首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The objective of this paper was to investigate the influence of different nitrogen (N) application rates to some morphological and physiological features of leaf blades, including leaf thickness, chlorophyll content at different leaf ages and chlorophyll a/b ratios. A paddy field and a cement tank experiments were conducted simultaneously. Rice leaf thickness was measured through a specially developed displacement sensor. Meanwhile, chlorophyll content was estimated using chlorophyll meter (SPAD) and spectrophotometer after ethanol extraction of leaf samples. With the increase of N application, leaf thickness became thinner and chlorophyll a/b ratios decreased. Moreover, the sensitivity of the SPAD readings of the same leaf at different leaf ages to N rates was assessed through coefficients of variation (CV). CV of SPAD readings increased from 8.8% to 21.6% during leaf lifetime, which indicates that SPAD readings became more and more sensitive to nitrogen rates as leaf aged. Therefore, SPAD readings of the lower leaves, which were physiologically older than the upper ones, were more sensitive to nitrogen rates.  相似文献   

2.
Nitrogen (N) management is critical in optimizing potato yield and quality and reducing environmental pollution. Six N rates from 34 to 270 kg ha−1, and different timing of N application were used in a 3-year field experiment to contrast SPAD-502 chlorophyll meter and QuickBird satellite imagery data against the conventional petiole sampling technique for assessing canopy N status. Overall treatment variations in SPAD readings were consistent with those in petiole nitrate-nitrogen (NO3-N) concentrations. However, the ability of the SPAD meter to detect treatment differences varied with growth stage and growing season. Severe N deficiency was detected about 1 month after emergence with SPAD readings, but as early as 2 weeks after emergence with petiole NO3-N concentrations. Petiole NO3-N concentrations tended to differentiate more treatment variations than SPAD readings at all growth stages except at hilling. N deficiency was detected with QuickBird image-derived vegetation indices (VIs) at the hilling stage in 2002, but not in 2003. At the post-hilling stage, treatment differences in VI values were minimal and insignificant except very late in the growing season. SPAD meters could be used as an indirect method for detecting N deficiency at the hilling stage when making supplemental N applications, but they are not as sensitive as the petiole sampling method. The sensitivity of QuickBird imagery to canopy N variations needs to be further tested with more pixel data. However, cloud interference and high cost of images could limit the use of QuickBird data in making timely management decisions.  相似文献   

3.
应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究   总被引:57,自引:7,他引:50  
2003~2004年以中筋小麦品种扬麦11号、WH510和徐州26为试验材料,研究不同生育时期(拔节、孕穗、抽穗)不同叶位叶片SPAD值变化特征及其与叶片叶绿素含量、全氮含量及NO3--N含量的关系,旨在为小麦上应用SPAD快速诊断施肥提供理论依据。结果表明,不同品种及不同叶位小麦叶片SPAD值明显不同;小麦叶片SPAD值与叶绿素含量之间的关系因品种和生育时期的不同而有明显差异,同一品种小麦不同叶位叶片SPAD值与叶绿素含量呈极显著正相关。小麦叶片SPAD值与全氮含量呈正相关,SPAD值高,全氮含量也高,可以用SPAD值估算全氮含量进行小麦氮素营养状况诊断,但同一品种不同叶位SPAD值与全氮含量的关系表现不一致,即用SPAD值来诊断小麦叶片氮含量时应选择完全展开并已进入功能盛期的叶片。小麦叶片SPAD值与NO3-N含量相关性不显著。  相似文献   

