首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A semi-hydroponic culture was used to compare growth and cation nutrition of mycorrhizal (Paxillus involutus) and non-mycorrhizal Scots pine seedlings. When roots and hyphae grew together, concentrations and contents of macronutrients in needles and roots were not significantly different between mycorrhizal and non-mycorrhizal plants. When grown in two separate compartments, root potassium (K) concentrations, concentrations and contents of calcium (Ca) in needles and roots, needle nitrogen (N) concentrations, total N content and contents of root K and Mg were significantly reduced in mycorrhizal plants. Whereas 15N abundance increased in roots of mycorrhizal plants. The results indicated that the extraradical mycelium of the fungus strain used was able to transport N to the plant but did not contribute to long-term cation uptake and growth of host plants. An insufficient supply of macro-elements [N, phosphorus (P)] may account for the reduced growth of mycorrhizal plants and the differences in cation uptake between mycorrhizal and non-mycorrhizal plants.  相似文献   

2.
The distribution of heterotrophic flagellates, naked amoebae, testate amoebae and ciliates was investigated in habitats created by Scots pine-Paxillus involutus and -Suillus bovinus ectomycorrhizospheres. The protozoa living on plant and fungal surfaces preferred the non-mycorrhizal pine roots over mycorrhizal roots or external mycelium. The testate amoebae were more abundant on external mycelium than on mycorrhizae regardless of the mycorrhizal fungal species. Numbers of protozoa were higher in the different habitats provided by S. bovinus mycorrhizospheres when compared with P. involutus mycorrhizospheres. Interestingly, the quality of the bacterial flora as food for the protozoa was affected by the mycorrhizal fungi even in the soils adjacent to non-mycorrhizal root tips of pine. These results demonstrate that mycorrhizal fungi create habitats differently suitable for protozoa living in boreal forest soil.  相似文献   

3.
Al and Pb tolerance of different ectomycorrhizal fungi was tested in Petri dishes divided into three compartments. One compartment contained nutrient solution supplemented with Al or Pb but without P to avoid precipitation of Al or Pb phosphates. Phosphate was supplied in the agar compartment while a third compartment served as control containing nutrient solution without P. The tested ectomycorrhizal fungal species and isolates varied greatly in their Al and Pb tolerance. A more than 50% growth reduction was observed at 2000 μM Al in Paxillus involutus MAI but already at 200 μM in P. involutus NAU and P. involutus 533. In contrast, growth of Pisolithus tinctorius 956 appeared to be stimulated by Al. Al tolerance therefore decreased in the following order: P. tinctorius 956 > P. involutus MAI > P. involutus NAU, P. involutus 533. To test the effect of agar on Al tolerance, P. involutus MAI was grown with agar in all three compartments. In presence of agar, even 2000 μM Al had no effect on growth. Lead at concentrations of 1 and 10 μM Pb had no significant effect on fungal growth. A more than 50% decrease of mycelial surface area occurred at 500 μM Pb in P. involutus MAI and P. involutus 533 and at 100 μM Pb in P. involutus NAU and P. tinctorius 956. Pb tolerance therefore decreased in the following order: P. involutus MAI, P. involutus 533 > P. involutus NAU, P. tinctorius 956. Divided Petri plates appear to be a valuable tool to test metal tolerance of fungi as complexation of the metals by agar or precipitation with P are avoided. The results indicate that some ectomycorrhizal fungi may be more sensitive to Al and Pb than previously reported.  相似文献   

4.
Kim  C.-G.  Power  S. A.  Bell  J. N. B. 《Water, air, and soil pollution》2004,155(1-4):189-203
Effects of Cd and mycorrhizal colonisation on seedling growth and Cd accumulation in Pinus sylvestris seedlings were studied. While colonisation by Suillus bovinus improved shoot growth, colonisation by Paxillus involutus had no effect on growth of seedlings. There was no Cd-ameliorating effect of colonisation in terms of either shoot or root growth. Colonisation by P. involutus did not decrease Cd transport from roots to shoots, whereas colonisation by S. bovinus significantly reduced the level of Cd in shoots in the 100 mg Cd kg-1 treatment. The proportion of healthy mycorrhizal root tips of S. bovinus-inoculated seedlings was reduced as a result of Cd addition. However, no such effect was found in P. involutus-inoculated seedlings.  相似文献   

