首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field tracer experiment, simulating point source contamination, was conducted to investigate attenuation and transport of atrazine, hexazinone and procymidone in a volcanic pumice sand aquifer. Preliminary laboratory incubation tests were also carried out to determine degradation rates. Field transport of the pesticides was observed to be significant under non‐equilibrium conditions. Therefore, a two‐region/two‐site non‐equilibrium transport model, N3DADE, was used for analysis of the field data. A lump reduction rate constant was used in this paper to encompass all the irreversible reduction processes (eg degradation, irreversible adsorption, complexation and filtration for the pesticides adsorbed into particles and colloids) which are assumed to follow a first‐order rate law. Results from the field experiment suggest that (a) hexazinone was the most mobile (retardation factor R = 1.4) and underwent least mass reduction; (b) procymidone was the least mobile (R = 9.26) and underwent the greatest mass reduction; (c) the mobility of atrazine (R = 4.45) was similar to that of rhodamine WT (R = 4.10). Hence, rhodamine WT can be used to delimit the appearance of atrazine in pumice sand groundwater. Results from the incubation tests suggest that (a) hexazinone was degraded only in the mixture of groundwater and aquifer material (degradation rate constant = 4.36 × 10?3 day?1); (b) procymidone was degraded not only in the mixture of groundwater and aquifer material (rate constant = 1.12 × 10?2 day?1) but also in the groundwater alone (rate constant = 2.79 × 10?2 day?1); (c) atrazine was not degraded over 57 days incubation in either the mixture of aquifer material and groundwater or the groundwater alone. Degradation rates measured in the batch tests were much lower than the total reduction rates. This suggests that not only degradation but also other irreversible processes are important in attenuating pesticides under field conditions. Hence, the use of laboratory‐determined degradation rates could underestimate reduction of pesticides in field conditions. © 2001 Society of Chemical Industry  相似文献   

2.
3.
为保证农药登记残留试验水平,农业部农药检定所2010年组织了78个实验室参加了茶饮料中莠去津、吡虫啉、哒螨灵、腐霉利、乐果、高效氯氰菊酯和咪鲜胺7种农药残留检测能力验证试验。统计分析结果表明,7种农药全部合格的单位有41个(52.6%),6种农药合格的有14个(17.9%),5种农药合格的有11个(14.1%),4种农药合格的有3个(3.8%),3种农药合格的有4个(5.1%),2种农药合格的有2个(2.6%),只有1种农药合格的有1个(1.3%),7种农药均不合格的有3个(3.8%)。  相似文献   

4.
5.
This study focused on whether or not atrazine could be degraded by indigenous groundwater bacteria as part of an in situ remediation approach. Groundwater was taken from an unconfined middle upper chalk site where concentrations of atrazine and nitrate were typically in the ranges 0.02-0.2 microg litre-1 and 11.6-25.1 mg NO3-N litre-1 respectively. Sacrificial batch studies were performed using this groundwater spiked with atrazine at a concentration of 10 microg litre-1 in conjunction with a minimal mineral salts liquid (Glu-MMSL) medium which contained glucose as the sole carbon source. Treatments comprised either the Glu-MMSL groundwater cultured bacteria or Pseudomonas sp. strain ADP. Results from sacrificial batches indicated the occurrence of bacterial growth and denitrification as monitored by optical density (absorbance at 600 nm) and NO3-N content. Analysis of atrazine content by solid phase extraction coupled with high-performance liquid chromatography showed no degradation of atrazine over a period of 103 days in either treatment. These results indicated that no acclimatised bacterial community featuring positive degraders to the herbicide atrazine had become established within this chalk aquifer in response to the trace levels encountered.  相似文献   

6.
Pesticide reaching surface waters will be sorbed by sediment. This sorption process and the influence of pesticide formulation have been examined at 10 degrees C in small-scale systems having 2-cm depth of sediment and 8-cm overlying water stirred gently. Eight pesticides (triasulfuron, isoproturon, chlorotoluron, phenmedipham, difenoconazole, chlorpyrifos, pendimethalin and permethrin), spanning a range of physicochemical properties, were applied individually to the water. Sorption equilibrium was reached at between 15 and 30 days, the proportion of pesticide then in the sediment ranging from 20% for the acidic and therefore polar triasulfuron to 97% for the lipophilic permethrin; this behaviour was not influenced by formulation. Sorption coefficients measured in batch tests over 2 h gave good estimates of the equilibrium distribution. Some degradation was observed for all compounds over 90 days; for some compounds and formulations, enhanced degradation occurred after 20 to 60 days. It is concluded that lipophilicity is the chief determinant of pesticide distribution in sediment/water systems.  相似文献   

