首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reasons for performing study: Erosion of the palmar (flexor) aspect of the navicular bone is difficult to diagnose with conventional imaging techniques. Objectives: To review the clinical, magnetic resonance (MR) and pathological features of deep erosions of the palmar aspect of the navicular bone. Methods: Cases of deep erosions of the palmar aspect of the navicular bone, diagnosed by standing low field MR imaging, were selected. Clinical details, results of diagnostic procedures, MR features and pathological findings were reviewed. Results: Deep erosions of the palmar aspect of the navicular bone were diagnosed in 16 mature horses, 6 of which were bilaterally lame. Sudden onset of lameness was recorded in 63%. Radiography prior to MR imaging showed equivocal changes in 7 horses. The MR features consisted of focal areas of intermediate or high signal intensity on T1‐, T2*‐ and T2‐weighted images and STIR images affecting the dorsal aspect of the deep digital flexor tendon, the fibrocartilage of the palmar aspect, subchondral compact bone and medulla of the navicular bone. On follow‐up, 7/16 horses (44%) had been subjected to euthanasia and only one was being worked at its previous level. Erosions of the palmar aspect of the navicular bone were confirmed post mortem in 2 horses. Histologically, the lesions were characterised by localised degeneration of fibrocartilage with underlying focal osteonecrosis and fibroplasia. The adjacent deep digital flexor tendon showed fibril formation and fibrocartilaginous metaplasia. Conclusions: Deep erosions of the palmar aspect of the navicular bone are more easily diagnosed by standing low field MR imaging than by conventional radiography. The lesions involve degeneration of the palmar fibrocartilage with underlying osteonecrosis and fibroplasia affecting the subchondral compact bone and medulla, and carry a poor prognosis for return to performance. Potential relevance: Diagnosis of shallow erosive lesions of the palmar fibrocartilage may allow therapeutic intervention earlier in the disease process, thereby preventing progression to deep erosive lesions.  相似文献   

2.
In the diagnostic work‐up of lameness originating from the foot, ultrasonographic examination is an essential complement to radiography for the detection of soft tissue lesions of the podotrochlear apparatus (PTA). The infrasesamoidean part of the deep digital flexor tendon, distal sesamoidean ligament and distal sesamoid bone can be accurately assessed using a transcuneal approach. This paper describes the ultrasonographic technique and presents normal and abnormal ultrasound images of the infrasesamoidean part of the PTA.  相似文献   

3.
4.
5.
Lesions of the distal deep digital flexor tendon (DDFT) are frequently diagnosed using MRI in horses with foot pain. Intralesional injection of biologic therapeutics shows promise in tendon healing; however, accurate injection of distal deep digital flexor tendon lesions within the hoof is difficult. The aim of this experimental study was to evaluate accuracy of a technique for injection of the deep digital flexor tendon within the hoof using MRI‐guidance, which could be performed in standing patients. We hypothesized that injection of the distal deep digital flexor tendon within the hoof could be accurately guided using open low‐field MRI to target either the lateral or medial lobe at a specific location. Ten cadaver limbs were positioned in an open, low‐field MRI unit. Each distal deep digital flexor tendon lobe was assigned to have a proximal (adjacent to the proximal aspect of the navicular bursa) or distal (adjacent to the navicular bone) injection. A titanium needle was inserted into each tendon lobe, guided by T1‐weighted transverse images acquired simultaneously during injection. Colored dye was injected as a marker and postinjection MRI and gross sections were assessed. The success of injection as evaluated on gross section was 85% (70% proximal, 100% distal). The success of injection as evaluated by MRI was 65% (60% proximal, 70% distal). There was no significant difference between the success of injecting the medial versus lateral lobe. The major limitation of this study was the use of cadaver limbs with normal tendons. The authors conclude that injection of the distal deep digital flexor tendon within the hoof is possible using MRI guidance.  相似文献   