5.
Mycorrhizal (Lactarius rufus Fr.) and non-mycorrhizal Norway spruce seedlings (Picea abies Karst.) were grown in a sand culture and inoculated with protozoa (naked amoebae and flagellates) extracted from native forest soil or with protozoa grown on agar cultures. A soil suspension from which the protozoa were eliminated by filtration or chloroform fumigation was used as a control. After 19 weeks of growth in a climate chamber at 20–22°C, the seedlings were harvested. Protozoa reduced the number of bacterial colony-forming units extracted from the rhizoplane of both non-mycorrhizal and mycorrhizal seedlings and significantly increased seedling growth. However, concentrations of mineral nutrients in needles were not increased in seedlings with protozoan treatment. It is concluded that the increased growth of seedling was not caused by nutrients released during amoebal grazing on rhizosphere micro-organisms. The protozoa presumably affected plant physiological processes, either directly, via production of phytohormones, or indirectly, via modification of the structure and performance of the rhizosphere microflora and their impact on plant growth. Mycorrhizal colonization significantly increased the abundance of naked amoebae at the rhizoplane. Our observations indicate that protozoa in the rhizosphere interact significantly with mycorrhizae.  相似文献   

6.
Boron fertilization and inoculation with Pisolithus tinctorius (Pers.) Coker and Couch increased foliar and total seedling nutrient content of boron, calcium, copper, iron, potassium, magnesium, manganese and phosphorus in shortleaf pine seedlings (Pinus echinata Mill.). Noninoculated seedlings fertilized with boron showed no increase in nutrient content other than B. The increase in nutrient content of inoculated seedlings fertilized with boron was correlated with increased mycorrhizal infection. Boron fertilization may affect indirectly the mineral nutrition of tree seedlings by increasing mycorrhizal fungi colonization of their roots.  相似文献   

7.
Birch seedlings on which mycorrhizas of different fungi (primary inoculants) were established in aseptic conditions were transplanted into pots of brown earth supplemented with inocula of other mycorrhizal fungi (secondary inoculants) in a glasshouse study. Leccinum scabrum and Amanita muscaria did not persist as primary inoculants after transplanting seedlings to soil, and did not colonize as secondary inoculants, irrespective of the presence of other mycorrhizal fungi. Lactarius pubescens persisted poorly as a primary inoculant after transplanting and did not colonize seedlings as a secondary inoculant in soil; however, Lactarius-type mycorrhizas sometimes developed from naturally occurring inoculum in soil, especially after seedlings had been subjected to dormancy. Hebeloma sacchariolens and Thelephora terrestris persisted and spread as primary inoculants after transplanting and also colonized seedlings as secondary inoculants. These fungi apparently competed with one another, H. sacchariolens being dominant in a brown earth; but H. sacchariolens was ineffective as either primary or secondary inoculant in sphagnum peat, whereas T. terrestris formed abundant mycorrhizas in peat. Two isolates of Paxillus involutus behaved differently from one another: one isolate did not persist as a primary inoculant and did not colonize as a secondary inoculant whereas the other isolate did not persist as a primary inoculant but colonized seedlings extensively as a secondary inoculant in soil.The results demonstrate important and predictable behavioural differences between mycorrhizal fungi that have been termed “early-stage” and “late-stage” in mycorrhizal sequences on birch. Only early-stage mycorrhizal types were suitable for artificial inoculation of seedlings; they influenced subsequent colonization by some other mycorrhizal fungi but did not facilitate colonization by late-stage types typical of mature tree stands.  相似文献   

8.
For the quantification of surface-bound phosphomonoesterase activity (SBPA) of fungi, roots, or mycorrhiza, a colorimetric method based on p-nitrophenyl phosphate (pNPP) is widely used. Unfortunately, this method does not reveal information about the localization of the surface-bound phosphomonoesterase (SBP). We introduce a method that localizes and quantifies SBPA in living hyphae of ectomycorrhizal fungi using confocal laser scanning microscopy of the hydrophilic substrate enzyme-labelled fluorescence (ELF-97) and compare it to the pNPP assay. ELF-97 turns into a strongly fluorescent precipitate upon activation by SBPA and forms bright fluorescent centres on the outer cell wall of the hyphae. Our data show that the enzymatic reaction is not substrate-limited during an incubation period of 15 min in fungal hyphae of Pisolithus tinctorius, Cenococcum geophilum, and Paxillus involutus. Image-processing routines determined the total intensity and the average number of the fluorescent ELF-97 centres per micrometre fungal hyphae of C. geophilum and Paxillus involutus. ELF-97 and pNPP detected similar variations of the SBPA at different pH values (3–7) during the measurement and different phosphorus (P) concentrations during the growth period of the fungi. The ELF-97 method revealed that C. geophilum and Paxillus involutus adapt in different ways to the variation of the P concentrations during the growth period by varying the number, the activity, or both properties of the SBP centres. The phosphatases show peak activities at different pH values, so the response of the fungal mycelium to varying P concentrations in soils is pH selective. In conclusion, ELF-97 is a promising substrate to reveal SBPA and adaptation strategies on a structural–physiological level.  相似文献   

