首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An experiment was conducted to develop a system useful for measuring methionine requirements of growing steers. Seven ruminally cannulated steers (312 kg, gaining .91 kg/d) were fed a diet based on ammoniated corn cobs, corn starch, molasses and urea. Quantities of N and sulfur-containing amino acids disappearing from the small intestine were 96.0 and 14.8 g/d, respectively. Postruminal infusions of Na-caseinate (CAS) resulted in linear (P less than .01) increases in N retention with values increasing from 30.1 g/d with no postruminal CAS infusion to 39.3, 50.8 and 59.2 g/d (averaged across methionine supplementation) when 100, 200 and 300 g/d CAS were infused. Postruminal infusions of a mixture of crystalline L-amino acids (simulating the nonsulfur-containing essential amino acid pattern of casein; SIM) at levels of 100, 200 and 300 g/d also led to linear increases (P less than .01) in N retention with steers retaining 30.9, 38.9 and 50.5 g N/d (averaged across methionine supplementation), respectively. Postruminal infusion of 12 g/d L-methionine across CAS and SIM infusions improved (P less than .01) N retention by 7.6 g/d but infusion of SIM, which is devoid of sulfur amino acids, also increased N retention. Responses to methionine supplementation was greatest when 200 or 300 g/d SIM were abomasally infused. The data are interpreted to demonstrate that, for steers fed a diet containing little true protein, postruminal supplementation with nonsulfur-containing amino acids tended to increase the ability of growing steers to respond to methionine supplementation.  相似文献   

2.
Studies were conducted to determine limiting amino acids (AA) for cattle limit-fed soybean hull-based diets. Ruminally cannulated Holstein steers were maintained in metabolism crates, fed the same basal diet (73% soyhulls, 19% alfalfa, DM basis), and given the same intraruminal infusions (400 g/d acetate; to supply energy without increasing microbial protein supply). Treatments were infused abomasally. In Exp. 1, steers (200 kg) were provided 1) water, 2) 10 g/d of methionine (MET), or 3) a mixture of 10 essential AA (10AA). Nitrogen retention (13.7 g/d) was greatest (P < .05) for steers receiving 10AA. Steers receiving MET (7.9 g/d) had greater (P < .05) N retention than control steers (5.4 g/d). In Exp. 2, steers (200 kg) were provided 10AA or 10AA with L-Lys deleted from the mixture. Steers receiving 10AA tended (P < .09) to have greater N retention (19.0 g/d) than those receiving no lysine (16.3 g/d). In Exp. 3, steers (194 kg) were provided 10AA or 10AA with L-Thr deleted from the mixture. Nitrogen retention was not affected by removal of threonine. In Exp. 4, steers (152 kg) were provided 10AA or 10AA with L-His, L-Trp, L-Arg, L-Phe, or branched-chain AA (L-Leu, L-Ile, and L-Val) removed. Nitrogen retention was reduced (P < .05) by removal of either L-His or the branched-chain AA. For steers limit-fed soybean hull-based diets, methionine was first-limiting; histidine, at least one of the branched-chain AA, and possibly lysine were also limiting.  相似文献   

3.
We hypothesized that oscillation of the dietary CP concentrations would improve efficiency of N use and reduce N loss to the environment. Charolais-cross steers (n = 8; 315 +/- 21 kg of BW) were used in a replicated 4 x 4 Latin square design. The steers were allowed ad libitum access to the following diets: 1) 9.1% CP (low), 2) 11.8% CP (medium), 3) 13.9% CP (high), or 4) low and high oscillated on a 48-h interval on each diet (oscillating). Dry matter intake did not differ among treatments (P = 0.46), but N intake differed (P < 0.01) from 94 (low) to 131 (medium), 142 (high), and 133 g/d (oscillating), as designed. Dry matter digestibility increased (P < 0.01) from 71.8% (low) to 75.8% (medium), 77.7% (high), and 77.5% (oscillating). Nitrogen digestibility increased (P < 0.01) from 62.2% (low) to 67.2% (medium) to 70.1% (high) and 70.9% (oscillating). Nitrogen retention was greater (P < 0.01) in steers fed oscillating (55.0 g/d) than in the steers fed low (34.8 g/ d) or high (40.2 g/d), but N retention of steers fed medium (49.8 g/d) differed (P = 0.02) only from that of steers fed low. Urinary urea N did not differ between steers fed medium (19.5 g/d) or oscillating (21.3 g/d) but was lowest (P < 0.01) for those fed low (8.2 g/d) and greatest for those fed high (39.2 g/d). Daily heat production (kcal/BW(0.75)) tended (P = 0.09) to be less for the steers fed low (177) than those fed medium (189), high (188), or oscillating (182). Cumulative in vitro ammonia volatilization from the manure of steers fed oscillating was lower (P < 0.01) for the initial 5 d of incubation than from manure of those fed medium, but there was no difference after 11 d of incubation. Additionally, there was a decrease (P < 0.01) in in vitro ammonia volatilization as protein concentration in the diet decreased from high to medium to low. These data indicate that oscillation of the dietary protein improved N retention of finishing steers compared with those in high and low N diets and that these changes were great enough to correspondingly alter ammonia volatilization from manure.  相似文献   

