首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Venturia nashicola isolates with a high level of resistance to carbendazim showed either increased sensitivity or were resistant to theN-phenylformamidoxime compoundN-(3,5-dichloro-4-propynyloyphenyl)-N′-methoxyformamidine (DCPF). Isolates with an intermediate or low level of carbendazim resistance were resistant to DCPF. Increased sensitivity to DCPF was also associated with a high level of carbendazim resistance inBotrytis cinerea but not with a moderate resistance level. Increased sensitivity to DCPF was not observed in carbendazim resistant isolates ofGibberella fujikuroi.Binding of [14C]DCPF in cell-free mycelial extracts of the highly carbendazim-resistant and DCPF-sensitive isolate ofV. nashicola was higher than in those of DCPF-resistant isolates that were either highly-resistant, intermediately resistant, or weakly resistant to carbendazim or were sensitive to carbendazim. [14C]carbendazim binding in extracts of highly carbendazim-resistant isolates ofB. cinerea was lower than that in extracts of sensitive isolates, whereas [14C]DCFP binding was higher. A decreased [14C]carbendazim binding was also observed in extracts of carbendazim-resistant isolates ofG. fujikuroi, binding of [14C]DCPF, however, was similar in extracts of both carbendazim-resistant and sensitive isolates.  相似文献   

2.
An extensive survey was carried out to collect Fusarium species colonizing the lower stems (crowns) of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) from different wheat growing regions of Turkey in summer 2013. Samples were collected from 200 fields representing the major wheat cultivation areas in Turkey, and fungi were isolated from symptomatic crowns. The isolates were identified to species level by sequencing the translation elongation factor 1-alpha (TEF1-α) gene region using primers ef1 and ef2. A total of 339 isolates representing 17 Fusarium species were isolated. The isolates were identified as F. culmorum, F. pseudograminearum, F. graminearum, F. equiseti, F. acuminatum, F. brachygibbosum, F. hostae, F. redolens, F. avenaceum, F. oxysporum, F. torulosum, F. proliferatum, F. flocciferum, F. solani, F. incarnatum, F. tricinctum and F. reticulatum. Fusarium equiseti was the most commonly isolated species, accounting for 36% of the total Fusarium species isolated. Among the damaging species, F. culmorum was the predominant species being isolated from 13.6% of sites surveyed while F. pseudograminearum and F. graminearum were isolated only from 1% and 0.5% of surveyed sites, respectively. Six out of the 17 Fusarium species tested for pathogenicity caused crown rot with different levels of severity. Fusarium culmorum, F. pseudograminearum and F. graminearum caused severe crown rot disease on durum wheat. Fusarium avenaceum and F. hostae were weakly to moderately virulent. Fusarium redolens was weakly virulent. However, F. oxysporum, F. equiseti, F. solani, F. incarnatum, F. reticulatum, F. flocciferum, F. tricinctum, F. brachygibbosum, F. torulosum, F. acuminatum and F. proliferatum were non-pathogenic. The result of this study reveal the existence of a wide range of Fusarium species associated with crown rot of wheat in Turkey.  相似文献   

3.
There is a growing necessity to replace chemical agents with ecofriendly materials, arising from the impact on the environment and/or human health, which calls for the design of new broad-spectrum fungicides. In this work, chitosan oligomers (COs), propolis (Ps) and silver nanoparticles (AgNPs) mixtures in solution were assessed to control the growth of different phytopathogenic fungi and oomycetes in vitro. Binary solutions of COs-Ps and COs-AgNPs evinced the highest antifungal effect against Fusarium circinatum and Diplodia pinea fungi, respectively, with a ca. 80% reduction in their mycelial growth. The COs solution by itself also proved to be greatly effective against Gremmeniella abietina, Cryphonectria parasitica and Heterobasidion annosum fungi, causing a reduction of 78%, 86% and 93% in their growth rate, respectively. Likewise, COs also attained a 100% growth inhibition on the oomycete Phytophthora cambivora. On the other hand, Ps inhibited totally the growth of Phytophthora ×alni and Phytophthora plurivora. The application of AgNPs reduced the mycelial growth of F. circinatum and D. pinea. However, the AgNPs in some binary and ternary mixtures had a counter-productive effect on the anti-fungal/oomycete activity. In spite of the fact that the anti-fungal/oomycete activity of the different treatments showed a dependence on the particular type of microorganism, these solutions based on natural compounds can be deemed as a promising tool for control of tree diseases.  相似文献   