4.
《Plant Production Science》2013,16(4):293-309
Abstract

A narrow-band dual camera system demonstrated a new close-range sensing technique to seasonally track trends in leaf greenness in rice paddies. A weatherproof digital imaging system for the visible red (RED, 620?650 nm) and near infrared band (NIR, 820?900 nm) was positioned 12 m above a 600-m2 rice field. During the 2009 and 2010 paddyrice seasons, the system automatically logged images at 10-min intervals throughout the day. Radiometric corrections for the images utilized solar irradiance sensors and prior calibration to calculate 0900-1500 JST daily-averaged reflectance factors (DARF). The DARF in RED (DARF-RED) and NIR (DARF-NIR) values were transformed to provide a daily-averaged normalizeddifference vegetation index (DA-NDVI). The DA-NDVI increased more rapidly in the vegetative growth period, and reached an asymptotic plateau earlier than the DARF-NIR. From transplanting to harvest, leaf greenness values (measured by the SPAD index) were measured for the central part of the uppermost leaves of targeted canopies weekly with a chlorophyll meter. We developed a leaf greenness index (LGI), the ratio of DA-NDVI to DARF-NIR, and a simple calculation method for area means to reduce the background effect. The modified area means of LGI followed the seasonal trend in SPAD value well; its patternwas inherently different from the patterns of any of the original three parameters: DARF-RED, DARF-NIR or DA-NDVI. Throughout the paddy seasons in the two years, a regression equation for estimating SPAD values using the LGI, daily solar radiation, the cosine of angle between the view and the meridian directions and the cosine of culmination solar zenith angle performed favorably (R2=0.815). The nitrogen concentration per dry plant hill (g kg-1) had a close relation to the SPAD values estimated using the equation.  相似文献   

5.
A water and nitrogen balance model for the surface ponded water compartment of rice fields was developed. The model estimates the daily ponded water depth and the daily losses and the uses of NH4–N and NO3–N in their transformation processes. The model was applied with data obtained from two rice fields during 2005 at Thessaloniki plain in northern Greece. Significant amounts of applied irrigation water were lost with the surface runoff and deep percolation to groundwater. The gaseous losses of nitrogen (volatilization and denitrification) and nitrogen uptake by algae were the main processes of nitrogen reduction in the ponded water of rice fields. The study showed that the system of a rice field is a natural system where an important amount of influent nitrogen applied by irrigation water can be reduced. These processes decrease the possibilities of water resources contamination.  相似文献   

6.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure, but the resultant [CO2] effects on rice N concentration, uptake, efficiency and allocation remain unclear, especially under different soil N availability. Therefore, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. Averaged across all N levels and years, shoot N concentration (dry base) was lower under FACE by 1.8%, 6.1%, 12.2%, 14.3%, 12.1%, and 6.9% at early-tillering, mid-tillering, panicle initiation (PI), booting, heading and grain maturity, respectively. Shoot N uptake under FACE was enhanced by 46%, 38%, 6% and 16% on average during the growth periods from transplanting to early-tillering (period 1), early-tillering to mid-tillering (period 2), mid-tillering to PI (period 3) and heading to grain maturity (period 5), respectively, but slightly decreased by 2% in the period from PI to heading (period 4). Seasonal changes in crop response to FACE in ratio of shoot N uptake during a given growth period to that over the whole season followed a similar pattern to that of shoot N uptake, with average responses of 33%, 26%, −3%, −11% and 10% in periods 1–5 of the growth period, respectively. As a result, FACE increased final aboveground N uptake by 9% at maturity. FACE greatly reduced the ratio of leaf to shoot N content over the season, while allocation of N to stems and spikes showed an opposite trend. FACE treatment resulted in the significant increase in N use efficiency for biomass (NUEp) over the season except at early-tillering and in N use efficiency for grain yield (NUEg) at grain maturity. These results indicate that, in order to maximize grain output in a future high [CO2] environment, the recommended rates, proportion and timing across the season of N application should be altered, in order to take full advantage of strong N uptake capacity during the early growth period and facilitate N uptake after that.  相似文献   

