首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
RapidEye卫星红边波段对农作物面积提取精度的影响   总被引:3,自引:8,他引:3  
在传统的可见光与红外波段基础上增加红边波段(690~730 nm),是当前高分辨卫星传感器研制的明显趋势。德国Rapid Eye卫星携带有红边波段传感器,该文基于黑龙江省北安市东胜乡2014年7月27日的Rapid Eye遥感数据,采用监督分类的方法,通过计算有红边参与条件下、无红边参与条件下,玉米、大豆及其他3种地物类型的可分性测度、分类精度及景观破碎度等指标,比较分析了2种波段组合方式下的红边波段对农作物面积提取精度的影响。其中,监督分类的训练样本是以覆盖研究区的2 km×2 km格网为基本单元,在玉米和大豆面积比例等概率原则下,选取了10个网格作为训练样本,样方内作物的识别采用目视解译的方式完成。精度验证是采用覆盖研究区的农作物面积本底调查结果评价的,本底调查数据是在5 m空间分辨率Rapideye数据初步分类基础上,根据多时相Landsat-8/OLI(Operational Land Imager)数据季节变化规律,结合地面调查,采用目视修正的方法完成。结果表明,有红边参与的玉米、大豆和其他3种地物类型识别的总体精度为88.4%,Kappa系数为0.81,玉米、大豆和其他3种地物类型的制图精度分别为93.1%,86.0%和87.3%;没有红边参与的3种地物识别的总体精度为81.7%,Kappa系数为0.71,玉米、大豆和其他3种地区类型的制图精度分别为83.9%,73.4%和84.6%;通过引入红边波段,3种地物的总体识别精度提高了6.7百分点,玉米、大豆和其他3种地物类型的识别精度分别提高了9.2百分点,12.6百分点和2.7百分点。利用Jeffries-Matusita方法计算了3种地物的可分性测度,玉米-大豆、玉米-其他、大豆-其他的可分性测度分别由0.84变为1.73、1.37变为1.81、1.27变为1.29;采用破碎度指数计算了景观破碎度,地块数量减少了69.2%,平均地块面积增加了2.2倍,平均地块周长增加了60.50%,地块面积与周长比增加了1.0倍。由上述研究结果可以看出,通过红边波段的引入,增加了地物的间的可分性测度,减少了"椒盐"效应造成的景观破碎度的增加,农作物面积识别整体精度得到了提高。目前搭载红边波段的卫星载荷越来越多,即将发射的国产卫星也拟增加红边波段提高作物识别能力,该文研究结果将为国产红边卫星数据在农业上的应用提供参考。  相似文献   

2.
GF-1卫星多时相组合近红外数据水稻识别能力   总被引:1,自引:0,他引:1  
针对近红外波段水稻识别能力的问题,选择银川市所属的5个县区为研究区域,采用2016年5月18日、6月16日、7月30日、9月13日4个时相GF-1/WFV影像的近红外波段(0.76~2.526μm)数据,基于决策树分类方法,获取了4个单时相、3个多时相条件下的水稻识别结果,并与全波段数据分类结果进行了比较。单时相5、6、7和9月份近红外波段水稻识别精度分别为83.63%、57.40%、75.82%和62.61%,除5月份精度高于全波段5.75个百分点外,其他时相都低于全波段识别精度,6月份相差最高为30.23个百分点。多时相5/6、5/7、5/6/7/9月份组合,近红外水稻识别精度分别为83.76%、93.93%和94.03%,分别比全波段低5.47,高8.58和0.73个百分点。结果表明,水稻生长早期的5月份、中期的7月份,近红外波段可以作为单时相遥感识别数据源,包括生长早期和中期2个时相在内的多时相近红外波段组合都可以作为遥感识别的数据源,研究结果可以作为GF-1数据水稻遥感识别的依据。  相似文献   