4.
Tomato fruits are susceptible to infection by Alternaria species. In addition, Alternaria species may contaminate the fruits with mycotoxins. There is thus interest in control systems to minimise pathogenicity and control toxin production. The objectives of this study were to examine the effect of plant extracts of Eucalyptus globulus and Calendula officinalis on the growth of strains of Alternaria alternata and A. arborescens, on pathogenicity of tomato fruits and mycotoxin production. The growth bioassays showed that the ethanolic and chloroformic fractions of E. globulus were the most effective in reducing growth of A. alternata (66–74 %) and A. arborescens (86–88 %), respectively at 2500 μg/g. The effects of plant extracts on mycotoxin biosynthesis were variable and strain dependent. The most effective fractions in decreasing mycotoxin accumulation were the ethanolic and chloroformic extracts of E. globulus, which reduced tenuazonic acid by 89 %, alternariol by 75–94 % and almost complete inhibition of alternariol monomethyl ether. All the tested fractions reduced percentage of infected tomato fruits when compared to the controls. The ethanolic and chloroformic fractions of E. globulus completely inhibited growth of A. alternata and A. arborescens on unwounded fruits and reduced the aggressiveness on wounded fruits of strains of both species significantly.  相似文献   

5.
Among benzimidazole-resistant strains ofFusarium nivale andPseudocercosporella herpotrichoides negative cross-resistance to N-phenylcarbamates like barban or chlorpropham was more common than to diethofencarb. Such differences were also observed with N-methylcarbamate or organophosphorus insecticides and with triazine herbicides. Several compounds belonging to these various groups of pesticides were highly toxic against the most common benzimidazole-resistant isolates ofBotrytis cinerea. They were not active, however, against isolates recently found in French vineyards that were treated with a mixture of diethofencarb and carbendazim. Some diphenylether derivatives seemed to be effective against all the benzimidazole-resistant phenotypes of this fungus.  相似文献   

6.
Crude ethanol extracts and six organic solvent fractions of 10 Thai medicinal plants were evaluated for their antifungal activity against Alternaria brassicicola in laboratory and under greenhouse conditions. The results showed that the ethanol extracts of Coscinium fenestratum, Piper betle, Syzygium aromaticus and Zingiber cassumunar displayed complete mycelial growth inhibition of A. brassicicola at a concentration of 0.1%. Meanwhile, the crude ethanol extract and methanol fraction obtained from the stems of C. fenestratum revealed the greatest inhibition against A. brassicicola at 10%, forming inhibition zones 2.55–2.58 cm in diameter. In the greenhouse experiments, crude ethanol extracts of C. fenestratum and P. betle at 1% significantly (P?<?0.05) reduced the disease incidence at up to 67%, indicating promising preventive and curative activities against A. brassicicola. This activity is similar to that of iprodione, a widely used commercial fungicide. Interestingly, Illicium verum extract showed a greater curative effect (58% disease reduction) than protective effect (47% disease reduction). Because the C. fenestratum extract showed the highest activity against the black spot pathogen both in vitro and under greenhouse conditions, its methanol fraction was further analyzed by spectroscopic techniques. We found that berberine is a key active substance inhibiting mycelial growth of A. brassicicola. The results of this study showed the potential of Thai medicinal plants as alternatives to the use of synthetic fungicides for controlling black spot in Chinese kale caused by A. brassicicola.  相似文献   

7.
Competitive effects between Fusarium graminearum, causing Fusarium head blight, and the endophyte Epicoccum nigrum, were performed in in vitro competition assays between the two species. Two E. nigrum isolates were isolated from wheat grains and tested as competitors against two F. graminearum isolates. A dual petri dish assay showed that E. nigrum reduced the mycelial growth of F. graminearum and vice versa. A glass slide assay revealed that E. nigrum crude cultural filtrate also had reducing effect on the growth of F. graminearum comparable to that of E. nigrum spore suspensions. Microscopy showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass was significantly reduced in inoculations applying E. nigrum three days prior to F. graminearum. In conclusion, these results showed competition and mycelial behaviour effects between F. graminearum and E. nigrum and support that E. nigrum may have potential to reduce F. graminearum infections in wheat. Competition experiments should be carried out in planta to study the interaction further.  相似文献   