7.
The potential for the herbicides isoproturon, atrazine and mecoprop to degrade in the major UK aquifers of chalk, sandstone and limestone was studied using laboratory microcosms spiked at 100 microg litre(-1). Significant mecoprop degradation was only observed in sandstone groundwater samples. Atrazine transformation, based on the formation of metabolites, did occur in most groundwater samples, but only at a rate of 1-3% per year. A potential to degrade isoproturon was observed in groundwater samples from each of the aquifer types, with the most rapid and consistent degradation occurring at the sandstone field site. Biodegradation was confirmed by the formation of monodesmethyl- and didesmethyl-isoproturon. Isoproturon degradation potential rates obtained from the groundwater microcosms could not be correlated with either dissolved organic carbon or numbers of bacteria in the groundwater. It was noted that the ability of the groundwater at a field site to degrade a pesticide was not related to performance of the soil above.  相似文献   

8.
9.
BACKGROUND: Following the discovery of pesticides in wells, the Hawaii Department of Agriculture (HDOA) supported research to evaluate the likelihood of pesticide leaching to the groundwater in Hawaii. The aim of this study was to evaluate the relative leaching pattern of five pesticides at five different sites on three islands and to compare their leaching behavior with bromide and a reference chemical (atrazine) that is known to leach in Hawaiian conditions. Laboratory measurements of sorption and degradation of the pesticides were made. RESULTS: Most of the applied mass of pesticides was still present in the top 80 cm after the 16 week study period. The aggregated oxisol at Kunia showed the most intensive leaching among the five sites. The revised attenuation factor screening approach used by the HDOA indicated that all chemicals, with the exception of trifloxystrobin, had the potential to leach. Similarly, the groundwater ubiquity score ranked trifloxystrobin as a non‐leacher. The field leaching data, however, suggested that trifloxystrobin was the most mobile compound among the pesticides tested. CONCLUSION: Although the results were variable among the sites, the field and laboratory experiments provided useful information for regulating use of these pesticides in Hawaii. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
基于尾菜中存在农药残留的现状,以设施农业尾菜黄瓜秧为研究对象,采用气相色谱法和超高效液相色谱-串联质谱法检测了尾菜黄瓜秧在静态好氧发酵过程中多菌灵、吡虫啉、哒螨灵等50种农药残留的动态变化,并分析发酵重要影响因子堆高对农药残留消解的影响。结果表明:在尾菜黄瓜秧中共检测出腐霉利、多菌灵、嘧菌酯、苯醚甲环唑、烯酰吗啉、虫螨腈、吡虫啉、啶虫脒和哒螨灵9种农药残留,其中多菌灵平均残留量最高,达11.2 mg/kg,其他8种农药平均残留量在0.042~0.89 mg/kg之间。在发酵的24 d中,不同堆高条件下9种农药的消解规律均符合一级反应动力学方程,但不同农药半衰期差异较大,其中吡虫啉的平均半衰期最长,为28.9 d,多菌灵的平均半衰期最短,为10.2 d;不同堆高处理中农药的消解速率也有差异,总体上在2.5 m堆高下各农药的消解率最高、半衰期最短。本研究结果可为尾菜发酵参数优化、农业废弃物的高效资源化利用以及研发基于尾菜发酵产物的有机蔬菜专用有机肥提供理论支撑。  相似文献   

11.
Reported levels of atrazine in soils at pesticide mix-load sites can vary between 7·9×10-5 mM and 1·9 mM . We report on a mixed microbial culture, capable of degrading concentrations of atrazine in excess of 1·9 mM . At initial concentrations of 0·046 M and 0·23 M , the mixed population degraded 78% and 21% of atrazine in soil (100 days), respectively. At the same initial concentrations in liquid cultures, 90% and 56% of the atrazine was degraded (80 days), respectively. Decreased degradation in soil samples may have resulted from atrazine sorption to soil surfaces or decreased contact between the population and the herbicide. In the 0·23 M system, we attribute incomplete degradation to phosphorous depletion. Data for carbon dioxide evolution was fitted to a three-half-order regression model, but we feel that there are limitations of the application of this model to atrazine degradation. The population uses the herbicide as a nitrogen source and little carbon is incorporated into biomass, as the energy status of carbons in the ring leads to their direct evolution as [14C]carbon dioxide. This situation contributes to an evolution pattern that, when fitted to the three-half-order model, results in underestimation of the biomass produced. Data from our study suggest that our mixed culture could be used for bioremediation of atrazine at concentrations up to and exceeding those currently reported for agrochemical mixing-loading facilities. © 1997 SCI.  相似文献   