3.
基于多时相GF-6遥感影像的水稻种植面积提取   总被引:1,自引:1,他引:1  
为获取高精度水稻种植面积提取方法和分析红边信息在作物识别能力上的优越性,该研究选取辽宁省盘锦市为研究区域,利用2020年水稻关键物候期的多时相高分6号宽幅相机(GF-6 WFV)遥感影像,构建归一化植被指数(Normalized Difference Vegetation Index,NDVI)、归一化水体指数(Normalized Difference Water Index,NDWI)、比值植被指数(Ratio Vegetation Index,RVI)和归一化差异红边1指数(Normalized Difference Red-Edge 1 Index,NDRE1),根据各地物类型进行时序分析,在获得水稻面积粗提取结果的基础上对其他地类进行掩膜,准确提取水稻种植面积。对2020年盘锦市水稻提取结果进行精度分析,结果表明,基于实测数据进行精度验证的总体精度为94.44%,基于目视解译数据进行精度验证的总体精度和Kappa系数分别为95.60%和0.91。根据目视解译数据对有无红边波段参与的水稻提取结果进行对比分析可知,红边波段的引入使总体分类精度、水稻制图精度和Kappa系数分别提高了3.20个百分点、6.00个百分点和0.06。该研究证明红边波段可以有效降低作物的错分、漏分情况,对水稻精准估产和丰富农作物遥感监测方法具有重要作用,显示出国产红边卫星数据在作物分类、面积提取方面具有巨大应用潜力。  相似文献   

4.
基于裸土期多时相遥感影像特征及最大似然法的土壤分类   总被引:1,自引:5,他引:1  
运用单时相遥感数据进行土壤分类及制图,其数据本身易受到其他因素干扰而出现误差,存在一定的局限性,导致制图精度不高。为了提高制图精度,以松嫩平原林甸县为研究区,利用裸土时期多时相Landsat 8遥感影像、DEM数据和全国第二次土壤普查数据,从所有单时相遥感影像中提取出多种分类特征,按照分类特征类型进行压缩处理,得到新的多时相分类特征,将不同分类特征进行组合并分别进行最大似然法分类,得到不同分类特征组合下的土壤类型图,通过不同土壤类型图精度来判断各分类特征对于制图的影响。研究表明,该文所提取的分类特征均可以实现土壤制图,使用压缩处理后得到的多时相遥感数据分类特征完成制图的精度更高,总体精度达到91.0%,研究可为土壤精细制图提供依据。  相似文献   

5.
基于GF-1 WFV数据的玉米与大豆种植面积提取方法   总被引:4,自引:4,他引:4  
准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)影像为数据源,选择归一化植被指数(normalized difference vegetation index,NDVI)、增强植被指数(enhanced vegetation index,EVI)、宽动态植被指数(wide dynamic range vegetation index,WDRVI)、归一化水指数(normalized difference water index,NDWI)4个特征,结合实地调查样本点,采用随机森林分类算法,提取黑龙江省黑河市嫩江县玉米与大豆种植面积。研究表明,区分玉米与大豆的最佳时段为9月下旬至10月上旬,即大豆已收获而玉米未收获的时段,在4个待选特征中,NDVI、NDWI与WDRVI指数组合表现最佳;随机森林算法与最大似然算法、支持向量机算法相比,分类精度更高,其总体分类精度为84.82%,Kappa系数为77.42%。玉米制图精度为91.49%,用户精度为93.48%;大豆制图精度为91.14%,用户精度为82.76%。该方法为大区域农作物的分类提供重要参考和借鉴价值。  相似文献   