8.
The ability to control soil-borne pathogens in agriculture is highly conditioned by the restricted use of synthetic pesticides. Allelopathy, the antimicrobial activity of plant extracts, is a promising option against crop pathogens. Extracts from Lycium spp. such as L. barbarum, L. chinense and L. intricatum possess biological and therapeutic properties. Individual methanolic extracts from leaves and stems of the Mediterranean medicinal species L. europaeum collected in two locations of Tunisia were each evaluated in vitro against Verticillium dahliae (Vd), Sclerotinia sclerotiorum (Ss) and Harpophora maydis (Hm). The mycelial growth of the three fungi was significantly reduced by all the extracts at doses of 10 and 30 μl mL?1 (equivalent to 1 and 3 mg plant tissue mL?1). The sporulation of Hm was almost completely inhibited in all the amendments, but that of Vd was stimulated by one of the leaf extracts when 1 and 3 mg dried plant tissue mL?1 were used. Sclerotia of Ss were formed in a smaller number, their total weight increasing at extract doses equivalent to 1 mg plant tissue mL?1 and higher. In greenhouse, the pathogenicity of Hm was confirmed as early as 6 weeks after inoculation, since it caused significant decreases of weights in both roots and aboveground parts of maize. The detrimental effect of Hm on maize root weight in greenhouse was significantly counteracted by one of the leaf extracts added by watering. In total, 11 phenolic compounds were separated in the four extracts. The hydroxycinnamic acid family, including chlorogenic acid as a major compound, represented more than 50% of the total content in all the samples. Rutin was the most abundant flavonoid. The results of this work show the detrimental effect of L. europaeum extracts against the soil-borne pathogens Hm, Ss and Vd, and highlight their potential in crop protection if adequately developed into final products and used in combination with other tools.  相似文献   

9.
With three plant pathogens,Botrytis cinerea, Venturia inaequalis and Puccinia graminis f. sp.tritici, the time course of sterol biosynthesis during spore germination was examined by labeling experiments along with the question whether this pathway could be inhibited by triazole fungicides. Conidia ofB. cinerea andV. inaequalis are able to synthesize sterols immediately after the beginning of the germination process when the germ tubes have not yet emerged. On the contrary uredospores ofP. graminis start sterol biosynthesis after 6 to 8 h germination time almost at the end of the germ tube phase, indicating that sterol reserves of the spores are likely to be used for the germ tube growth.The sterol C-14 demethylation appeared to be the rate limiting step within the sterol biosynthetic pathway: the half life of 24-methylenedihydrolanosterol was less than 1 h forB. cinerea. It was more than 1 h forV. inaequalis and 3 h forP. graminis. Independent of these differences in the time course of sterol biosynthesis and in the C-14 demethylation rate, the synthesis of sterols in germinating spores was strongly inhibited by triazole fungicides in all three pathogens examined. In contrast toP. graminis, this inhibition could be demonstrated withB. cinerea andV. inaequalis even in ungerminated conidia, indicating that the fungicides were rapidly taken up and reached their target within 1 or 2 h. These results are discussed along with the question whether spore germination can be used as a bioassay for the estimation of sensitivities of triazole fungicides.  相似文献   

10.
This list gives a first account on the nomenclature of common parasitic fungi on bulbs as used in official publications of the Netherlands Society of Plant Pathology and the Netherlands Ministry of Agriculture and Fisheries. The selected names include one new species,Colletotrichum lilii Plakidas ex Boerema & Hamers, and four new combinations:Botrytis convallariae (Kleb.) Ond?ej ex Boerema & Hamers,Puccinia sessilis Schneid. ex Schröt. f. sp.convallariae-digraphidis (Kleb.) Boerema & Hamers and f. sp.smilacearum-digraphidis (Kleb.) Boerema & Hamers, andSclerotium rolfsii var.delphinii (Welch) Boerema & Hamers.  相似文献   

11.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

12.
To elucidate how soft rot disease affects soil characteristics and root-associated, culturable microorganisms in Amorphophallus konjac stands, the responses of soil around roots of A. konjac with soft rot disease were investigated in stands with and without soft rot. Changes in the root-associated culturable microbial community and diversity were investigated by dilution plating. Soil characteristics were compared between stands using standard techniques. A. konjac with soft rot had higher concentrations of available soil P and K, NH4–N, organic matter and water content and lower pH compared with plants without. The community composition of root-associated culturable microorganisms differed between stands with and without soft rot. The microbial community associated with soft rot in A. konjac was characterized by four types of abundant microorganisms (Fusarium solani, Fusarium oxysporum, Pseudomonas chlororaphis subsp. aureofaciens and Stenotrophomonas pavanii) and three types of less-abundant microorganisms (Rhizobium radiobacter, Bacillus thuringiensis and Streptomyces cellulosae), and a small number of Bacillus and Streptomyces species in the rhizosphere and rhizoplane soils. Particular microbial combinations were diametrically opposed between plants with and without soft rot. The richness and diversity of root-associated culturable microorganisms were higher in the stand without soft rot than in the stand with soft rot. A. konjac soft rot led to obvious differences in the diversity and community composition of root-associated culturable microorganisms and in soil characteristics.  相似文献   