4.
Metabolism and growth experiments were conducted to determine the effects of lysocellin and calcium level on mineral metabolism and performance of beef steers. Lysocellin at 0 or 22 mg/kg and Ca at .3 or .6% of the diet were fed in a 2 x 2 factorial arrangement of treatments. Two steers averaging 287 kg BW were fed each diet consisting of 80% corn silage and 20% supplement (DM basis) in each of two metabolism trials. Steers were fed the diets for a 21-d preliminary period, followed by 7 d of total feces and urine collection. A lysocellin x Ca interaction was observed for nitrogen retention (P less than .01). Steers fed lysocellin and .6% Ca retained the most N (15.6 g/d), whereas steers receiving lysocellin and .3% Ca retained the least N (8.8 g/d). Lysocellin increased (P less than .05) apparent absorption of Mg. In one of the two metabolism trials, lysocellin increased (P less than .05) apparent absorption and retention of Ca. Apparent absorption and retention of Ca were higher (P less than .05) in steers fed .6% Ca when expressed as grams per day, but absorption and retention were lower (P less than .01) when expressed as a percentage of intake. In the other metabolism trial, the .6% Ca level decreased (P less than .05) urinary P excretion and increased (P less than .05) P retention as a percentage of absorbed P. In a growth experiment, 64 steers were fed similar levels of lysocellin and Ca for 119 d. Diets consisted of 90% corn silage and 10% supplement. Although no treatment effects on ADG, DMI or feed:gain were detected, lysocellin did affect concentration of several minerals in ruminal fluid and blood plasma.  相似文献   

5.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.  相似文献   

6.
Sulfur-containing amino acid requirement of rapidly growing steers   总被引:3,自引:0,他引:3  
Eight ruminally cannulated steers (294 kg, ADG = 1.3 kg/d) were used in a N retention study (8 x 8 latin-square design) to evaluate sulfur-containing (S) amino acid (AA) requirements for growth. Treatments were abomasal infusions of seven levels of L-methionine (0, 3, 6, 9, 12, 15 and 18 g/d) and one level of DL-methionine (6 g/d). All steers were fed a semipurified diet based on ammoniated corn cobs (DMI = 6.56 kg/d) and were abomasally infused with 400 g/d dextrose and 296.4 g/d of crystalline AA that simulated the non-S-AA pattern of casein. Infusion of 3 g/d supplemental L-methionine maximized N retention in steers. Intestinal flows of absorbable S-AA were determined to be 1.89 g/kg DMI. Breakpoint analysis of retained N as a function of total absorbable S-AA yielded a total S-AA requirement of 14.7 g/d. Nitrogen retention for DL-methionine (36.4 g/d) was not different (P greater than .05) from that for 6 g/d L-methionine (38.8 g/d), but because this value was not in the linear response range, the efficacy of DL-methionine in meeting S-AA needs could not be evaluated. Plasma methionine concentrations increased linearly (P less than .05) in response to L-methionine infusion and were greater (P less than .05) for steers infused with 6 g/d DL-methionine (45.3 microM) than for steers receiving 6 g/d L-methionine (30.5 microM). Plasma cystine increased when up to 9 g/d L-methionine was infused.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Six Holstein steers (231 +/- 17 kg) housed in metabolism crates were used in a randomized complete block design with three blocks of two steers based on previous serum insulin-like growth factor (IGF)-I concentrations. One of the two steers in each block was implanted with 120 mg trenbolone acetate and 24 mg oestradiol-17beta on day 0. None of the steers was fed ractopamine-HCl in the initial 28 days, and then all steers were fed 200 mg of ractopamine-HCl per steer daily from day 28 until the end of the trial. Steers were fed a corn-based diet (62% rolled corn, 20% expeller soya bean meal and 15% alfalfa hay) twice daily with an average dry matter intake of 4.8 kg/day. Blood and M. longissimus biopsy samples were collected prior to implantation and on days 14, 28, 42 and 56. There was an implant x ractopamine interaction for retained nitrogen (p < 0.05); ractopamine feeding led to only small improvements in nitrogen retention for implanted steers (45.9 g/day vs. 44.5 g/day), whereas ractopamine led to larger increases in nitrogen retention for non-implanted steers (39.0 g/day vs. 30.4 g/day). Implantation increased (p < 0.05) and ractopamine tended to decrease (p = 0.06) serum IGF-I concentrations. Implantation tended to increase (p = 0.16) and ractopamine decreased (p < 0.05) mRNA expression of IGF-I in the M. longissimus. Ractopamine decreased mRNA expression of beta(1)- and beta(2)-receptors in M. longissimus (p 相似文献   

