首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
磷酸-复合活化剂法制竹屑活性炭的研究   总被引:8,自引:3,他引:8  
以竹屑为原料,用磷酸 复合活化剂(由磷酸添加一种酸性化合物A和一种盐类化合物S)法制备活性炭。研究了磷酸 复合活化剂用量、炭活化温度、炭活化时间等对活性炭的得率、灰分和pH值的影响,确定了适宜的制备竹屑活性炭工艺条件:磷酸浓度为38°Be′/60℃、添加剂A2%、添加剂S4%(A和S以磷酸质量分数计)、炭活化温度450℃、炭活化时间3h。在此条件下所得活性炭的得率为36%、灰分含量4.8%、pH值4.6。对竹屑活性炭的吸附性能、比表面积和孔隙性质也进行了分析。结果表明:竹屑活性炭的比表面积为1500m2/g、比孔容积1.10mL/g、平均孔隙半径1.46nm、焦糖脱色率(A法)120%和亚甲基蓝吸附值225mg/g。  相似文献   

2.
微波辐射磷酸法制备竹材活性炭及表征   总被引:4,自引:0,他引:4  
以竹屑为原料,采用微波辐射磷酸法制备活性炭。讨论了微波功率、活化时间及磷酸质量分数等工艺条件对竹材活性炭吸附性能的影响。研究结果表明,在磷酸质量分数、活化时间和微波功率3个因素中,微波活化时间对活性炭质量指标影响最大,延长时间可以提高其产品的吸附性能;微波辐射磷酸法制备竹材活性炭的较优工艺条件为:微波功率600 W、活化时间16 min、磷酸质量分数50%。在此条件下制得的活性炭的碘吸附值850.6 mg/g、亚甲基蓝吸附值233.8 mg/g、比表面积920.5 m2/g。  相似文献   

3.
研究了以梭梭材为原料,用氯化锌溶液和磷酸溶液作为活化剂来制备活性炭。探讨了活化温度、活化时间、液固比以及活化液浓度对制备梭梭材活性炭的影响以及梭梭材活性炭对碘吸附值的影响,确定了以氯化锌溶液和磷酸溶液作为活化剂生产活性炭的最佳工艺条件,对开辟梭梭材综合利用和活性炭原料来源具有重要意义。结果表明,氯化锌活化法制备活性炭,最佳工艺为液固比2.5:1,活化液浓度50%,活化温度450℃,活化时间90min,吸附值为1 068.86mg/g;磷酸法为液固比1.5:1,活化液浓度85%,活化温度500℃,活化时间120min,吸附值为885.38mg/g。  相似文献   

4.
以桉树锯末和磷酸为原料制备了颗粒活性炭,研究浸渍比、活化温度、活化时间等对产品得率、强度和吸附性能的影响。实验得到最佳工艺条件为:磷酸与原料浸渍比为2∶1,温度300℃,预处理1 h,机械成型后,再以10℃/min升到活化温度450℃,活化1 h。此条件下,制备得到的活性炭性能指标为:强度95%,亚甲基蓝吸附值172.5 mg/g,碘吸附值790 mg/g,A法焦糖100%,得率40%左右。  相似文献   

5.
竹屑用磷酸活化法制备吸附汽油蒸气和液相脱色的颗粒活性炭。竹屑与磷酸溶液按适当比例混合均匀,在适当温度下塑化,然后经捏和、挤出成型、干燥硬化、炭化、活化、漂洗和烘干等工序制得颗粒活性炭产品。研究了磷酸浓度、酸屑重量比、活化温度、活化时间对活性炭吸附性能的影响。正交试验结果表明较佳的工艺条件为:磷酸浓度85%,酸屑重量比为1.9∶1,活化温度430℃,活化时间90 min。在较佳工艺条件制得活性炭试样的丁烷工作容量为11.95 g·100 m L-1,亚甲基蓝吸附值为255 mg·g-1,活性炭试样的BET比表面积和孔容积分别为1 978.95 m2·g-1和1.4907 cm3·g-1。  相似文献   