13.
Native Trichoderma spp. were isolated from agricultural fields in several regions of Ecuador. These isolates were characterized via morphological observation as well as molecular phylogenetic analysis based on DNA sequences of the rDNA internal transcribed spacer region, elongation factor-1α gene and RNA polymerase subunit II gene. Fifteen native Trichoderma spp. were identified as T. harzianum, T. asperellum, T. virens and T. reesei. Some of these strains showed strong antagonistic activities against several important pathogens in Ecuador, such as Fusarium oxysporum f. sp. cubense (Panama disease) and Mycosphaerella fijiensis (black Sigatoka) on banana, as well as Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease) on cacao. The isolates also showed inhibitory effects on in vitro colony growth tests against Japanese isolates of Fusarium oxysporum f. sp. lycopersici, Alternaria alternata and Rosellinia necatrix. The native Trichoderma strains characterized here are potential biocontrol agents against important pathogens of banana and cacao in Ecuador.  相似文献   

14.
Fusarium Head Blight is a major disease of wheat and an important contributor to the reduced cultivation of wheat in South Africa, where the crop often is grown under irrigation. We collected Fusarium isolates from 860 Fusarium Head Blight-infected wheat heads in seven irrigated wheat-growing areas of South Africa. Six Fusarium species, i.e., F. chlamydosporum, F. crookwellense, F. culmorum, F. equiseti, F. graminearum and F. semitectum were recovered, three of which, i.e., F. chlamydosporum, F. equiseti and F. semitectum, were not previously associated with Fusarium Head Blight in South Africa. Fusarium graminearum occurred at high frequencies at all seven locations. Based on polymerase chain reaction (PCR) assays of diagnostic sequences, more isolates were predicted to produce deoxynivalenol than nivalenol. Fusarium graminearum (sensu lato) appears to be the primary causal agent of Fusarium Head Blight in irrigated wheat in South Africa, which may not be the case for wheat cultivated under rain-fed conditions. Rotations of irrigated wheat with other graminaceous crops and maize could increase fungal inoculum and disease pressure. The establishment of Fusarium Head Blight in the irrigated wheat region of the country means that resistant lines and alternative agronomic practices are needed to limit disease severity, yield losses and mycotoxin contamination.  相似文献   

15.
A few polyphenols (tannic acid and digallic acid), anthraquinone derivatives (rufianic acid and quinalizarin), and detergents (an alkylaryl sulfonate) proved to be especially effective inhibitors of pectolytic and cellulolytic enzymes of four phytopathogenic fungi. Some of these substances prevented the infection of tomato leaves withAlternaria solani. It appears, however, that inhibition of the germination of conidia was the crucial effect rather than inhibition of the enzymes. Alkylaryl sulfonate and rufianic acid were able to reduce the maceration of bean hypocotyls byRhizoctonia solani. Rufianic acid also counteracted tomato wilt, caused byFusarium oxysporum f.lycopersici, especially in the case of postinfectional application. On the other hand preinfectional rather than postinfectional application of rufianic acid had effect onVerticillium wilt of tomato.In one case, viz.Fusarium wilt, the mode of action of rufianic acid was investigated in greater detail. The presence of this substance could be demonstrated in the exudates of healthy and infected plants after application to the roots. The pectolytic and cellulolytic activity of the exudates and the pectinmethylesterase activity of stem extracts of infected, rufianic acid treated plants were reduced, as well as the quantity of mycelium in the stems. Possibly other mechanisms are also involved in the mode of action of rufianic acid.The prospects of using pectolytic enzyme inhibitors for the therapy of plant diseases are discussed.  相似文献   