7.
春玉米叶片SPAD值与氮含量及产量的相关性研究   总被引:8,自引:1,他引:7  
通过田间小区试验,研究不同时期玉米叶片SPAD值与叶绿素、氮含量及产量的相关性,确定SPAD值测定的最佳叶位及时期。结果表明,上位叶SPAD值对氮素的敏感时期顺序为12叶期>10叶期>8叶期;穗位叶SPAD值对氮素的敏感时期顺序为抽雄期>灌浆期>蜡熟期。叶片SPAD值可以很好的反映植株叶绿素和氮含量及产量水平,以某一特定叶片的SPAD值来诊断春玉米氮素营养状况和推荐追肥时期时,10叶期是较为理想的测定时期;作为早期预测玉米产量的指标,12叶期为最佳时期。测定SPAD值方法简便、快捷,不破坏叶片生长,可作为早期预测玉米产量的指标。  相似文献   

8.
《Plant Production Science》2013,16(3):185-189
Abstract

The correlations of the reading of a portable chlorophyll meter (SPAD-502) with the chlorophyll and N contents of leaves of two faba bean (Vicia fabaL.) cultivars, Japanese (Ryousai-issun) and Egyptian (Cairo 241), were examined. The SPAD readings positively correlated (ρ<0.01) with the chlorophyll contents and the r2 values were 0.99 and 1.00 for Ryousai-issun and Cairo 241, respectively. A close linear relationship 0.001) was observed between SPAD reading and total leaf N content at the pod development stage of faba bean plants with r2 = 0.88 and 0.99 for Ryousai-issun and Cairo 241, respectively. The SPAD reading was the highest in the 2nd to 4th leaves counted from the top (the youngest fully expanded leaves). The changes in leaf chlorophyll content of both cultivars from 3 weeks after transplanting to the ripening stage showed an incomplete “M” type curve. SPAD readings were significant¬ly higher in Ryousai-issun than in Cairo 241 throughout the growth season. Organic fertilizers application improved faba bean plant growth. These results suggest that the SPAD-502 chlorophyll meter can be used to measure chlorophyll and nitrogen contents of faba bean leaves for quick screening faba bean genotypes.  相似文献   

9.
冬油菜叶片SPAD的时空分布和氮素诊断的叶位选择   总被引:5,自引:0,他引:5  
在大田试验条件下测定分析不同施氮水平冬油菜关键生育期SPAD值的时空分布特征,并对不同叶位及叶片不同部位SPAD值与叶绿素含量、叶片含氮量、植株全氮含量及籽粒产量之间的相关性进行分析,探求应用SPAD仪诊断油菜氮素营养状况的最佳测试叶位及位点。结果表明,油菜主茎顶部4片完全展开叶SPAD值存在显著空间差异,增加施氮量能显著提高各叶位叶SPAD值,同时减少叶位间的差异;六叶期、蕾薹期以顶4叶(TL4)SPAD值对氮素的敏感性最大,初花期和盛花期则最低。不同部位间,六叶期和初花期以中部SPAD值对施氮量增加的响应最敏感,盛花期则最迟钝,蕾薹期介于顶部和基部之间。综合分析认为,应用SPAD仪监测油菜氮素营养状况的最佳测试叶位和位点为主茎顶4片完全展开叶中部,该部位SPAD值与叶绿素含量、叶片含氮量和植株全氮含量之间的相关性均达到显著或极显著水平,满足氮素营养快速诊断的要求。  相似文献   

10.
Unbalanced and excessive use of N-fertilizers causes environmental pollution, lodging of plants and increased pest pressure, in addition to increased cost to farmers from excessively applied fertilizers and pesticides. N application at the right time and in right amount is critical for healthy plant and environment. Rice leaf color intensity is directly related to leaf chlorophyll content and leaf nitrogen status. The concept for the use of leaf color as an indicator to apply N in rice was crystallized during 1990s. The International Rice Research Institute and the Philippine Rice Research Institute developed a leaf color chart (LCC) that helps guide farmers for real-time nitrogen management in rice farming. The technology is inexpensive, and easily affordable by most resource poor rice farmers. In 2003 we initiated a farmer-participatory research to validate real-time N management in rice by the use of LCC in West Bengal state of India. After 3 years of validation research, a survey was conducted to assess the adoption and impact of LCC. The survey was conducted in both intervention and adjacent control villages and data were collected from 20% farm households selected randomly. In this paper, we report findings of the study on the determinants of adoption of LCC, and its effect on fertilizer and pesticides use.  相似文献   

