils. There were also a significant correlations (p<0.05) of K and Kd with clay+silt and clay contents of soils with organic matter contents below 2%. The adsorption of the herbicide by isolated soil components confirmed the results obtained with the soils and point to the importance of the exchangeable cation nature of the samples in the adsorption process. Based on Rf values obtained by TLC, the herbicide was found to be moderately mobile in 74% and mobile in 26% of the soils studied. The results of metamitron leaching by thin layer chromatography (TLC) and in undisturbed soil columns indicated the influence of organic matter content and of soil texture on the mobility of this herbicide.  相似文献   

5.
Abstract

We investigated boron (B) adsorption characteristics for 16 acid alluvial soils as a function of equilibrium B concentration (0–80 μg/mL) and the effect of soil properties on such adsorption. The adsorption data for the soils could be described by Freundlich, Temkin, and BET isotherm equations over the entire concentration ranges studied, and by Langmuir and Eadie‐Hofstee equations only over a limited range. In general, the B adsorption capacity and the energy of retention of the soils calculated from different equations are low, the average Langmuir adsorption maxima and bonding energy constant being 21.47 μg/g and 0.113 mL/μg, respectively, making B susceptible to leaching losses. Simple and multiple regression analysis show that the adsorption capacities are significantly influenced by organic carbon (C), cation exchange capacity (CEC), and different forms of aluminium (Al) content in soils. The energy related constants are also influenced by the forms of Al in soils. Existence of significant correlations between constants obtained from different equations confirmed the adsorption characteristics of the soils.  相似文献   

6.
Abstract

The capacity of 36 Western Australian soils to adsorb phosphorus (P) was measured by three different methods: P retention index (PRI), P buffering capacity (PBC), and P adsorption (PA). The P adsorption values measured by all three methods varied markedly with soil type. When the P adsorption values were correlated with several soil properties, using simple and multiple linear regressions, PRI, PBC, or PA values were found to be significantly correlated with the aluminium oxide content of the soils. In addition, PBC and PRI was correlated with organic carbon content. The role of aluminium oxide (Al2O3) in the soil was apparently more important in determining the P adsorption capacity of the soils than that of iron (Fe), even though the iron oxide (Fe2O3)content of all the soils studied was consistently higher than the aluminium oxide content. The relationship between P adsorption and the selected soil properties, as determined by multiple linear regression, explained 45–59% of the variation: arabic PRI = ‐10.87 + 9.94 organic C (%) + 160.02 Al2O3 (%), r2 = 0.45.

arabic PBC = ‐0.004 + 1.532 organic C (%) + 22.26 Al2O3 (%), r2 = 0.57.

arabic PA = 3.52 + 248.75 Al2O3 (%), r2 = 0.59.

  相似文献   

7.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

8.
Cyprodinil and fludioxonil are new-generation fungicides that are employed to protect grapevines from botrytis and various rots. In this work, their adsorption and desorption dynamics in eight vineyard soils from Galicia (northwestern Spain) were examined in batch and column experiments. Both fungicides exhibited linear adsorption isotherms, with more ready adsorption (greater Kd) of fludioxonil. Kd values for cyprodinil were significantly correlated with soil organic matter content (r 2= 0.675, p < 0.01). Both pesticides exhibited adsorption-desorption hysteresis, but desorption was easier and more variable for cyprodinil (12-21%, RSD = 17%) than for fludioxonil (3-5%, RSD = 13%) and appeared to depend on the formation of irreversible bonds in the former case and on poor solubility in the latter. A linear adsorption model involving nonequilibrium conditions and an irreversible adsorption term was found to reproduce transport behavior accurately.  相似文献   

9.
Metalaxyl adsorption and desorption behavior in acid soils were evaluated via batch and stirred-flow chamber experiments. On the basis of batch experiments (adsorption curves of the Giles C-type), metalaxyl has a low affinity for acid soils. Also, as derived from batch and stirred-flow chamber tests, its adsorption in acid soils is dictated mainly by their organic matter and clay contents. The high correlation between these two variables makes it rather complicated to resolve their effects. Metalaxyl adsorption occurs largely (80-99%) via fast adsorption reactions. On the other hand, the pesticide is desorbed in variable proportions (30-100%). The desorption parameters obtained by fitting the results to a pseudo-first-order reaction were correlated with no edaphic variable; however, the q(0)/q(max) ratio, which is a measure of reversibility in the adsorption-desorption process, exhibited significant negative correlation with the organic matter and clay contents.  相似文献   