6.
We describe the abnormal magnetic resonance (MR) imaging findings in the deep digital flexor tendon (DDFT) and distal sesamoid bone in horses with radiographic changes compatible with navicular syndrome. Thirteen postmortem specimens were examined using a 1.5-T magnetic field, with spin echo (SE) T1-weighted, turbo SE (TSE) proton density-weighted (with and without fat saturation), and fat saturation TSE T2-weighted sequences. The limbs were then dissected to compare the MR findings with the gross assessment and histologic examination of the DDFT and distal sesamoid bones. Tendonous abnormalities were detected by MR imaging in 12 DDFTs and confirmed at necropsy. Most tendon lesions were located at the level of the distal sesamoid bone and the proximal recess of the podotrochlear bursa. Tendon lesions were classified based on their MR imaging features as core lesions, dorsal lesions, dorsal abrasions, and parasagittal splits. Areas of increased MR signal in the DDFTs were characterized by tendon fiber disturbance and lack of continuity of the collagen fibers, foci of edema, hemorrhages, and formation of lakes containing eosinophilic plasma-like material or amphophilic material of low density. Bone marrow signal alterations in the distal sesamoid bone were seen in all digits. Two main phenomena were responsible for the abnormal signal, respectively, in T1-weighted (decreased signal) and in T2-weighted fat-suppressed images (increased signal): a decrease in the fat marrow content in the trabecular spaces and an increase in the fluid content. Histologic examination revealed foci of bone marrow edema, hemorrhage, necrosis, and fibrosis. Cyst formation and trabecular abnormalities (disorganization, thinning, remodelling) were also observed in areas of abnormal signal intensity. Increased bone density because of trabecular thickening induced a decrease in signal in all sequences.  相似文献   

7.
8.
9.
Ten normal equine isolated limbs were imaged using a knee coil in a 1.5 Tesla magnetic field, with short echo time sequences (TE < 15 ms). Magnetic resonance imaging was performed on each isolated limb in different positions, with and without extension of the metacarpophalangeal joint. Deep digital flexor tendon orientation ranged from 20 to 60 degrees in relation to the static magnetic field. Increased intratendinous signal intensity was observed when the angle between the deep digital flexor tendon and the constant magnetic field approached 55 degrees ("magic angle"). The increased signal intensity was independent from extension of the metacarpophalangeal joint. Recognition of the magic angle phenomenon is essential for proper evaluation of magnetic resonance imaging studies of the equine foot.  相似文献   

10.
Tendonopathy of the distal portion of the deep digital flexor tendon is a newly recognised, important cause of foot lameness in horses. Although the pathological morphology of lesions has been well described, the aetiopathogenesis remains uncertain. A conclusive diagnosis can only be made with magnetic resonance imaging, but the results of a thorough clinical examination, including regional analgesia and other imaging modalities may lead to a strong suspicion of deep digital flexor tendonopathy in the foot. The prognosis for return to soundness is guarded but new treatment modalities are currently being investigated for an improved outcome.  相似文献   

11.
Reasons for performing the study: The conventional arthroscopic approach to the palmar/plantar aspect of the distal interphalangeal joint (DIPJ) may result in the inadvertent penetration of the digital flexor tendon sheath (DFTS) and the navicular bursa (NB). This iatrogenic communication would be undesirable subsequent to arthroscopic lavage of a septic DIPJ. Hypothesis: A lateral/medial approach to the palmar/plantar aspect of the DIPJ will result in a significantly lower rate of inadvertent penetration of the DFTS and NB, whilst still providing adequate intra‐articular evaluation. Methods: The conventional palmar/plantar approach or a novel lateral/medial approach to the DIPJ was performed on cadaver fore‐ and hindlimbs (30 limbs/approach). Subsequently, India ink was injected into the dorsal pouch of the DIPJ, and the DFTS (n = 60) and NB (n = 20) were examined for the presence/absence of ink. In addition, observations of the number of attempts made to access the joint, evidence of iatrogenic intra‐articular trauma and occurrence of incomplete visualisation of the palmar/plantar pouch were recorded. Results: With the conventional approach, DFTS penetration was noted in 18/30 (60%) of the limbs, compared to 1/30 (3.3%) with the lateral/medial approach (P≤0.001). NB penetration was seen in 5/10 limbs with the palmar/plantar approach compared to 0/10 with the lateral/medial approach (P = 0.01). No significant differences were found between the approaches in the number of attempts made to access the joint, the incidence of iatrogenic intra‐articular trauma, or the occurrence of incomplete visibility of the palmar/plantar pouch. Conclusions: The novel lateral/medial approach to the DIPJ significantly decreases the risk of inadvertent penetration of the DFTS and NB. Potential relevance: The novel lateral/medial approach to the DIPJ is an effective technique to gain access to the palmar/plantar pouches, and is particularly advantageous for arthroscopic lavage of a septic DIPJ.  相似文献   