8.
Two experiments were conducted to determine effects of oleamide on feed intake and ruminal fatty acids when the oleamide was introduced in the feed vs through a ruminal fistula (Exp. 1) or the oleamide was fed for an extended (9-wk) length of time (Exp. 2). In Exp. 1, four nonlactating Holstein cows, each fitted with a ruminal cannula, were fed four diets in a 4 x 4 Latin square design. Each period lasted 2 wk. Diets consisted of 48% corn silage and 52% concentrate on a DM basis. One diet contained no added fat (control) and a second diet contained 4.2% oleic acid. The remaining two diets were designed to expose cows to 4.2% amide (as oleamide) either through the feed (AF) or by administering oleamide into the rumen (AR) each day through the ruminal cannula. The AF diet reduced DMI similarly to results reported previously for lactating dairy cows and sheep. Intake of the oleic acid diet was intermediate between the control and AF diets. Dry matter intake was reduced by AR similarly to the AF diet. The acetate:propionate ratio in samples of ruminal contents was reduced by oleic acid but not by AF or AR. In Exp. 2, 12 steers were divided into three equal groups of two Angus and two Simmental x Angus crosses, and each group was assigned a diet containing either no added fat (control), 4% oleamide, or 4% high-oleic canola oil. All steers had ad libitum access to feed and water. Dry matter intake by steers fed the canola oil diet was not different from that by steers fed the control diet when averaged over the first 3 wk, the last 3 wk, or over the entire 9-wk study. Oleamide reduced DMI 4 kg/d over the first 3 wk of the study. However, DMI of the oleamide diet consistently increased over the 9-wk study, resulting in wk 7 to 9 DMI that was not different from that of steers fed the control diet. These results show that the reduction in feed intake when oleamide is added to cattle rations can be attributed more to physiological responses than to an undesirable unique taste or odor of the oleamide. In finishing beef steers, the decreased intake induced by oleamide was most severe during the first 1 or 2 wk of feeding but gradually lessened over time until it nearly returned to normal by wk 9.  相似文献   

9.
Sixteen crossbred steers (278 +/- 4.9 kg) were used to determine the influence of supplemental ruminally protected lysine and methionine on performance of growing cattle fed grass silage. During the 154-d experiment, all steers were allowed ad libitum consumption of a good-quality grass silage during the first 70 d and of a lesser-quality silage during the remaining 84 d of the trial. The steers received a supplement of .5 kg/d of barley with or without a mixture of ruminally protected amino acid (RPAA) containing 8.2 g of lysine and 2.6 g of methionine. Compared with controls, steers supplemented with RPAA showed 16.3% improved (P less than .03) ADG (.92 vs 1.07 kg/d). Dry matter intake was not affected (P greater than .50) by treatment and averaged 2.03% BW across treatments. Supplementation with RPAA improved feed/gain by 13.6% (7.88 vs 6.81 for control and RPAA treatments, respectively, P less than .01). Plasma levels of methionine, lysine, arginine, and glutamic acid were higher (P less than .05) and of histidine were lower (P less than .001) when RPAA were fed. These results indicate that feeding RPAA can improve the performance of growing steers fed grass silages of varying qualities.  相似文献   