9.
Ectomycorrhizal fungi have been shown to affect metal transfer from the soil to the host plant, but the use of these fungi for increased phytoextraction of heavy metals has been scarcely investigated. Therefore, a two‐factorial pot experiment was conducted with Salix × dasyclados and (1) two contaminated soils with different concentrations of NH4NO3‐extractable metals and (2) two strains of the ectomycorrhizal fungus Paxillus involutus (one strain originating from a noncontaminated site—Pax1, and another from a contaminated site—Pax2). The inoculation with Pax2 increased the phytoavailability of Cd in the soils. Inoculation with both fungal strains increased the stem and root biomass, but had no effect on metal concentrations in the stems. Decreased Cd and increased Cu concentrations were observed in the roots of inoculated willows. The inoculation with P. involutus increased Cd (up to 22%), Zn (up to 48%), and Cu content in the stems. Decreased Pb content (Cu and Pb content were always <1 mg per plant) occurred in the stems from plants at the soil with the higher concentration of NH4NO3‐extractable metals. Contrary to this, in the soil with lower concentrations of NH4NO3‐extractable metals, the inoculation had no significant effects on the total uptake of Zn and Cu and even caused decreased Cd (Pax2) and Pb (Pax1) contents in the stems. Strain Pax2 had higher colonization densities, but the plants had lower mycorrhizal dependencies in the contaminated soils than after inoculation with the strain Pax1. Generally, metal extractability in the soils substantially affected the mycorrhizal dependency and heavy‐metal uptake of the willows. We concluded, that the inoculation with P. involutus offers an opportunity to particularly increase the phytoextraction of Zn, but the metal extractability and fungal strain effects have to be tested.  相似文献   

10.
The clone (Salix?×?smithiana, Willd.) was cultivated in lysimeter pots to monitor lead (Pb), cadmium (Cd), and zinc (Zn) leachate and to compare the effect of ectomycorrhizal inoculum (ECMI; Paxillus involutus, Bartsch. ex Fr.) on plant growth and metal uptake by willows during two consecutive vegetation periods. The willow clone was able to reduce metal leaching significantly because of its high phytoextraction potential. In addition, ECMI (i) significantly enhanced plant growth; (ii) decreased metal-induced plant stress, which was represented by greater Ntotal in biomass and by greater productions of free amino acids AAfree (from 128 ± 10 to 204 ± 16 μmol kg?1 fresh weight); and (iii) showed no additional effect of metal uptake. Furthermore, treated willows were affected indirectly, probably because of unsuccessful inoculation by Paxillus involutus, Bartsch. ex Fr., caused by high level of volumetric water content (θv) during both vegetation periods (θv = 25%).  相似文献   

11.
Arbuscular mycorrhizal (AM) fungi alleviate the unfavorable effects of salinity stress on plant growth. A pot study was conducted to determine the effects of AM fungi and salt on growth and some physiological parameters of Citrus jambheri rootstock. Four levels of salinity (2, 4, 6, and 8 dS m?1 as NaCl) and three mycorrhizal treatments (Glomus etunicatum, Glomus intraradices and non-mycorrhizal (NM) control) were used. As salinity increased, all measured characteristics of plants after 4.5-month growth except Na uptake, proline content, and electrolyte leakage decreased. Shoot dry weight and K uptake were significantly higher in G. intraradices-colonized seedlings than NM controls at all salinity levels. Root dry weight and shoot P uptake were significantly higher in G. etunicatum-colonized seedlings than NM controls at all salinity levels. G. intraradices-colonized seedlings had significantly higher proline content than NM controls and G. etunicatum-colonized seedlings at salinity levels of 4, 6 and 8 dS m?1. The electrolyte leakage percentage was significantly lower in G. intraradices-colonized seedlings than NM controls at all salinity levels. The data demonstrated that mycorrhizal citrus seedlings exhibited greater tolerance to salt stress than NM seedlings and the enhanced proline content seems to be one of the mechanisms involved.  相似文献   