12.
The sensitivity of pesticide leaching to pesticide/soil properties and to meteorological conditions was assessed by calculations with an existing convection—dispersion model. The model assumes equilibrium sorption (Freundlich equation), first-order transformation kinetics and passive plant uptake. The extent of pesticide leaching was characterized by the percentage of the dose leached below 1 m depth. The calculations were carried out for a humic sand soil cropped with maize and exposed to Dutch weather conditions. In general, the percentage leached was found to be very sensitive to the sorption coefficient, the Freundlich exponent (describing the curvature of the isotherm) and the transformation rate. The percentage leached was moderately sensitive to weather conditions (wet/dry years), long-term sorption equilibration and the relationship between transformation rate and temperature. Sensitivity to the extent of plant uptake was only significant for pesticides with low sorption coefficients. Sensitivity to soil hydraulic properties was small. The effect of application in autumn instead of in spring was found to be very large for non-sorbing pesticides with short half-lives. The sensitivity to spatial variability in sorption coefficient and transformation rate was found to be substantial at low percentages leached.  相似文献   

13.
The Root Zone Water Quality Model (RZWQM) is a one-dimensional, numerical model for simulating water movement and chemical transport under a variety of management and weather scenarios at the field scale. The pesticide module of RZWQM includes detailed algorithms that describe the complex interactions between pesticides and the environment. We have simulated a range of situations with RZWQM, including foliar interception and washoff of a multiply applied insecticide (chlorpyrifos) to growing corn, and herbicides (alachlor, atrazine, flumetsulam) with pH-dependent soil sorption, to examine whether the model appears to generate reasonable results. The model was also tested using chlorpyrifos and flumetsulam for the sensitivity of its predictions of chemical fate and water and pesticide runoff to various input parameters. The model appears to generate reasonable representations of the fate and partitioning of surface- and foliar-applied chemicals, and the sorption of weakly acidic or basic pesticides, processes that are becoming increasingly important for describing adequately the environmental behavior of newer pesticides. However, the kinetic sorption algorithms for charged pesticides appear to be faulty. Of the 29 parameters and variables analyzed, chlorpyrifos half-life, the Freundlich adsorption exponent, the fraction of kinetic sorption sites, air temperature, soil bulk density, soil-water content at 33 kPa suction head and rainfall were most sensitive for predictions of chlorpyrifos residues in soil. The latter three inputs and the saturated hydraulic conductivity of the soil and surface crusts were most sensitive for predictions of surface water runoff and water-phase loss of chlorpyrifos. In addition, predictions of flumetsulam (a weak acid) runoff and dynamics in soil were sensitive to the Freundlich equilibrium adsorption constant, soil pH and its dissociation coefficient.  相似文献   

14.
15.
莠去津微生物降解的研究进展   总被引:10,自引:1,他引:10  
综述了莠去津降解微生物的筛选方法、降解速度的影响因素、降解机理,并对农药降解微生物的应用前景进行了展望。对降解农药微生物的研究不但可以得到消除莠去津环境污染的菌株和相应的酶制剂,而且对于抗莠去津转基因技术的研究也有促进作用。  相似文献   

16.
Sorption-desorption interactions of pesticides with soil determine the availability of pesticides in soil for transport, plant uptake and microbial degradation. These interactions are affected by the physical and chemical properties of the pesticide and soil and, for some pesticides, their residence time in the soil. While sorption-desorption of many herbicides has been characterised, very little work in this area has been done on herbicide metabolites. The objective of this study was to characterise sorption-desorption of two sulfonylaminocarbonyltriazolinone herbicides, flucarbazone and propoxycarbazone, and their benzenesulfonamide and triazolinone metabolites in two soils with different physical and chemical properties. K(f) values for all four chemicals were greater in clay loam soil, which had higher organic carbon and clay contents than loamy sand. K(f-oc) ranged from 29 to 119 for the herbicides and from 42 to 84 for the metabolites. Desorption was hysteretic in every case. Lower desorption in the more sorptive system might indicate that hysteresis can be attributed to irreversible binding of the molecules to soil surfaces. These data show the importance of characterisation of both sorption and desorption of herbicide residues in soil, particularly in the case of prediction of herbicide residue transport. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicide metabolites would be overpredicted if parent chemical soil sorption values were used to predict transport.  相似文献   

