首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1 ) 电磁式继电器构成的变压器差动保护在正常情况和外部故障时 ,理想情况下流入差动继电器的电流 Ij=0 ,保护装置不动作。但实际上变压器的差动保护在近端外部短路 (保护区外 )时 ,由于短路电流很大 ,构成差动保护的各侧 TA的电压等级不同 ,变比、容量和磁饱和特性不一致 ,即使采用平衡线圈等方法进行补偿 ,各侧 TA之间的变比有可能不匹配 ,流入差动继电器的不平衡电流 ,可能会使差动保护误动作。同时 ,当投入空载变压器或外部故障切除电压时 ,一旦铁芯饱和 ,相应出现数值很大的励磁涌流。由于励磁涌流只存在于一次绕组中 ,经 TA变换…  相似文献   

2.
1 引言主变差动保护是变压器的主要保护手段 ,基本原理是反应被保护变压器各端流入和流出电流的差 ,在保护区内故障 ,差动回路中的电流值大于整定值 ,差动保护瞬时动作 ,而在保护区外故障 ,主变差动保护则不应动作。受变压器励磁电流、接线方式、电流互感器误差等因素的影响 ,使差动回路中产生不平衡电流 ,而不平衡电流中励磁涌流的存在 ,常可导致变压器差动保护误动 ,给变压器差动保护的实现带来困难 ,因此采用措施减少不平衡电流及其对保护的影响是实现主变差动保护需要解决的主要矛盾。2 主变差动保护分析在主变差动保护所用电流互感器…  相似文献   

3.
随着换流站工作强度的加重,研究变压器系统差动保护功能成为重中之重。励磁涌流现象是影响变压器差动保护的重要因素,所以就基于差动保护的换流站变压器励磁涌流波形进行分析及研究。以三相变压器为例,进行励磁涌流建模仿真,得出励磁涌流受铁芯剩磁和合闸相角两方面影响,且励磁涌流波形非连续,存在间断角特征。基于以上情况,在励磁涌流波形间断角方法不可靠的情况下,引入盒维数值对差动电流进行采样,通过盒维数值对比分析,判定采样数据是否为励磁涌流波形,实现对变压器励磁涌流波形的分析。  相似文献   

4.
在继电保护整定计算中,进行常规计算后,对于变压器纵联差动保护所用CT变比进行适当增大,可以避免保护区外故障,尤其在三相金属性短路情况下,导致变压器纵联差动保护误动。 变压器纵联差动保护装置的保护范围为变压器两侧电流互感器所包括的范围。由于受变压器的励磁电流、接线方式、电流互感器误差等因素的影响,使差动回路中产生不平衡电流,而不平衡电流中励磁涌流的存在,常常导致变压器差动保护误动,给变压器差动保护的实现带来困难,因此减少不平衡电流及其影响是实现纵联差动保护的关键所在。  相似文献   

5.
1 集控台主变差动保护电路原理集成电路差动保护原理的主要构成是:利用比率制动方式,防止变压器外部故障时不平衡电流造成的误动;利用二次谐波制动躲过变压器投入时的励磁涌流;利用差动电流速断,防止大电流内部故障时电流互感器饱和而造成保护拒动作(如图1所示)。差动动作回路与比率制动回路:由图1的实际电路部分所示,将主变压器两侧CT的  相似文献   

6.
滕红江 《湖南农机》2012,(7):111+113
变压器差动保护减小励磁涌流影响的措施,差动保护对于容量较大的变压器来说都是必不可少的,它用作变压器内部、套管及引出线上的各类短路故障保护,并且与瓦斯保护互相配合作为变压器的主保护。  相似文献   

7.
为了克服变压器差动保护中的不平衡电流,使变压器差动保护正确灵敏动作,在电力系统中,通过对变压器差动保护中不平衡电流产生原因的分析,阐述了变压器差动保护中不平衡电流的克服方法。从而达到保证变压器差动保护不发生误动作的目的。  相似文献   