11.
The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is the most injurious insect pest in US rice production. Yield losses in excess of 25% can occur from severe infestations. Management demonstrations were conducted in the 2008, 2009, 2010, and 2011 growing seasons to evaluate the use of commercially available insecticides to control L. oryzophilus in commercial rice fields. The demonstration tests, conducted on farms throughout Louisiana, compared the efficacies of recently registered seed treatment insecticides to untreated controls and to foliar applications of pyrethroids. Efficacy was assessed by collecting root/soil core samples three to four weeks after application of permanent flood and counting numbers of larvae and pupae in core samples. Tests were replicated across locations in multiple rice-producing Louisiana parishes. Densities of larvae and pupae in core samples exceeded the larval threshold (three larvae or pupae per core sample) in over 80% of untreated plots/cuts, confirming the ubiquity and severity of this insect as a pest of rice. Use of chlorantraniliprole (Dermacor® X-100, DuPont™ Crop Protection, Wilmington, DE), thiamethoxam (CruiserMaxx® Rice, Syngenta® Crop Protection, Greensboro, NC), and clothianidin (NipsIt Inside®, Valent® USA Corporation, Walnut Creek, CA) seed treatments significantly reduced L. oryzophilus infestation compared to untreated checks. Fewer larvae and pupae were observed in rice treated with chlorantraniliprole than in rice treated with other insecticides.  相似文献   

12.
Large field to field variability restricts efficient fertilizer N management when broad based blanket recommendations are used in maize (Zea mays L.). To achieve higher yields and to avoid nitrogen (N) deficiency risks, many farmers apply fertilizer N in excess of crop requirement in maize. Field experiments were conducted for five years (2005–2009) to establish and evaluate threshold leaf colour to guide in-season need based fertilizer N topdressings in four maize genotypes. Colour (of the first top maize leaf with fully exposed collar) as measured by comparison with different shades of green colour on a leaf colour chart (LCC) and maize grain yield was significantly correlated. The Cate–Nelson plot of chlorophyll (SPAD) meter/leaf colour chart values against relative grain yield of 0.93 for the experiments conducted during first two years indicated that LCC shade 5 during vegetative growth stages and LCC shade 5.5 at silking stage (R1) can guide crop demand driven N applications in maize. Evaluation of the established threshold leaf greenness during the next three years revealed that fertilizer N management using LCC 5 starting from six-leaf (V6) stage to before R1 stage resulted in improved agronomic and N recovery efficiency in different maize genotypes. There was no response to fertilizer N application at R1 stage. The study revealed that in maize, fertilizer N can be more efficiently managed by applying fertilizer N dose based on leaf colour as measured by LCC than blanket recommendation.  相似文献   

13.
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the “red edge” of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI–CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m−2) from Zadoks 14–37 with an r2 of 0.97 and RMSE of 0.65 g N m−2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.  相似文献   

14.
浙东平原水稻土油菜田间试验施用不同氮、硫水平的结果显示:(1)油菜籽产量随氮肥用量的增大而增加,施N(50-200kg/hm^)不施硫肥条件下,增产幅度为2.0%-11.8%,施N和施S(30kg/hm^2)条件下,增产幅度为2.4%-12.7%。(2)不同施氮水平下,施硫增产油菜籽5.4%-6.9%。(3)油菜氮吸收量随施氮量的增加而呈增加趋势,低氮水平下施用硫肥促进油菜氮吸收量加大。(4)不同施氮水平的产投比为1.5-4.3,施用硫肥的产投比达5.2-6.7,氮硫配施可提高施用氮肥的产投比。  相似文献   