10.
Parameters affecting extraction of selected fungicides from vineyard soils   总被引:1,自引:0,他引:1  
This paper describes a sensitive method for the simultaneous quantification of eight commonly used grapevine fungicides in vineyard soils: cyprodinil, fludioxonil, metalaxyl, penconazole, pyrimethanil, procymidone, tebuconazole, and vinclozolin. The fungicides are extracted from the soil sample by sonication with water followed by shaking with ethyl acetate and are quantified by gas chromatography with mass spectrometry. Average extraction efficiencies in a sample of seven spiked, previously fungicide-free soils were > or =79% for all of the analytes, method precisions were > or =17%, and quantification limits were < or =50 microg/kg. However, because recoveries varied considerably from soil to soil, there is a need to control for soil matrix differences (mainly soil pH and exchangeable calcium content); as a consequence, soil fungicide contents must be quantified by the standard additions method. When the method was applied in this way to soil samples from vineyards belonging to the specified wine-growing region of Rias Baixas (Galicia, northwestern Spain) taken at the beginning of October (1 month after the crop's final treatment), levels of fludioxonil as high as 991 microg/kg were found, but at the start of the season (9 months after the previous crop's final treatment) only fludioxonil was detected at levels higher than its limit of quantification (45 and 52 microg/kg).  相似文献   

11.
Decomposition of benomyl and carbendazim was studied in field experiments following repeated applications during autumn to winter cereals. Effects of the fungicides on straw decomposition, balance of straw fungal flora and mineralization of nitrogen in the soils were investigated in field and in laboratory experiments. Persistence in the field of the fungicides at doses of 0.1–0.2 kg ha?1 was 9–12 months in clay soils and 12 months or longer in sand soil. Decomposition of straw in the field was not affected in clay soils by doses up to 2 kg ha?1. In sand soil, doses up to 0.5 kg ha?1 gave no effect but in one case at 2 kg ha?1 the initial stages of straw decomposition were slightly inhibited. All doses tested in both clay and sand soils caused changes in composition of the straw fungal flora. In a laboratory experiment with benomyl in sand soil an increase in rate of nitrate accumulation was observed at a dose corresponding to 2 kg ha?1.  相似文献   

12.
The formation of the adsorption layers of polyelectrolytes (PEs) with the development of a mineralogical matrix on the surface of soil minerals and soils (kaolinite, montmorillonite, quartz sand, gray forest soil, and a chernozem) were established on the basis of direct measurements and IR spectroscopy. The differences in the adsorption kinetics of polyacrylamide (PAM) and polyacrylic acid (PAA) were revealed depending on the mineral nature, which were confirmed by the calculated values of the effective adsorption constants. It was found that the limit values of the PAM and PAA adsorption derived from experimental measurements for all the minerals were significantly higher than the values calculated for the formation of a monomolecular layer, which indicated adsorption on the surface of not only separate macromolecules but also secondary PE structures such as packets or fibrils. The IR spectroscopy studies confirmed the differences in the adsorption mechanism of PEs on soil minerals (from physical adsorption to chemisorption with the formation of surface compounds due to polar groups of PEs and surface groups of mineral particles). As a result, a cluster-matrix structure controlling the physicochemical properties of the modified surface was developed on the surface of natural aluminosilicates and soils.  相似文献   

13.
Copper-based fungicides have been applied in vineyard soils for a long time, which has resulted in increasing soil Cu concentration. However, information relating to non-target effects of these fungicides on microorganisms of these soils is scarce. The aim of this study was to determine the potential enzyme activities of vineyard soils in relation to Cu content and evaluate the potential risks of long-term application of Cu-based fungicides. For this purpose, a wide range of soil samples, having different total, exchangeable and bioavailable Cu contents, were collected from six regions of quality wines located in the NW Iberian Peninsula, and the activity of dehydrogenase, β-glucosidase, urease and phosphatase were measured. Overall, the results obtained indicate adverse effects of Cu on dehydrogenase, β-glucosidase and phosphatase activities and an inconsistent effect on urease activity. Threshold Cu concentrations at which changes in the enzyme activities became evident were 150-200 mg total Cu kg−1 and 60-80 mg bioavailable Cu kg−1.  相似文献   

14.
The formation features of nanoadsorption polyelectrolyte (PE) layers with the formation of a mineral-organic matrix on the surface of clay minerals and soils (kaolinite, montmorillonite, quartz sand, gray forest soil, and chernozemic soil) have been elucidated by direct adsorption measurements. It has been found that the experimental values for the limit adsorption of polyacrylamide (PAM) and polyacrylic acid (PAA) on all the minerals are significantly higher than the calculated values for the formation of a monolayer. This indicates adsorption on the surface of not only separate macromolecules but also secondary PE structures as packets or fibrils determining the cluster-matrix structure of the modified surface. The study of the electro-surface properties (electrophoretic mobility, electrokinetic potential, pH, and electroconductivity) of mineral and soil particles adsorption-modified with PEs has confirmed the differences in the adsorption mechanisms (from physical sorption to chemisorption) with the formation of surface compounds depending on the different polar groups of PEs and the mineral type.  相似文献   