6.
基于多时相OLI数据的宁夏大尺度水稻面积遥感估算   总被引:5,自引:3,他引:2  
为客观获取宁夏水稻面积空间分布信息,也为区域农作物遥感监测奠定技术基础,该文以宁夏回族自治区为研究区域,选择美国LandSat-8携带的陆地成像仪(operational land imager,OLI)数据,采用2016年3月11日-7月01日间的15景影像,基于水稻田耕地与水体特征反射率随着季节变化规律的分析,采用归一化植被指数(normalized difference vegetation index,NDVI)、近红外波段反射率(infrared reflectance,IR)、短波指数(short waved index,SWI)3个指数,以及多时相NDVI最大值、IR最小值、SWI最小值3个衍生指数,共6个指数为基础进行决策分类树构建,对全区水稻进行识别与提取,采用该区水稻面积本底遥感调查结果进行精度验证,水稻种植面积提取误差仅.4.22%,Kappa系数为0.83,水稻空间分布的用户分类精度分别为85.11%,制图精度为81.67%;同时与监督分类方法提取的水稻面积进行对比,该文方法提取水稻的用户精度提高了8.13个百分点,制图精度更是提高了20.01个百分点。研究结果表明,利用中高分辨率的OLI遥感时间序列卫星影像,在大宗农作物时间序列的变化规律分析基础上,构建分类决策树,可以准确地提取大宗农作物种植面积,是区域农作物面积遥感监测业务运行中具有潜力的方法。  相似文献   

7.
乡镇尺度的玉米种植面积遥感监测   总被引:6,自引:2,他引:4  
以快速、准确提取玉米种植面积为目标,以多时相HJ-1A/1B CCD影像和数字高程模型(DEM)为信息源,选取吉林省长春市为试验区,将试验区种植结构、物候特征、地形特征、光谱特征及植被指数等多元信息引入决策树分类模型,构建基于决策树分层分类的玉米种植面积遥感估算模型,并将空间化的农普数据作为参考值,以乡镇为基本评价单元对玉米种植面积遥感测量结果进行精度评价。研究表明:利用该方法可以有效提高玉米识别精度,满足作物种植面积估算大范围、多时相的需求,有助于解决作物种植面积遥感估算业务运行时空分辨率的矛盾,乡镇尺度的玉米种植面积总量提取精度可达92.57%。  相似文献   

8.
针对已有基于遥感信息的收获指数估算对籽粒灌浆过程中作物生物量变化和收获指数变化过程考虑不足且估算精度有待进一步提高的现状,该研究以冬小麦为研究对象,基于冠层高光谱数据、地上生物量和动态籽粒产量等数据,在提出灌浆至成熟阶段动态收获指数(Dynamic Harvest Index, DHI)和构建花后累积地上生物量比例动态参数(Dynamic fG, D-fG)基础上,提出了敏感波段中心构建归一化差值光谱指数(Normalized Difference Spectral Index, NDSI)估算D-fG的作物动态收获指数估测技术方法并进行精度验证。在此基础上,通过敏感波段宽度扩展确定了冬小麦D-fG估算敏感波段最大宽度,并实现了最大波宽下D-fG和DHI的遥感获取。结果表明,筛选的5个敏感波段中心λ(366 nm, 489 nm)、λ(443 nm, 495 nm)、λ(449 nm, 643 nm)、λ(579 nm, 856 nm)、λ(715 nm, 849 nm)构建NDSI进行D-fG遥感估算均达到了较高精度水平,均方根误差(Root Mean Square Error, RMSE)在0.036~0.050之间,归一化均方根误差(Normalized Root Mean Square Error, NRMSE)在10.46%~14.59%之间;基于敏感波段中心的DHI估算中,RMSE在0.039~0.053之间,NRMSE在10.50%~14.28%之间;估算D-fG的5个敏感波段中心最大波段宽度分别为30、68、58、20和86 nm,基于最大波宽获取DHI估算结果中,RMSE在0.054~0.055之间,NRMSE在14.38%~14.65%之间。可见,该研究所提收获指数遥感估算方法具有一定的可行性,为获取冬小麦动态收获指数提供了新思路和新方法,也为窄波段高光谱卫星遥感和宽波段多光谱卫星遥感获取大范围作物收获指数空间信息提供一定技术参考。  相似文献   