15.
This study was conducted in an attempt to determine the proper nitrogen and phosphorus application levels, nitrogen split application ratio, and application method for environmental-friendly rice production in a salt-affected rice paddy field, which was located in the Saemangeum reclaimed tidal belt on the western coast of South Korea, between April 1, 2003 and October 10, 2004. All treatments were replicated three times in a randomized block design (5 m × 4 m plot) with 11 treatments (total 33 plots). We designed three treatments for the evaluation of reasonable application levels of nitrogen and phosphorus fertilizers (A1–A3); five treatments to evaluate the nitrogen split application system (T1–T5); and three treatments to determine the proper application for chemical fertilizer (M1–M3). There was no significant difference of amylose and protein content among the application levels, application methods, and nitrogen split application ratios (P < 0.05). No significant differences in grain yield and yield components of rice were observed among the different application levels, application methods, and nitrogen split application ratios (P < 0.05). In order to save labor in agricultural households, preserve or enhance the grain quality of rice, and reduce nutrient losses, we determined that the optimum application level of nitrogen fertilizer was 140 kg ha−1; the application split ratio of nitrogen fertilizer at four different periods was 40% for basal fertilization, 20% for maximum tilling stage, 30% for the panicle formation stage, and 10% for the booting stage; and the best application methods were deep layer application and whole layer application.  相似文献   

16.
The fertilization management of the rice crop in Piedmont was analyzed at a regional scale, and the agronomic and environmental sustainability of the actual fertilization strategy of rice was evaluated through the analysis of its effect on the soils and waters quality. On average, a total amount of 127 kg ha−1 of N, 67 kg ha−1 of P2O5 and 161 kg ha−1 of K2O were supplied to the rice crop. In most cases N and P fertilization was rather well balanced with crop removal. The N balance was in the range ±50 kg for 77% of the surface. The low concentration of N in the groundwater reflected the small N surplus. P fertilization resulted to be smaller than removal for 53% of the surface. Nevertheless, the soil extractable P was very high, probably because of former higher P inputs. This resulted in a high concentration in water courses and aquifers. The K fertilization was excessive (surplus >100 kg ha−1) for 53% of the surface, but most soils showed a low K content. K is probably contributing to nutrient leaching to a great extent. The average soil organic matter (SOM) content of paddy fields was higher than that of normally-cultivated soils in Piedmont, and the C/N was higher, owing to the low mineralization rate in waterlogged conditions. The SOM content was in relation with the management of the crop residues, as the tradition of burning straw after harvest was still widespread on 65% of the paddy surface.  相似文献   

17.
本研究旨在探讨单粒精播花生生理性状和产量性状对密度和氮肥的响应。选择山东省烟台市招远鲁东丘陵地,作物两年三熟。2018和2019年,以出口大花生品种花育22为试验材料进行大田试验,设置了3个种植密度(12万、20万、28万株/hm2,分别表示为D1、D2和D3)和4个施氮量(0、50、115、180 kg/hm2,分别表示为N0、N50、N115、N180),于不同生育时期调查分析花生SPAD值、植株和产量性状。研究结果表明,种植密度和施氮量均显著影响花生叶绿素含量、干物质量、植株性状和产量性状,且两者互作效应显著。在D2密度条件下,花生荚果产量较D1密度和D3密度分别高24.31%~45.04%和10.57%~15.13%,成熟期叶绿素含量分别高3.70%~27.82%和6.10%~18.94%,成熟期干物质量分别高7.31%~32.34%和10.65%~34.59%,且差异性均达到了显著水平。在D2密度下,施氮量在50~180 kg/hm2范围内,花生荚果产量、叶绿素含量和干物质量均显著高于无氮处理,各施氮处理表现为N115 > N180 > N50 > N0,以施氮量为115 kg/hm2时花生荚果产量最大,较N50和N180处理分别提高了6.83%和3.90%,叶绿素含量、干物质量和植株性状也协同提高。综合考虑生理性状、产量性状等因素,在本试验条件下,单粒精播花生栽培在低密度12万株/hm2下,花生主要产量性状随着施氮量的增加而增加,以种植密度为20万株/hm2,施氮量为115 kg/hm2较为适宜。  相似文献   