12.
Magnetic resonance imaging (MRI) has become a valuable tool for the diagnosis of a multitude of conditions previously grouped into the vague diagnosis of palmar heel pain based on the response to palmar digital nerve diagnostic analgesia. The use of MRI not only determines a specific pathological diagnosis of the numerous structures within the foot but also the findings of the MRI help direct treatment and rehabilitation protocols, as well as providing prognostic information. Common injuries include damage to the navicular apparatus, deep digital flexor tendon, arthropathy of the distal interphalangeal joint and desmopathy of the collateral ligaments of the distal interphalangeal joint. This article reviews common MRI abnormalities in the equine foot and how treatment can be directed by the findings. Medical and surgical treatment options, as well as shoeing and rehabilitation protocols, are also discussed in relation to MRI findings. Using MRI can help create a more individually tailored and case‐specific treatment regimen, which can, in turn, promote a more positive outcome in equine cases.  相似文献   

13.
Navicular syndrome is a multifactorial disease process in horses with multiple structures in the foot contributing to lameness. Surgical debridement is a treatment option for lesions of the navicular bursa and deep digital flexor tendon. This retrospective case series describes the magnetic resonance imaging (MRI) appearance of the navicular bursa following bursoscopy. Seven horses (three being bilaterally affected) with forelimb lameness isolated to the foot, and pre- and post-operative MRI were included. All limbs had concurrent lesions associated with the deep digital flexor tendon, navicular bone, impar ligament, collateral sesamoidean ligament and/or distal interphalangeal joint. All bursae developed or had progression of proliferative bursal tissue following surgery. At recheck MRI, following rehabilitation protocols, almost all horses had improved to resolved lameness with relatively unchanged concurrent lesions despite the navicular bursa appearance worsening. Outcomes for return to work were poor with only two horses going back to the previous level of work.  相似文献   

14.
Injury to the distal aspects of the deep digital flexor tendon (DDFT) is an important cause of lameness in horses. The purpose of this study was to review the magnetic resonance imaging (MRI) findings of 18 horses affected by DDFT injuries in the foot. The MRI was performed with the horses standing using an open low-field (0.21 T) MRI scanner. The results were compared with those previously reported for horses using high-field MRI. Eighteen of 84 horses (21%) with undiagnosed forefoot pain were found to have lesions affecting the DDFT. The history, clinical findings and results of radiography, diagnostic ultrasonography and nuclear scintigraphy of these horses were reviewed. The duration of lameness ranged from 1 to 12 months, and the severity varied from 1/10 to 6/10. Fifteen horses had unilateral lameness (right fore in nine, left fore in six), whereas three horses were bilaterally foreleg lame. Radiological changes, considered of equivocal significance, were found in six of 18 horses. Ultrasonographic changes involving the DDFT were identified in only one of nine horses. DDFT lesions were detected in both T1- and T2-weighted MRI sequences. Four different types of lesions were identified: core lesions, sagittal splits, dorsal border lesions, and insertional lesions. Combinations of different lesion types within the same horse were common. The types and locations of the DDFT lesions were similar to those previously reported using high-field MRI. The use of low-field standing MRI avoids the necessity for general anesthesia and access to conventional high-field MRI scanners. However, studies comparing the results of standing low-field MRI with high-field MRI (and other imaging procedures) are required before the sensitivity and specificity of the technique can be assessed.  相似文献   

15.
16.
Foot pain is the most common cause of lameness in horses. In sport horses, podotrochlear syndrome (‘navicular syndrome’) is reported to be the most frequent condition affecting the front foot. Ultrasonography has the potential to detect damage to the soft tissues as well as the bone surfaces; in some clinics it has become the technique of choice for the identification and documentation of many podotrochlear injuries. The purpose of this paper is to review the main pathological conditions of the proximal part of the podotrochlear apparatus (PTA) that can be diagnosed ultrasonographically, focusing on the deep digital flexor tendon (DDFT), podotrochlear bursa (PTB) and distal digital annular ligament (DDAL). Potentially significant ultrasonographic findings of the DDFT include thickening of one or both lobes, longitudinal tears, focal or diffuse changes in echogenicity, irregularities of the dorsal border and adhesions between the DDFT and the proximal sesamoidean ligament and/or distal sesamoid bone. Deep digital flexor tendon injuries are often associated with concurrent lesions of the PTB (acute to chronic bursitis) and of the DDAL (desmopathy). Both feet should be routinely examined as lesions of the PTA are often bilateral. We currently consider that ultrasonography should be routinely employed as the primary diagnostic procedure to complement radiography of the equine foot.  相似文献   