8.
对大港1、2号主变差动保护的误动进行了分析,判定因差动保护中低压测平衡系数整定不正确,导致1、2号主变差动保护区外故障误差。认为数字式变压器保护利用平衡系数进行变压器各侧电流平衡及二次电流相位补偿,平衡系数整定正确与否直接关系到差动保护动作的正确性。最后提出了保护整定应注意的问题。  相似文献   

9.
1997年7月,我局在110kV新店变电站投运了一套PWS-9200型分布式变电站综合自动化系统,使我们亲身感受到计算机变压器差动保护与常规差动继电器保护相比是有很大的优越性,下面从几个方面谈谈计算机变压器差动保护的先进性。(1) 在差动保护中将TA二次侧电流直接差改为数字差,由于TA副边不再并接在一起,可进一步减小因TA变比不匹配及特性不同而引起的不平衡电流增大,比采用平衡线圈更合理和有效。(2) 变压器各侧绕组因连接关系而引起的相位移由常规的TA副边Y/Y-△变换改变为数字计算补偿。在传统差…  相似文献   

10.
1.CD-4型继电器是带有二次谐波制动和比例制动特性的新型差动继电器,因而又叫比率差动继电器,该继电器为整流型,是迄今为止变压器差动保护最理想的继电器之一。笔者在我县红土坪110kV变电站25000kVA变压器差动保护中采用的就是LCD—4型继电器。整定计算和运行实践表明,这种继电器具有BCH型和DCD型等电磁式继电器无法比拟的优点。因此,笔者认为今后应尽快推广直至完全用LCD型继电器取代BCH型和DCD型等电磁式继电器,这对于保护10000kVA及以上的双绕组和多绕组变压器尤其重要。1LCD—4型差动继电器的特点(1)整定动作电流…  相似文献   

11.
变压器微机型差动保护 (以下简称差动保护 )与常规型差动保护虽然都是差动保护 ,但实现原理和装置结构却有很大差异 ,即使同是微机型差动保护装置 ,不同生产厂家的装置也各不相同 ,现场检验时不得不认真区别对待。1 极性检验对于常规差动保护装置 ,现场变压器各侧电流互感器的极性应满足 :当变压器内部故障时 ,各侧电流互感器的二次电流相位相同 ,差动继电器动作 ,正常运行或外部故障时 ,电源侧和负荷侧电流互感器二次电流相位相差 1 80°,使差动继电器处于制动状态。所以常规差动保护极性检验六角图 ,在外部接线正确时 ,电源侧和负荷侧电…  相似文献   

12.
为提高变压器纵差保护的灵敏度,简化保护接线及整定计算,提出了一种利用双绕组变压器的两则功率方向构成变压器差动保护的方法,该方法可以使得变压器内部短路时,功率方向继电器产生灵敏的反应。  相似文献   

13.
1 前言新安装的差动保护在投入运行前必须做如下试验:(1)进行带负荷测相位和差电压(或差电流),以检查电流回路接线的正确性。(2)变压器充电合闸5次,以检查躲避励磁涌流的性能。后者可以在选用差动继电器的型号时予以考虑,并在工程启动时变压器充电合闸5次予以验证。前者则只有在变压器充电组织负荷后才能进行。由于电网建设的适度超前或其它原因,尤其在一些经济欠发达的地区,在新建变电所主变投运的同时常常不可能马上组织负荷对主变的差动保护进行相位测量和差电压(或差电流)的测试,以至不能最终确认整个差动保护装置接线的正确性。本文就…  相似文献   

14.
TA饱和影响供电可靠性,严重威胁运行设备的安全。通过介绍农网变电所中10kV线路TA饱和的二次电流特性,以及TA饱和对感应型、电磁型和数字式电流继电器的影响,提出增大保护级TA的变比、减小电流互感器的二次负载以避免TA饱和的方法。同时,分析了,励磁涌流对继电保护装置的影响,并提出了解决方法。  相似文献   