12.
If mycorrhizal formation could be enhanced by co-inoculation with mycorrhiza helper bacteria (MHB) which promote rapid root colonization by specific ectomycorrhizal fungi, this would be of advantage to the poplar forest industry. A number of poplar rhizobacterial strains were isolated from 11 regions of the eastern China. Four of the isolates, SY15, DZ18, HLJ4, and PY10, were characterized as MHB potential strains based on their positive effect on growth of ectomycorrhizal fungi Pisolithus tinctorius (Pers.) and Lactarius insulsus (Fr.). Under greenhouse conditions, one of the bacterial isolate, DZ18, significantly promoted the poplar trees growth and ectomycorrhizal colonization of P. tinctorius and L. insulsus on Populus deltoides Marsh. In contrast, the other three isolates SY15, HLJ4, and PY10 promoted fungal growth in vitro experiments but did not enhance ectomycorrhizal (ECM) formation in the greenhouse experiment. Therefore, it was concluded that DZ18 can be considered as an MHB strain. DZ18 was identified as Bacillus sp. based on morphological, physiological, and biochemical analyses in combination with analysis of 16S rDNA gene sequences.  相似文献   

13.
An experiment was carried out to evaluate the growth of mycorrhizal Pinus halepensis seedlings planted in a semiarid soil amended with urban refuse in southeast Spain. Three fungal species were used: Pisolithus tinctorius, Rhizopogon roseolus, and Suillus collinitus. After 8 months, inoculated seedlings grown under controlled conditions did not differ significantly from controls with regard to plant height and nutrient assimilation. Other features such as root development and stem dry weight showed that the plants grew better in the absence of mycorrhizal inoculation. The mycorrhizal seedlings and the controls were planted in three experimental plots treated with urban refuse (0, 6, and 12 Kg m-2). After 1 year of growth under field conditions the results showed that the type of fungus inoculated significantly influenced P. halepensis development. This effect varied with the dose of urban refuse. Plant growth was encouraged by the application of refuse but only at the lowest dose. Under these conditions P. tinctorius was the most effective fungus and R. roseolus yielded poorer plant development. The highest application of urban refuse led to notably worse results and a significant decrease in seedling growth compared to controls. In the control plot (without refuse) S. collinitus was the most effective fungus in plant growth improvement. The smallest application of urban refuse had a positive effect on the assimilation of N, P, and K in seedlings inoculated with P. tinctorius and S. collinitus.  相似文献   

14.
A balsam poplar clone (Populus trichocarpa cv. Weser 6) was inoculated by two ectomycorrhizal strains (Laccaria bicolor MW 158 and Paxillus involutus 1444) in Kick‐Brauckmann‐pots. The substrates were two arable sandy soils (Cambisols) with different organic matter content and nutrient supply. One soil (WIL) was rich in organic matter (Corg = 1.6%) and total nitrogen (Nt = 0.14%), whereas the other soil (RIE) had low contents of Corg (0.8%) and Nt (0.08%). Leaf nutrient concentrations, shoot lengths, root and shoot biomass production and nitrogen accumulation in the biomass were determined to discover possible inoculation effects. Mycorrhization indices (% colonized fine roots) of 36% with Laccaria bicolor and 40% with Paxillus involutus were observed on the Corg rich soil (WIL) in contrast to 16% and 14% on the Corg poor soil (RIE), respectively. Inoculation of poplar on the soil WIL increased shoot length, biomass production, shoot:root ratio and total N uptake of the cuttings, whereas on the soil RIE only the shoot:root ratio increased and the N nutrition was improved. We conclude that interactions between soil and fungus should be tested when choosing ectomycorrhizal strains for inoculation.  相似文献   

15.
Abstract

Seedlings of Eucalyptus camaldulensis Dehnh. and Pinus caribaea Morelet var. hondurensis Loock. were inoculated witH mycelium of Pisolithus tinctorius (Pers.) Coker & Couch and Thelephora terrestris Ehrl. per Fr. After four months in glasshouse culture, the roots of Pisolithus inoculated seedlings had significantly more ectomycorrhizae than Thelephora inoculated seedlings. The Pisolithus inoculated Eucalyptus seedlings were significantly larger in size than plants colonized with T. terrestris. Shoot dry weight and needle surface area of P. caribaea seedlings were significantly increased by Pisolithus inoculation. Inoculation with Pisolithus significantly increased N, P, K, Ca, Mg, Cu, Fe, Mn, Zn, and B content in E. camaldulensis seedlings compared to Thelephora inoculated plants. In contrast, only N, Mg, Cu, Fe, Zn, and B content was significantly increased by Pisolithus colonization of P. caribaea, compared to Thelephora inoculated seedlings. These data suggest ectomycorrhizal fungi differs in their ability to provide nutrients to host symbiont.  相似文献   