9.
基于PCA和PNN的水稻病虫害高光谱识别   总被引:11,自引:6,他引:5  
对水稻病虫害准确、快速的识别是采取病虫害防治措施的基础,同时对灾害评估也具有积极意义。该研究选用在水稻孕穗期时测定的两期受稻干尖线虫病危害的水稻叶片光谱数据和于水稻分蘖期时测定的两期受稻纵卷叶螟危害的水稻叶片光谱数据,通过对水稻叶片的光谱特征分析,选用可见光波段(490~670 nm)和短波红外波段(1 520~1 750 nm),用主成分分析技术(PCA)对上述光谱波段进行压缩,获得主分量光谱,最后结合概率神经网络(PNN)对稻干尖线虫病和稻纵卷叶螟进行识别,结果显示对水稻病虫害的识别精度高达95.65%。研究表明,PCA和PNN相结合,可以实现对多种水稻病虫害进行快速、精确的分类识别。  相似文献   

10.
冬小麦鲜生物量估算敏感波段中心及波宽优选   总被引:1,自引:2,他引:1  
开展高光谱作物生物量估算敏感波段中心和最优波段宽度筛选对提高作物生物量估算精度具有重要意义。该文以冬小麦为研究对象,利用小麦关键生育期内350~1000 nm 冠层高光谱数据和实测地上鲜生物量,研究任意两波段构建的窄波段归一化植被指数 N-NDVI(narrow band normalized difference vegetation index)与冬小麦地上鲜生物量间的相关关系,构建拟合精度 R2二维图,并以 R2极大值区域重心作为高光谱估算鲜生物量敏感波段中心。通过对敏感波段中心进行波段扩展和相应生物量估算验证,最终确定敏感波段最佳波段宽度。在此基础上,开展基于敏感波段最优波段宽度下冬小麦地上鲜生物量估算和精度验证。结果表明,在 N-NDVI 与冬小麦鲜生物量间拟合 R2≥0.65的二维区域内,确定了401 nm/692 nm、579 nm/698 nm、732 nm/773 nm、725 nm/860 nm、727 nm/977 nm 5个鲜生物量估算的高光谱敏感波段中心;在高光谱估算生物量归一化均方根误差 NRMSE≤10%、相对误差 RE≤10%条件下,上述5个敏感波段中心的最优波段宽度分别为±21 nm、±5 nm、±51 nm、±40 nm 和±23 nm。通过与实测鲜生物量数据对比,利用上述敏感波段中心最优波段宽度进行作物生物量估算,精度在 P<0.01水平上均达到极显著水平,且 RE、NRMSE 分别在8.15%~9.14%、8.69%~9.65%范围内。可见,利用作物冠层高光谱进行冬小麦地上鲜生物量估算时,N-NDVI 与鲜生物量间拟合 R2极大值区域重心的作物高光谱敏感波段筛选和最优波段宽度确定具有一定可行性,为开展作物高光谱数据波段优选提供了新思路,也为多光谱遥感波段设置及遥感数据应用潜力评价提供一定依据。  相似文献   

11.
时序滤波对农作物遥感识别的影响   总被引:1,自引:1,他引:0  
获取长时序且高质量遥感观测数据是捕捉不同农作物关键物候节律信息,进而获取高精度农作物空间分布信息的关键.受云雨天气影响,卫星遥感易产生低质量观测,其往往不参与或采用时序滤波处理后再用于农作物遥感识别.然而,时序滤波对于农作物遥感识别的影响机制尚未摸清,为高效且高精度农作物遥感制图带来了较大挑战.该研究基于HLS(Har...  相似文献   