10.
Three trials were conducted to evaluate finishing diets containing 67% steam-flaked corn (SFC), steamed-whole corn (SWC) or whole corn (WC). In a feeding trial, steers fed SWC consumed more (P less than .05) dry matter per day (7.6 kg) than those fed WC (7.0 kg) or SFC (6.7 kg). Average daily gain was greater (P less than .05) for steers fed SFC (1.33 kg) and SWC (1.31 kg) than for those fed WC (1.25 kg), and feed efficiency was better (P less than .05) for steers fed SFC (5.06 kg dry matter/kg gain) than for those fed WC (5.62) and SWC (5.79). Carcass characteristics were not different among the three groups. In a digestion trial, method of corn processing did not affect digestibility of dry matter and crude protein. Starch digestibility was greater (P less than .05) for SFC (99.1%) than for SWC (93.8%) and WC (93.0%). There were no differences in nitrogen (N) intake or fecal N among the three diets; however, urinary N was less (P less than .05) for SWC (19 g/d) than for SFC (27 g/d) and WC (32 g/d), and N retention was higher (P less than .05) for the SWC diet. In vitro dry matter digestibility of the SFC diet was higher (P less than .05) than for WC at 4 and 8 h of incubation and higher (P less than .05) than the SWC diet at 8, 12 and 24 h of incubation. In vitro gas production after 6 h was greater (P less than .05) for SFC than for SWC grain, which was greater (P less than .05) than WC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To evaluate the effects of balancing total diet degradable intake protein with dietary total digestible nutrients (TDN), we conducted two studies during 2 yr with 100 (302 +/- 8 kg initial BW) mixed-breed yearling steers and 12 ruminally cannulated steers (526 +/- 28 kg). Steers individually received one of four supplements 5 d/wk while grazing dormant native tallgrass prairie. Supplements included: 1) corn and soybean meal, balanced for total diet degradable intake protein in relation to total diet TDN (CRSBM), 2) corn and soybean hulls, equal in supplemental TDN to CRSBM (CORN), 3) soybean meal, equal in supplemental degradable intake protein to CRSBM (SBM), or 4) a cottonseed hull-based control supplement (CONT). At each feeding (5 d/wk), steers consumed 13.6, 13.6, or 4.2 g of dry matter/kg of body weight, or 178 g of DM, respectively, of supplement. Steers fed CRSBM had greater (P < 0.01) average daily gain than cattle fed CORN or SBM. Feeding soybean meal (CRSBM, SBM) resulted in improved (P < 0.01) efficiency of supplement. Grazing time, intensity, and harvesting efficiency were reduced (P < 0.05) by corn supplementation (CRSBM and CORN), whereas the number of grazing bouts per day was increased (P < 0.08). Intake and digestibility of forage organic matter were reduced (P < 0.01) for steers supplemented with corn (CORN and CRSBM) vs cattle not fed corn (SBM and CONT). Total diet digestibility (P < 0.12) and digestible organic matter intake (P < 0.01) were greater for CRSBM-fed steers than for cattle fed either CORN or SBM. Steers fed CRSBM had greater (P < 0.01) fecal nitrogen and serum insulin than cattle fed CORN or SBM. Corn-fed cattle had lesser (P < 0.01) fecal pH and ADF concentrations than steers not consuming grain. Cattle fed supplements with soybean meal (CRSBM and SBM) had greater (P < 0.01) serum urea nitrogen than steers fed supplements without soybean meal (CORN, CONT). Supplemented steers grazing dormant tallgrass prairie had a greater rate of gain, with the greatest response in animal performance occurring when grain supplements were balanced for total diet degradable intake protein in relation to total diet TDN. These results lead us to suggest that grain-supplemented cattle grazing dormant tallgrass prairie require a balance of total diet degradable intake protein in relation to total diet TDN to optimize animal performance.  相似文献   