18.
何增明 《作物研究》2002,16(1):26-27
为找出灰黄泥田早稻氮肥最佳施用量 ,降低施肥成本 ,减少水质污染 ,于 1999~ 2 0 0 1年在永州开展了不同施氮量的试验。以无氮肥区为对照 ,在每公顷施用普钙 30 0 kg,氯化钾 15 0 kg为肥底的基础上 ,分别施用尿素态纯氮 6 0 ,12 0 ,180 ,2 40 kg,以金优 40 2为试验材料。结果表明 ,每公顷施纯氮 16 5 kg,可提早分蘖 ,增加有效穗数 ,且可增加株高和穗长 ,施肥量对产量的效应方程为 y =3378.6 30 .97x - 1.15 4x2。  相似文献   

19.
Abstract

The objective of this study was to establish the correlation of the chlorophyll meter (SPAD) readings with the contents of chlorophyll (Chl) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the gross photosynthetic rate (Pg), and the maximum quantum yield of photosystem II (PSII) (Fv/Fm) in flag leaves of rice (Oryza sativa L.) in ripening stage. The SPAD readings significantly correlated with the Chl content, the Rubisco content, Pg and Fv/Fm (R2 = 0.848, 0.648, 0.671 and 0.712, respectively), which suggests that the SPAD meter has the potential to estimate the photosynthetic capacity of the flag leaves. However, both Pg and Fv/Fm had a stronger relationship with the Rubisco content than the SPAD readings, indicating that the PSII photochemical and CO2 assimilation capacities are strongly influenced by the Rubisco content. Therefore, accurate calibration would be indispensable to obtain the physiological information from the SPAD readings of flag leaves.  相似文献   

20.
氮肥运筹对江汉平原稻茬小麦产量及氮效率的影响   总被引:1,自引:0,他引:1  
为给江汉平原稻茬小麦高产高效栽培中氮肥的合理运筹提供理论依据,以郑麦9023为材料,在中肥力和高肥力土壤条件下开展氮肥运筹田间试验(设0、135、180和225 kg·hm-2四个施氮量,分别用N0、N1、N2、N3代表;氮肥基追比设10∶0∶0、7∶3∶0、1∶1∶1三个水平,分别用M1、M2、M3代表),研究了不同氮肥运筹对江汉平原稻茬小麦产量、干物质积累量、氮素积累与运转及氮效率的影响。结果表明,开花期到成熟期小麦旗叶SPAD值和LAI均随着施氮量的增加和氮肥基追比的降低而提高。施氮量相同时,干物质积累量在苗期以M1处理最高,拔节期到开花期M2处理最高,成熟期为M3处理最高;氮肥基追比相同时,干物质积累量随施氮量的增加而增加。以上指标在中、高肥力点变化趋势表现一致,高肥力点小麦的SPAD值、LAI和干物质积累量整体上高于中肥力点。在相同施氮量下,小麦产量、有效穗数和穗粒数均表现为M1<M2<M3,千粒重与穗粒数呈负相关;当氮肥基追比相同,不同施氮量间产量表现为N1<N2<N3,有效穗数和穗粒数随施氮量的增加显著提高,千粒重呈下降趋势。土壤肥力对小麦产量和氮效率的影响大于施氮量。高肥力点小麦的产量、氮肥表观利用率、氮肥农学利用率和氮素生产力均高于中肥力点。在135~225 kg·hm-2施氮量范围内,小麦开花期和成熟期的植株氮积累量、氮肥表观利用率和氮肥农学利用率均随着施氮量的增加和追肥时期的后移显著提高。在本试验条件下,中肥力点小麦在施氮量为225 kg·hm-2、基追比例为 1∶1∶1处理下获得最高产量和氮利用效率。高肥力点小麦在施氮量为180 kg·hm-2、基追比例为1∶1∶1处理下可获得较高的产量和氮肥农学利用率。这两种氮肥运筹模式可作为江汉平原小麦在中肥力和高肥力土壤条件下兼顾高产和高氮肥利用效率的氮肥运筹模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号