17.
A model for the transport of pesticides in non-structured arable soil has been tested under field conditions. Three classes of sorption site are distinguished in the model. Sorption at class 1 sites is assumed to be at equilibrium whereas sorption at class 2 and class 3 sites is calculated using rate equations. Class 2 sites equilibrate on a time scale of days and class 3 sites equilibrate on a time scale of hundreds of days. In the model, the liquid phase is assumed to be homogeneous and completely mobile. The model was validated in two field experiments on a loamy sand soil using the herbicides cyanazine and metribuzin and using bromide ion as a tracer of liquid flow in soil. Ignoring sorption at class 3 sites resulted in large discrepancies between calculated and measured concentration profiles. Calculated concentration profiles were sensitive to the desorption rate constant for class 3 sites.  相似文献   

18.
BACKGROUND: Sorption‐desorption processes govern the movement of pesticides in soil. These processes determine the potential hazard of the pesticide in a given environment for groundwater contamination and need to be investigated. RESULTS: In the present study, sorption‐desorption processes of benfuracarb were investigated using a batch method in two mollisols. The kinetics of benfuracarb sorption in mollisols conformed to two‐compartment (1 + 1) first‐order kinetics. The fast sorption rate constant was about 3 times higher for silt loam than for loam soil. However, the slow sorption rate constants were statistically similar for both soils. The concentration‐dependent sorption‐desorption isotherms of benfuracarb could not closely conform to the Freundlich isotherm in mollisols of high organic C content. The computed values of both the sorption (log K) and desorption (log K′) capacities were higher for silt loam than for loam soil. The desorption index (n′/n) values in the range 30.0–41.3 indicated poor reversibility of sorbed benfuracarb in mollisols. CONCLUSION: In view of the strong sorption of benfuracarb in mollisols with only partial desorption, the possibility of the leaching of soil‐applied benfuracarb to contaminate groundwaters appears to be low. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
The variation of the sorption isotherm of pesticides has seldom been explored at the catchment scale. Such a study was conducted at the scale of a 187-ha agricultural catchment for three herbicides: atrazine, isoproturon and metamitron. Partition coefficient (Kd) values were measured in batch experiments on 51 topsoil samples, and showed moderate variability at the catchment scale (coefficient of variation CV approximately 30%). Values of Kd ranged from 0.47 to 1.70 litre kg(-1) for atrazine, 0.47 to 1.81 for isoproturon, and 0.55 to 2.21 for metamitron. A clustering method was used to reduce the number of samples on which to measure sorption isotherms to 14. Sorption isotherms agreed with the Freundlich rather than the linear model. Kf parameters had CV values similar to those for Kd, with values ranging from 0.78 to 2.13 mg(1 - Nf) litre(Nf) kg(-1) for atrazine, 0.61 to 1.82 for isoproturon, and 0.69 and 2.58 for metamitron. Nf exponents showed little variation (CV < 5%). Nf values were between 0.86 and 0.98 for atrazine, 0.85 and 0.90 for isoproturon, and 0.82 and 0.87 for metamitron. More than 97% of the Kf catchment-scale variations could be explained by the variations of the soil organic carbon content.  相似文献   

20.
Atrazine, a herbicide widely used for corn production in the Midwest, has been detected in groundwater of several states, and has been identified as a possible human carcinogen. With the widespread use of pesticides in crop production, and the frequent detection of these chemicals in groundwater, large-scale risk assessments would help water resource managers to identify areas that are more susceptible to contamination and implement practices to ameliorate the problem. This paper presents an integrated, visual and interactive system for predicting potential environmental risks associated with pesticide contamination at spatial scales ranging from fields to landscapes and regions. The interactive system extends the predictive ability of the Pesticide Root Zone Model Release 2.0 (PRZM-2) to a landscape and statewide scale through integration with a geographic information system (GIS), graphical user interface and environmental databases. Predictions of statewide (Iowa) vulnerability of groundwater from atrazine leaching below the unsaturated zone were made to demonstrate the utility of the system, and the results were used in risk assessment. In the example application, atrazine fate and transport were evaluated using long-term climatic data (1980--1989) in combination with several environmental databases (eg STATSGO soils database) and exposure risks were expressed in terms of the probability of the predicted pesticide concentrations exceeding the maximum contaminant level (MCL) for drinking water. The results indicate that the predicted pesticide concentrations were significantly lower than the EPA-established MCL. In addition to providing an interactive environment for landscape-level assessment of potential risks from pesticide leaching, the system significantly reduces the time and resources needed to organize and manipulate data for use with PRZM-2, and provides an analytical framework for evaluating groundwater-leaching impacts of pesticide management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号