12.
We investigated the influence of DM and(or) energy intake and dietary CP levels on the performance and nitrogen (N) retention of beef steers with and without growth promoter implants. In Exp. 1, four implanted (Synovex-S, 200 mg of progesterone plus 20 mg of estradiol benzoate) Angus steers and four Angus steers that were not implanted were assigned to concurrent 4 x 4 Latin squares. Initial BW averaged 296 kg. Each square consisted of moderate and moderately high DM intake treatments (4 and 6 kg/d) and low and adequate CP intake treatments (450 and 600 g/d) in a 2 x 2 factorial arrangement. Periods were 2 wk of adaptation, 5 wk of growth, and 1 wk of balance collection. Experiment 2 consisted of two replicates of 32 Hereford steers each (initial BW 324 kg). Each replicate was a 4 x 2 factorial in which steers were individually fed for 63 d. All steers had ad libitum access to a 60% corn-based concentrate diet containing either 7.9, 10.0, 12.1, or 14.6% CP (DM basis), and steers were either implanted or not implanted with Synovex-S. Experiment 3 was similar to Exp. 2 except that all steers (initial BW 315 kg) received a low-protein diet (7.6% CP) with calculated energy densities of either 1.86, 2.04, 2.22, or 2.42 Mcal ME/kg DM, and steers were limited to an equalized DM intake of 9.5 kg daily. In Exp. 1, gains for the low CP, moderate and moderately high DM intakes and the adequate CP, moderate and moderately high DM intakes were 240, 555, 208, and 730 g/d, respectively, for steers not implanted and 333, 643, 488, and 988 g/d, respectively, for implanted steers (SEM = 102 g/d). Respective values for retained N were .13, .18, .16, and .26 g/kg BW.75 and .13, .15, .22, and .29 g/kg BW.75 (SEM = .04 g/kg BW.75). Implant response was greater (CP x implant, P < .01) for both gain and retained N when adequate CP compared to low CP diets were fed. For Exp. 2, the lowest CP diet reduced ADG (.97 vs 1.27 kg/d) and efficiency of gain (100 vs 120 g gain/kg DM). Synovex-S was less effective in improving efficiency for the lowest protein diet than for the other diets (11.7 vs 20.2%). During Exp. 3, neither Synovex-S nor dietary energy influenced gain and efficiency. We concluded that adequate dietary protein is necessary to optimize the response to estrogenic growth promoters and that the low response under inadequate protein and energy intake is not improved by increasing the energy density of the diet.  相似文献   

13.
The objective of this N balance study was to determine the potential for improving the efficiency and rate of dietary N utilization in Holstein steers by feeding an amino acid-balanced mixture of animal by-product protein sources in combination with urea. The Beef NRC 1996 Model Level 2 was used to formulate a corn-based (86:14 concentrate-hay) control diet with soybean meal as the primary N supplement that would provide ME and metabolizable protein (MP) allowable ADG of 1.4 kg in 250-kg steers with an estrogenic implant and fed an ionophore. A combination of porcine meat and bone meal, fish meal, hydrolyzed feather meal, and blood meal was also formulated as an undegradable intake protein (UIP) blend to complement those amino acids (AA) derived from microbial protein synthesis. Four steers with an average initial BW of 259 kg were assigned in a 4 x 4 Latin square design to treatments consisting of control, two levels of UIP inclusion (2.6 and 5.2%; DM basis) in combination with urea, and a negative control "urea diet" containing no UIP and no SBM. The steers were fed at hourly intervals 95% of ad libitum intake and were injected with 500 microg of estradiol-17beta twice daily. Nitrogen intakes were 155, 160, 162, and 145 g/d, and N balances were 47, 51, 42, and 47 g/d when the 0, 2.6, 5.2% UIP and the urea diets were fed, respectively. Nitrogen balance was reduced with the 5.2% UIP diet (P < 0.05), and was less than the capacity estimate derived from abosmasal casein infusion studies. Apparent N digestibilities averaged 69%, but DM, OM, and nonstructural carbohydrate digestibilities were significantly reduced for the urea diet. Feeding 5.2% UIP in the diet reduced (P < 0.05) the biological value from 46 to 38%, which was accompanied by a significant elevation of plasma urea N. Results indicate that genetic capacity for N retention was approximately 51 g/d. Results demonstrate that use of an AA-balanced blend of animal by-product protein sources did not improve the efficiency of dietary N usage when added to corn-based diets formulated with the Beef NRC 1996 Model Level 2 to meet nutrient requirements of rapidly growing steers. Using urea as the only N supplement achieved equal rate and efficiency of N use.  相似文献   