17.
Reasons for performing study: Primary lesions of the deep digital flexor tendon (DDFT) within the digit are an important cause of lameness diagnosed using magnetic resonance imaging (MRI) but appearance of these lesions over time has not been documented. Objectives: To determine whether the magnetic resonance (MR) appearance of different primary DDFT lesions alter over a 6 month period and whether lesion type is a determinant of these changes. Methods: Cases included had lameness attributable to a primary lesion involving the DDFT in the digit diagnosed on MRI. Lesions were typed into parasagittal, dorsal border and core lesions. Approximate volumes and intensities were quantified for each lesion type using T2* scan sequences. Follow‐up examinations and measurements were repeated at 3 and 6 month periods following conservative management. Results: Twenty‐three horses fitted the inclusion criteria. Lesion distribution included: parasagittal (n = 7), dorsal border (n = 11) and core lesions (n = 5). No association was found between age of horse, degree of lameness and lesion type. Only dorsal border lesions showed statistically significant reduction both in volume (initial scan: 0.18 ± 0.14 cm3) at 3 months (0.11 ± 0.10 cm3, P<0.05) and 6 months (0.05 ± 0.05 cm3, P<0.01) and ratiometric intensity (initial scan: 4.06 ± 1.54) at 6 months (2.00 ± 0.43; P<0.01). Parasagittal and core lesions showed no difference in lesion volume or ratiometric intensity. Lameness improved in all lesion types following conservative management. Conclusions: Dorsal border lesions of the DDFT show reduction in both volume and intensity whereas parasagittal and core lesions do not. Potential relevance: Lesion typing may be important in predicting lesion behaviour and short‐term outcome using MR imaging.  相似文献   

18.
Reasons for performing study: There is limited knowledge about the interpretation of alterations in the distal sesamoidean impar ligament (DSIL) detected using magnetic resonance imaging (MRI) and their correlation with histopathology. Hypotheses: There would be: 1) a correlation between histopathology and MRI findings; and 2) a relationship between MR abnormalities at the origin and the insertion of the DSIL, between insertion and body; and origin and body. Methods: Fifty limbs from 28 horses were examined using high‐field MRI and histopathology. MR abnormalities of the DSIL, its origin on the navicular bone and its insertion on the distal phalanx were graded. Sections of the axial third of the DSIL were examined histologically and graded according to fibre orientation, integrity of fibroblasts, collagen architecture and vascularity. Associations between MRI and histology findings were tested by Spearman rank correlation and Chi‐squared tests. Results: There were significant correlations between the presence of a cystic structure in the distal third of the navicular bone, or a distal border fragment, or increased signal intensity in fat suppressed images at the insertion of the DSIL on the distal phalanx and the histological grade of the body of the DSIL. There were significant associations between a cystic structure in the distal third of the navicular bone and the presence of either a distal border fragment or entheseous new bone at the insertion of the DSIL, swelling of the DSIL and increased signal intensity in the DSIL in fat suppressed images; between distal elongation of the flexor border of the navicular bone and the presence of one or more distal border fragments and between swelling of the body of the DSIL and irregularity of its palmar border or increased signal intensity in fat suppressed images in the DSIL. Conclusions and clinical relevance: The presence of a cystic structure in the distal third of the navicular bone detected using MRI, a distal border fragment or increased signal intensity at the insertion of the DSIL are suggestive of significant alterations in the infrastructure of the DSIL.  相似文献   

19.
Palmar foot pain is a common cause of lameness. Magnetic resonance imaging (MRI) has the potential to detect damage in all tissues of the equine foot, but an understanding of the differences in magnetic resonance (MR) images between feet from horses with and without palmar foot pain is required. This study aimed to describe MR findings in feet from horses with no history of foot-related lameness, and to compare these with MR findings in horses with lameness improved by palmar digital local analgesia. Thirty-four limbs from horses euthanized with a clinical diagnosis of navicular syndrome (ameness >2 months duration, positive response to palmar digital nerve blocks and absence of other forelimb problems) (Group L), and 25 feet from age-matched horses with no history of foot pain (Group N) were examined. For each anatomic structure, MR signal intensity and homogeneity, size, definition of margins, and relationships with other structures were described. Alterations in MR signal intensity and homogeneity were graded as mild, moderate, or severe and compared between Groups L and N. Results revealed that there were significant differences in MR images between Groups N and L. Multiple moderate-severe MR signal changes were present in 91% of limbs from Group L and moderate (none were graded severe) in 27% of limbs from Group N. In most Group L limbs, more than three structures and frequently six to eight structures were abnormal. Concomitant abnormalities involved most frequently the deep digital flexor tendon, distal sesamoidean impar ligament, navicular bone, collateral sesamoidean ligament, and navicular bursa (with significant associations in severity grade between these structures), sometimes with involvement of the distal interphalangeal joint and/or its collateral ligaments. It was concluded that findings on MR images were different between horses with and without foot pain, and that pain localized to the foot was associated with MR changes in a variety of structures, indicating that damage to several structures may occur concurrently and that MR imaging was useful for evaluation of foot pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号