16.
This study evaluated the efficacy of the extracts of Ophiocordyceps sobolifera isolate Cod-NB1302 for the biological control of chili anthracnose disease caused by Colletotrichum capsici and C. gloeosporioides under pot conditions. Among the extracts, mycelial extract treatments provide the best reduction in disease severity. Interestingly, two bioactive constituents, adenosine and cordytropolone, from the mycelial extract, inhibited growth of the fungal pathogens. Moreover, these bioactive compounds had a synergistic effect against the fungal pathogens in a pot experiment. These results confirmed the disease suppressive activity of the mycelial extract.  相似文献   

17.
Bois noir (BN) is an important grapevine yellows endemic to the Euro-Mediterranean basin caused by ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’), a non culturable plant pathogenic Mollicute. Bois noir symptoms could be associated with ‘Ca. P. solani’ in two Azerbaijanian vineyards where disease incidence and severity were recorded for five local Vitis vinifera cultivars. In order to gain insight into the epidemiology of Bois noir in Azerbaijan, ‘Ca. P. solani’ isolates infecting plants were characterized by multi-locus sequence analysis and their secY and stamp gene sequences compared to that of the strains detected in other plants and in local Cixiidae planthoppers. Genotypes were determined for two non-ribosomal house-keeping genes, namely tuf and secY, as well as two variable markers namely Stamp and mleP1 genes, that respectively encode the antigenic membrane protein AMP and a 2-Hydroxycarboxylate transporter. The Azerbaijanian BN phytoplasma isolates corresponded to three tufB and secY genotypes. A finer differentiation of Azerbaijanian ‘Ca. P. solani’ isolates was obtained with mleP1 as five different mleP1 genetic variants were found. Finally, Stamp gene allowed differentiating four new genotypes in grapevine among the 10 new Stamp genotypes detected in various plants in Azerbaijan. The preliminary survey for infected insects conducted in northern Azerbaijan, led to the identification of Hyalesthes obsoletus and Reptalus noahi as potential vectors for two ‘Ca. P. solani’ new genotypes phylogenetically distant from the known genetic clusters. Altogether these results indicate an important genetic diversity of BN phytoplasmas in Azerbaijan that certainly result from spread through local insect vectors.  相似文献   

18.
In viticulture practices, technical cultivation practices and application of fungicides, specifically named botryticides, are important to control the grey mold, Botrytis cinerea. While conventional disease control is based upon applications of fungicides, options for controlling of grey mold in organic viticulture is limited. Resistance of the fungus and multiple drug resistance (MDR) require development of new disease control strategies. In vivo observation showed a reduced grey mold infection of grapes if covered with slime from garden snail. Hence, snail slime, commercial lectin (Helix aspersa agglutinin, HAA) from garden snail and bacteria isolated from snail slime were tested for antifungal or antagonistic activities against B. cinereain vitro. Furthermore, fluorescein isothiocyanate labeled Helix-lectin (FITC-HPA) was used to detect terminal N?acetyl-galactosamine residues (GalNAc) on fungal cell wall surface. In our experiments, neither slime (after sterile filtration) nor commercial lectin nor slime bacteria were found to affect spore germination and mycelial growth. Binding of lectin was found to depend on media and age of the fungal mycelium.  相似文献   

19.
苯甲酸对植物病原菌的离体抗菌活性研究   总被引:1,自引:0,他引:1  
苯甲酸对植物病原菌的活性受pH值影响较大,通常在酸性条件下的活性较高。在pH=5条件下,苯甲酸对供试的8种植物病原真菌表现出不同程度的抑制活性,其中对黄瓜疫霉病菌和水稻纹枯病菌的活性相对较高,EC50分别为24.40μg/mL和62.65μg/mL,其次是水稻稻瘟病和番茄灰霉病菌,而对小麦赤霉病菌及苹果斑点落叶病菌的活性相对较差,对辣椒炭疽病菌和苹果腐烂病菌基本无活性;苯甲酸对稻瘟病菌的菌丝干重增加、孢子萌发和芽管伸长均有较高的抑制活性,但对产孢量无影响。  相似文献   

20.
This list is a continuation of Series 3a (Neth. J. Pl. Path. 94 (1988), Supplement 1), an account of the nomenclature of common parasitic fungi on bulbs as used in official publications of the Netherlands Society of Plant Pathology and the Netherlands Ministry of Agriculture and Fisheries. The selected names include one new species,Curvularia gladioli Boerema & Hamers, one new pathogenic form,Fusarium oxysporum f.sp.croci Boerema & Hamers, and one new combination,Sclerotium narcissi (Sacc.) Boerema & Hamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号