14.
15.
The objective of this study was to determine the effect of dietary nitrate on methane emission and rumen fermentation parameters in Nellore × Guzera (Bos indicus) beef cattle fed a sugarcane based diet. The experiment was conducted with 16 steers weighing 283 ± 49 kg (mean ± SD), 6 rumen cannulated and 10 intact steers, in a cross-over design. The animals were blocked according to BW and presence or absence of rumen cannula and randomly allocated to either the nitrate diet (22 g nitrate/kg DM) or the control diet made isonitrogenous by the addition of urea. The diets consisted of freshly chopped sugarcane and concentrate (60:40 on DM basis), fed as a mixed ration. A 16-d adaptation period was used to allow the rumen microbes to adapt to dietary nitrate. Methane emission was measured using the sulfur hexafluoride tracer technique. Dry matter intake (P = 0.09) tended to be less when nitrate was present in the diet compared with the control, 6.60 and 7.05 kg/d DMI, respectively. The daily methane production was reduced (P < 0.01) by 32% when steers were fed the nitrate diet (85 g/d) compared with the urea diet (125 g/d). Methane emission per kilogram DMI was 27% less (P < 0.01) on the nitrate diet (13.3 g methane/kg DMI) than on the control diet (18.2 g methane/kg DMI). Methane losses as a fraction of gross energy intake (GEI) were less (P < 0.01) on the nitrate diet (4.2% of GEI) than on the control diet (5.9% of GEI). Nitrate mitigated enteric methane production by 87% of the theoretical potential. The rumen fluid ammonia-nitrogen (NH(3)-N()) concentration was significantly greater (P < 0.05) for the nitrate diet. The total concentration of VFA was not affected (P = 0.61) by nitrate in the diet, while the proportion of acetic acid tended to be greater (P = 0.09), propionic acid less (P = 0.06) and acetate/propionate ratio tended to be greater (P = 0.06) for the nitrate diet. Dietary nitrate reduced enteric methane emission in beef cattle fed sugarcane based diet.  相似文献   

16.
A metabolism study and two feedlot trials were conducted to evaluate urea supplementation of peanut skin (PS) diets and ammoniation of PS as methods of reducing detrimental effects of tannins in PS on nutrient digestibility and performance of beef cattle. Tannin content of PS was reduced by 42% after ammoniation. Digestibility coefficients for dry matter, crude protein, nitrogen free extract, energy and total digestible nutrients were higher (P less than .05) for the control diet without PS compared with urea-supplemented PS (UPS) and ammoniated PS (APS) diets. Ether extract digestibility was higher (P less than .05) for UPS and APS diets compared with the control diet. Fecal N was higher (P less than .05) and N retention was lower (P less than .05) in steers fed UPS and APS diets compared with controls, which suggested that in UPS and APS diets dietary protein was being complexed with tannins and excreted. Steers fed the APS diet had lower (P less than .05) plasma urea nitrogen compared with control and UPS diets at 2, 4 and 6 h post-feeding. Eighteen heifers were fed control, UPS and APS diets individually for 84 d, resulting in similar (P less than .05) feedlot performance and carcass traits for heifers on all dietary treatments. Rumen fluid propionic acid levels were similar for control and APS heifers and somewhat lower (P greater than .05) for UPS heifers at 3 and 6 h post-feeding on d 62 of the trial. The experimental diets were fed to 54 steers (360 kg initial wt) ad libitum. After 98 d on dietary treatments average daily gains (ADG), final weights, carcass weights and carcass quality grades were not different (P greater than .05) for control and APS steers. Live weight and ADG were lower (P less than .05) for UPS steers on d 98 compared with control and APS steers, and UPS steers continued in the feedlot through d 147. After 98 d on control or APS diets 72.2% of the beef carcasses produced on each diet graded USDA Choice, and 100% of the carcasses of steers fed UPS graded USDA Choice after 147 d. A urea-supplemented PS diet or a diet containing ammoniated PS was ineffective in improving digestibility and N retention of PS diets when limit-fed to steers. However, ad libitum feeding of an ammoniated PS diet was effective in overcoming detrimental effects of tannins on feedlot performance of heifers and steers.  相似文献   