15.
Abstract. The interaction of caesium isotopes with soil has been widely investigated and the influence of important soil properties studied. From the results of such work and a detailed knowledge of the physico-chemical properties of soils it is possible to classify Cumbrian soil according to its ability to immobilize caesium. The 'immobilization capacity' is a reflection principally of the clay mineral content and type, organic content, pH, ammonium content and potassium status. Although it is not quantifiable, the immobilization capacity permits ranking of the soils and indicates which areas may give rise to persistent caesium problems. Combination of the soil sensitivity classification with deposition data for Cumbria indicates that the mountainous region in the south-west of the county is the most vulnerable. This conclusion is supported by field evidence, since the area identified coincides closely with that where sheep movement and slaughter are restricted and where caesium remains persistently available to the plant-animal chain.  相似文献   

16.
A method for extraction, cleanup, and simultaneous gas chromatographic detection of carbofuran, metalaxyl, and simazine in soils has been developed. Pesticide residues were extracted from soil with acetone containing 10% 0.2M HCl-KCl buffer (pH 2.0), cleaned up with methylene chloride-carbonate buffer (pH 10.7) solvent partitioning and solid-phase extraction on disposable silica gel columns, and quantitated with gas chromatography using a Supelcowax 10 megabore capillary column and a nitrogen-selective detector. Method limits of detection were 0.02 microgram/g for the 3 pesticides in surface soils (0-30 cm depths) and 0.02, 0.02, and 0.005 microgram/g in soils below 30 cm (subsoils) for carbofuran, metalaxyl, and simazine, respectively. Recoveries for carbofuran, metalaxyl, and simazine were 92.6 +/- 5.5, 93.6 +/- 5.0, and 88.4 +/- 6.7%, respectively, when soil samples were spiked with pesticide concentrations ranging from 0.02 to 2.0 micrograms/g.  相似文献   

17.
Dissolved organic carbon (DOC) and nitrogen (DON) have been hypothesized to play a central role in nutrient cycling in agricultural soils. The aim of this study was to investigate the annual dynamics of DOC and DON in a Greek vineyard soil and to assess the potential role of DON in supplying N to the vines. Our results indicated that significant quantities of DOC and DON existed in soil throughout the year and that peaks in concentration appeared to correlate with discrete agronomic events (e.g. onset of irrigation and plowing). Both field and laboratory experiments showed that free amino acids were rapidly mineralized in soil and that consequently free amino acids represented only a small proportion of the soil's total soluble N. Due to rapid nitrification the soil solution N was dominated by NO3. Based upon the calculation of a plant-soil N budget and previous studies on N uptake in Vitis vinifera L., it is likely that DON uptake does not directly supply significant amounts of N to the plant. As the soil was not N limited we hypothesize that amino acids are used by the microbial community more as a source of C rather than a source of N. While we conclude that DON constitutes a significant N pool in vineyard soils further work is required to chemically characterize its constituent units and their relative bioavailability so that their overall role in N cycling can be determined.  相似文献   

18.
Introduction

Recent investigations in soil science have shown that physical properties of paddy soils are of great importance to rice-production. There is extensive literature on the chemical property of paddy soils, but little information on the physical property of paddy soils, especially under waterlogged condition. For studying the physical property of flooded paddy soils, it is necessary to collect the soil cores under an undisturbed condition.  相似文献   

19.
A laboratory experiment was conducted to study the impact of metalaxyl application at different concentration levels on microbial biomass and the biochemical activities in soil. A dissipation study of metalaxyl highlighted 52.5-56.8% loss of metalaxyl due to the presence of microbial activity. However, a small but significant decline in microbial biomass was observed on 60 d of incubation period. Metalaxyl showed a highly significant effect in decreasing total N and organic C content in soil from 0 to 30 d of incubation. Dehydrogenase, phosphatase, urease, arylsulphatase and β-glucosidase activities were monitored in metalaxyl treated soils. Except urease, all the enzymatic activities initially increased and then decreased. Urease activity showed a continuous gradual decrease throughout the experimental period. Thus, metalaxyl might influence the growth and development of crop-plants, since it has direct impact on nutrient recycling and energy flow in soil.  相似文献   

20.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号