12.
艾叶具有巨大的食用和医用价值,近些年艾草种植面积在中国南方地区显著增加.掌握艾草空间分布信息对于区域作物种植结构调整、艾草产业布局优化具有重要现实意义.该研究以中国艾草主要生产地——湖北省蕲春县为例,探讨国产高分1号(GF-1)和高分6号(GF-6)卫星影像识别艾草的潜力.本文首先基于高分影像构建了20个光谱特征,然后...  相似文献   

13.
基于时间序列环境卫星影像的作物分类识别   总被引:17,自引:11,他引:6  
环境星影像具有较高的时间和空间分辨率,利用其时序遥感数据进行作物信息提取优势明显。该文以黑龙江垦区友谊农场作物为研究对象,利用2010年6月至9月共10景HJ-CCD数据进行作物种植分类信息提取。首先,通过SPLINE算法对云影响区域插值去噪,重构时间序列影像数据;其次,通过分析试验区主要作物的光谱和植被指数时序变化特征,构建基于决策树分层分类的主要作物遥感分类模型,成功提取了黑龙江友谊农场大豆、玉米和水稻的种植信息,分类总体精度达到96.33%。同时,将分类结果同基于时间序列植被指数影像的支持向量机和最大似然法分类结果相比较,结果表明,决策树分类效果最好,支持向量机次之,最大似然分类较差。研究表明,通过去云处理后构建的时间序列HJ卫星遥感影像,结合作物的光谱和典型植被指数时序变化特征,借助于决策树分类方法能够有效提高黑龙江垦区主要种植作物分类的准确性和精度。  相似文献   

14.
基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析   总被引:4,自引:1,他引:3  
作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义。该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型。结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km~2,其中大豆的种植面积最大,占作物种植面积的51.24%。基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R~2=0.823 7,均方根误差135.45 g/m~2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8 659、2 846 kg/hm~2,总产量分别为16.93×10~8、6.27×10~8 kg。利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考。  相似文献   

15.
基于GF遥感数据纹理分析识别制种玉米   总被引:3,自引:3,他引:0  
仅利用多时相遥感数据识别作物,其精度难以满足制种玉米识别的实际需求。该文针对制种玉米种植特点,利用国产GF遥感数据,构建了制种玉米遥感识别方法。首先利用多时相国产卫星GF-1 WFV数据,依据研究区作物的物候历,构建各地类EVI时序曲线,提取玉米种植区域;进一步利用抽雄期的GF-2 PAN数据,以田块为对象,通过Sobel边缘检测算子,提取作物纹理信息,并利用Hough变换检测制种玉米田块中的条带状纹理信息,最终提取出制种玉米。该文以新疆维吾尔自治区奇台县坎尔孜乡为研究区,对该文构建的方法进行试验验证,试验结果显示,制种玉米识别精度为90.0%,Kappa系数为0.80。该文不但拓宽了中国国产遥感数据的应用领域,同时也为中国玉米制种监管提供了新的技术支撑。  相似文献   

16.
基于无人机低空遥感的农作物快速分类方法   总被引:10,自引:9,他引:10  
无人机以其高时效、高分辨率、低成本、低风险及可重复使用的优势,给遥感技术在各领域的应用提供了新的平台。为了提高无人机遥感中农田信息获取的时效性和精度,该文分析了无人机低空航飞获得的高空间分辨率农作物遥感影像特征,以冬小麦为研究对象,基于农作物波谱特征和NDVI变化阈值,提出了一种农作物快速分类提取方法,并与其他几种常用的遥感分类方法进行比较,探讨了其普适性。结果表明,该方法从无人机高分辨率影像中提取不同种类的农作物分类信息具有较高的正确率和普适性,兼具快速和低成本的特点,在海量农作物无人机航拍数据的信息提取上具有较广的应用。  相似文献   