16.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

17.
Phytohormones have an essential ability to adapt to abiotic stresses, including drought stress (DS), by mediating physiological and molecular processes. Arbuscular mycorrhizas (AMs) can enhance tolerance of DS, but the information regarding phytohormone changes in AM plants exposed to DS is little known. Trifoliate orange (Poncirus trifoliata) seedlings colonized by an AM fungus Funneliformis mosseae were subjected to DS and well-watered for 6 weeks. Plant growth performance, gas exchange, indole-acetic acid (IAA), gibberellins (GAs), brassinosteroids (BRs), abscisic acid (ABA), methyl jasmonate (MeJA) and zeatin riboside (ZR) were determined. The 6-week DS treatment strongly restricted root mycorrhizal colonization. Mycorrhizal inoculation significantly increased plant growth parameters under DS, as compared with non-mycorrhizal treatment. Mycorrhizal treatment also induced significantly higher leaf-relative water content, net photosynthetic rate, transpiration rate and stomatal conductance but lower intercellular CO2 concentration and leaf temperature under DS, compared with non-mycorrhizal treatment. Mycorrhizal plants under DS condition represented significantly higher leaf ABA, IAA, GAs, BRs and ZR levels than non-mycorrhizal plants. The study, hence, suggested that mycorrhizal inoculation induced the changes of gas exchange and endogenous phytohormone levels to enhance drought tolerance in trifoliate orange.  相似文献   

18.
Mycorrhizal infection but not growth of white pine seedlings was reduced by application of simulated rain at pH 3.5 at 3 times ambient rates to plants grown in steamed Mardin soil inoculated with Pisolithus tinctorius. In unsteamed Mardin soil, the simulated acid rain at 3 times ambient rates had no effect on mycorrhizal infection or growth of pine seedlings if the rain was applied to the plants and soil or to only the soil before planting, except that nitrate-containing acid rain increased growth, infection and N content. In limed Mardin soil, the simulated acid rain reduced mycorrhizal infection if applied to the plants and soil as the seedlings were growing but not if applied to the soil before planting. Application of pH 3.5 rain at ambient rates had no detectable influence on mycorrhizal infection in 6 of 9 soils tested, but it stimulated infestion in 3 soils if the simulated rain contained only sulfate and in 1 soil if it had both sulfate and nitrate.  相似文献   

19.
Strati  S.  Paoletti  E.  Barbolani  E.  Pirazzi  R. 《Water, air, and soil pollution》1999,113(1-4):33-41
Non-mycorrhizal Corylus avellana L. seedlings and filbert seedlings colonized with Tuber albidum Pico were grown in semihydroponic culture with frequent renewed nutrient solution. The seedlings were exposed to 0.96 μM of KCr(SO4)2 ·12H2O and of K2CrO4 for one month. Such a low concentration of Cr slightly increased the fine root length. Chromium did not vary the degree of infection with T. albidum, while reduced the colonization with alien fungi. Chromium accumulated in the roots both in mycorrhizal and non-mycorrhizal seedlings but was not translocated to foliage and twigs. This means that the T. albidum sheath doesn't prevent Cr from reaching the root.  相似文献   

20.
Whole cell fatty acid (WCFA) compositions of three different structures of ectomycorrhizal (ECM) fungi: sporocarps, pure culture mycelia and ectomycorrhizas were analysed to evaluate the potential use of fatty acid profiles as biomarkers for ECM fungi and ectomycorrhiza-associated bacteria. Sporocarps of Amanita muscaria, Amanita rubescens, Lactarius rufus, Lactarius thejogalus, Leccinum scabrum, Paxillus involutus, Russula foetens, Russula rosea, Russula vesca, Suillus grevillei, Tylopilus felleus, Xerocomus badius, Xerocomus subtomentosus, pure cultures of A. muscaria, P. involutus, X. badius, X. subtomentosus, Suillus bovinus Suillus luteus and seven ectomycorrhizal morphotypes of Norway spruce were examined. Our results revealed species-specific composition of fatty acids of fungal sporocarps and pure culture mycelia. Ectomycorrhizal morphotypes distinguished and identified by morphological and molecular methods (PCR-RLFP and sequencing) created specific fatty acid profiles. The dominating fatty acids in pure cultures and sporocarps were 18:2ω6,9, 18:1ω9 and 16:0, whereas ectomycorrhizas also contained plant and bacterial specific fatty acids. Especially, fatty acids specific to Gram-positive bacteria 15:0 anteiso and 17:0 anteiso were present in relatively high amounts and suggested that these bacteria are dominating in the examined Norway spruce mycorrhizosphere. In conclusion, our results show that fatty acid based methods can be useful in studies of ectomycorrhizal fungi, both as a quick method for differentiation of fungal species and also in studies of mycorrhiza-associated microorganisms in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号