17.
将270只矮小型褐壳蛋鸡随机分成9组,饲喂9种不同蛋白质和含硫氨基酸水平日粮。9种试验日粮分别含有11.50MJ/kg代谢能和16.52%、17.29%、18.17%粗蛋白质以及0.62%、0.66%、0.72%含硫氨基酸,研究矮小型褐壳蛋鸡蛋白质和含硫氨基酸的需要量。代谢试验结果表明,40周龄矮小型褐壳蛋鸡每日采食14.13g蛋白质和0.558gS—氨基酸时,氮存留量达到最大值。血浆游离氨基酸测定结果证实,36周龄矮小型褐壳蛋鸡每日采食0.556g含硫氨基酸时,可满足产蛋需要。此结果和饲养试验对蛋白质和含硫氨基酸的估测量相一致  相似文献   

18.
The addition of graded amounts of L-lysine to a basal diet of cereals and groundnut meal given to growing pigs caused the expected improvements in rate of growth, N retention and carcass quality. Best responses were obtained when the diet contained 9 g lysine/kg; above that level there were no significant additional responses.Blood samples were taken from the anterior vena cava before and at intervals after a meal of each diet, and the concentration of amino acids and urea in the plasma determined. The concentrations of most amino acids in blood plasma increased after a meal, reaching maxima about 2 h after feeding.At all times of sampling the concentrations in plasma of essential amino acids other than lysine were largely unaffected by the lysine content of the diet, but the concentration of lysine increased linearly over a wide range of lysine intake.The concentration of urea in blood plasma fell as the lysine content of the diet increased. Lowest concentrations were found with diets containing 9 g or more lysine/kg.It was concluded that measurement of the concentrations of urea in blood plasma of growing pigs fed twice daily may be of more value in assessing the amino acid requirements and efficiency of protein utilization than determination of changes in concentration of blood plasma amino acids.  相似文献   

19.
Dried tansy ragwort containing pyrrolizidine alkaloids was fed as 2.5% of a complete (control) diet to Hereford steers, with and without (basal) a mixture of additives. The additives provided a dietary supplement equivalent to 0.1% ethoxyquin, 1% methionine hydroxy analog, 2% MgO, 2.7 mg of vitamin B6/kg of diet, 50 micrograms of vitamin B12/kg of diet, 0.45 g of folic acid/kg of diet, and 0.2 g of cobalt/kg of diet. The additives did not alter tansy ragwort toxicity substantially, as assessed by liver histologic changes, sulfobromophthalein clearance rate, and serum gamma-glutamyl transpeptidase activity. After 281 days, 1 of 4 steers fed the basal diet was alive, whereas 3 of 4 steers in the basal plus additives group were alive, suggesting some protective activity. The chronic lethal dose of tansy ragwort in steers was 3.6% of initial body weight.  相似文献   

20.
1. Diets 50% deficient in single essential amino acids were fed to chicks from day 8 to day 18 after hatching to evaluate body-weight gain, food consumption, body composition, nitrogen (N) and energy utilisation. 2. Body-weight gain was reduced most severely by deficiency of isoleucine followed in decreasing order by threonine, arginine, valine, histidine, tryptophan, methionine plus cystine, phenylalanine plus tyrosine, leucine and lysine, and possible reasons for the differences are discussed. 3. Body-weight gain and food efficiency were highly correlated with food consumption but metabolisable energy value of diets was not affected by single essential amino acid deficiencies. 4. Generally N retention (N retained/N consumed) and energy retention (energy retained/energy consumed) reflected food consumption, except for a lower N retention by chicks fed on the methionine plus cystine-deficient diet and for a lower energy retention by chicks fed on the valine deficient diet. 5. The amino acid deficient in the diet was present at very low concentration in the blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号