17.
基于HJ时间序列数据的农作物种植面积估算   总被引:13,自引:7,他引:13  
通过对长时间序列遥感影像的波谱变化特征分析,可以有效地进行农作物种类识别与信息提取,提高农作物种植面积的遥感监测精度。中空间分辨率多光谱遥感影像适合于中国大范围大宗农作物面积监测,也是能够提供稳定时间序列遥感数据源之一。该研究以河北省衡水市为研究区域,采用2011年10月3日-2012年10月24日期间,16景30 m空间分辨率的HJ-1A/B卫星CCD(电荷耦合元件,charge-coupled device)影像月度NDVI(归一化植被指数,normalized difference vegetation index)时间序列数据,针对冬小麦、夏玉米、春玉米、棉花、花生和大豆等主要作物类型,在全生育期波谱特征曲线分析基础上,提取主要作物类型的曲线特征,采用基于NDVI阈值的决策分类技术,进行了农作物种植面积遥感识别,以15个规则的2 km×2 km的地面实测GPS(全球定位系统,global positioning system)样方进行了精度验证。考虑到大豆和花生2种作物的NDVI时间序列特征相似性较高,将这2种作物合并为一类进行分类,并命名为小宗作物。结果表明,冬小麦、夏玉米、春玉米、棉花和小宗作物等5类目标可以有效识别,分类总体精度达到90.9%,制图精度分别为94.7%、94.7%、82.4%、86.9%和81.2%,其他未分类类别精度为85.9%。利用中高分辨率遥感时间序列卫星影像,在大宗农作物时间序列的变化规律分析基础上,可以准确地提取大宗农作物种植面积,在农作物面积资源调查中具有较大的应用潜力。  相似文献   

18.
粮豆轮作遥感监测对卫星时空及谱段指标的需求分析   总被引:2,自引:1,他引:1  
该文面向粮豆轮作遥感监测卫星数据需求,针对最小监测地块、作物类型、时效性的要求,分别对不同空间分辨率影像识别能力、不同波段组合识别能力、最高云覆盖区域晴空获取能力3个方面进行分析,提出了光学遥感卫星理想的空间分辨率要优于0.3 m,光谱设置可以采取基本波段(蓝、绿、红、近红)+红边或者基本波段(蓝、绿、红、近红)+短波谱段2种方式,重访周期要达到3 d以内。在上述指标满足条件下,能够对中国普遍存在的0.3 m宽度田埂进行有效识别,从而达到地块识别的目标;能够利用作物红边、短波谱段特征的差异,对生长中期玉米、大豆进行有效识别,达到粮豆轮作主要作物类型识别的目的;以3 d的重访周期,可以最大限度获取覆盖中国全国区域的晴空有效影像,在数据源获取上保证粮豆轮作业务化作业能力。该研究可为满足中国粮豆轮作等农情遥感监测需求的农业监测卫星研制及相应指标规定提供参考。  相似文献   

19.
基于地块尺度多时相遥感影像的冬小麦种植面积提取   总被引:5,自引:5,他引:0  
针对仅利用单一遥感影像数据获取农作物信息精度不够问题,该文选择冬小麦主产地河南省兰考县乡镇作为研究区,以2017年多时相中分辨率Landsat8 OLI影像和Google earth上下载的亚米级高分影像为遥感数据源,结合光谱差异和农田地块信息实现冬小麦的精确提取。该算法首先构建不同时相决策树模型,分别实现2个时相的冬小麦区域初步提取;其次通过将对高分影像多尺度分割产生的地块信息分别与2个时相冬小麦播种面积初步区域相互叠加,完成地块单元控制下的冬小麦播种面积分地块统计,并通过设定不同统计阈值,分析落在每一地块单元下的冬小麦区域,生成基于地块单元的冬小麦播种面积分布图;最后通过多时相交叉验证,获取最终冬小麦播种区域。结果表明:该方法能更加准确提取冬小麦种植面积,保持较低的误判率(1.3%)水平下,得到较高的提取正确率(95.9%),较通过对比单一Google earth高分辨率影像获取冬小麦精度(85.6%)高,该研究对通过融合多源多时相影像数据获取农作物提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号