15.
TA饱和影响供电可靠性,严重威胁运行设备的安全。通过介绍农网变电所中10kV线路TA饱和的二次电流特性,以及TA饱和对感应型、电磁型和数字式电流继电器的影响,提出增大保护级TA的变比、减小电流互感器的二次负载以避免TA饱和的方法。同时,分析了励磁涌流对继电保护装置的影响,并提出了解决方法。  相似文献   

16.
励磁电压的突然变化导致变压器产生励磁涌流。当变压器第一次通电时,其瞬态电流会大于变压器额定电流的10至50倍并持续几个周波,此电流被称为励磁涌流。励磁涌流产生的原因主要是铁心磁路饱和,励磁涌流的形状,大小和持续时间取决于变压器的容量、回路阻抗、铁芯材料铁磁性质、铁芯剩磁大小、变压器的切换时刻。励磁涌流会造成系统干扰,损害变压器绕组。因此有必要对励磁涌流进行限制。本文讨论了在变压器空载合闸时利用电力电子变换装置减少励磁涌流的的原理和方法,其中重点使用使用二极管桥和直流电抗器组成的励磁涌流限制器和采用电压源PWM转换器的励磁涌流限制器。最后利用MATLAB进行了仿真测试并通过实验验证了该方法的实用性和有效性。  相似文献   

17.
众所周知 ,变压器差动保护各侧的电流互感器接线 ,有严格的极性和相位要求 ,相应地也有诸多检测方法。而微机型变压器差动保护大多可以直接在显示屏上查询各相的差动电流 Id 和制动电流 Izd的实际值 ,这也给极性和相位的判定提供了新的途径。微机型变压器差动保护一般由二次谐波制动的比率差动和差动速断组成 ,比率差动的动作特性方程 (见图 1、2 )为 :IzdIzd0时 Id- Iqd>Kzd(Izd- Izd0 )式中  Iqd—差动电流起动定值Id—差动电流动作值 ,Id=| I高 - I低 |Izd—制动电流 ,Izd=0 .5 | I高- I低 |Kzd—比例差动…  相似文献   

18.
1不平衡电流增大引起误动作1.1受电流互感器变流比的影响由于变压器高压侧和低压侧的额定电流不同,为了保证纵差动保护的可靠工作,就必须适当选择两侧电流互感器的变流比,使得在正常运行和外部故障时两侧二次电流相等,所以变压器差动保护不但要  相似文献   

19.
1差动保护误动时系统运行状况图1为安徽无为供电公司110kV襄安变电站系统运行图。各电压等级的主变压器有关数据如表1所示。如图1所示,110kV襄安变电站#Ⅰ主变压器501断路器与#Ⅱ主变压器502断路器并列。#Ⅰ主变压器带35kVⅠ段负荷,#Ⅱ主变压器带35kVⅡ段负荷,300断路器处于热备用。#Ⅱ主变压器带10kV负荷,100断路器处于运行状态。#Ⅰ、#Ⅱ主变压器中性点接地开关处于断开位置。#Ⅰ主变压器差动保护为电磁型,其执行元件为BCH-1型差动继电器。2差动保护动作情况2006年3月19日,襄安变电站#Ⅰ主变压器差动保护动作,在区外35kV出线断路器376…  相似文献   

20.
1 不带负荷作差动保护向量图法以 Yd11变压器为例 :我们知道 ,在变压器正常运行或外部短路的情况下 ,流到差动回路各电流的相位关系必须严格相反 ,才能证明差动回路接线的正确性。带负荷法是比较变压器两侧负荷电流的相位 ,我们同样可以比较外部短路电流的相位来检验差动回路接线的正确性。在带负荷法中 ,我们假设系统电压降到380 V,而在变压器低压侧出口处三相短路 ,尽管这种情况下的短路电流比实际短路电流小得多 ,通常只有变压器额定电流的十分之一左右 ,但在做出变压器两侧短路电流的向量图后 ,只要比较一下其两侧同相短路电流之间的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号