6.
以稻秆为原料,通过磷酸法活化制备得到了中孔活性炭,并采用氮气吸附、元素分析和扫描电镜对其进行了表征分析。实验结果表明:稻秆制备活性炭的工艺条件为10 g稻秆,浸渍比3∶1(质量比),在140℃下预活化60 min,活化温度450℃,活化时间60 min。在此条件下制备得到的活性炭得率为25%,亚甲基蓝吸附值215 mg/g,碘吸附值835 mg/g,A法焦糖值110%,灰分3.03%,其比表面积为967.7 m2/g,总孔容为1.12 cm3/g,平均孔径为4.6 nm,中孔率可以达到84.8%。  相似文献   

7.
以山杏壳为原料,用正交试验法,分别采用氯化锌、水蒸气活化法制备杏壳活性炭,并测定吸附能力,优选制备杏壳活性炭的最佳工艺参数,为杏壳活性炭的产业化生产提供技术依据。研究结果表明,以氯化锌为活化剂制备杏壳活性炭的最佳工艺参数为:氯化锌溶液浓度50%,料液比1∶1,活化温度500℃,活化时间90min;水蒸气活化法制备杏壳活性炭的最佳工艺参数为:水蒸气流量5mL/min,活化温度900℃,活化时间120min。在本试验确定的最佳工艺条件下,以氯化锌为活化法制备的活性炭得率为41.83%,碘吸附值为948.06mg/g,亚甲基蓝吸附值为133.42mg/g;以水蒸气活化法制备的杏壳活性炭得率为48.11%,碘吸附值为1001.67mg/g,亚甲基蓝吸附值为153.05mg/g,2种方法制备的杏壳活性炭均具有较强的吸附能力。  相似文献   

8.
竹材是重要的林业可再生资源,以竹材代替木材制备活性炭可节省大量木材。以竹粉为原料,经磷酸活化成型后进行水蒸气二次活化,在不同工艺条件下制备了高吸附性能活性炭。通过碘吸附值、亚甲基蓝吸附值、N_2吸附-脱附等温线、二硫化碳动态吸附量等对所制活性炭的性能进行表征。结果表明:在磷酸浸渍比1.2∶1、活化时间20 min、活化温度450℃,水蒸气活化温度875℃、活化时间1 h、流量3.0 m L/min条件下,制得的活性炭BET比表面积为1 264.60 m~2/g、总孔容积为1.227 cm~3/g、平均孔径为3.88 nm、碘吸附值为1 452.96 mg/g、亚甲基蓝吸附值为307.5 mg/g、强度为91.76%、得率为30.42%;在动态干燥和30%相对湿度条件下,对二硫化碳的单位质量吸附量分别为0.416和0.390 g/g。活性炭对CS2的吸附能力主要与活性炭的孔结构有关,微孔发达、平均孔径小、碘吸附值高的活性炭更有利于CS2的吸附。由于竹材表观密度相对较低,且受到竹材自身组分的限制,所制活性炭的强度低于椰壳活性炭。  相似文献   

9.
以玉米芯木质素为原料,采用磷酸活化法制备木质素基活性炭;并以亚甲基蓝吸附值为考察指标,通过Plackett-Burman设计、最陡爬坡实验和中心复合设计方法,探究了不同工艺条件在活性炭制备过程中的交互作用及最优工艺参数。结果发现:Plackett-Burman设计筛选得到的3个最重要因素分别为浸渍比、活化温度和活化时间;通过最陡爬坡实验确定了其最佳中心点区域;中心复合设计(CCD)和响应面分析(RSM)得到的最佳工艺条件为浸渍比3∶1(g∶g)、活化温度563℃和活化时间2.75 h。通过验证实验表明:在上述优化工艺及磷酸质量分数60%、浸渍时间12 h、浸渍温度90℃条件下,木质素基活性炭的孔径主要集中在2~10nm,BET比表面积为1 436 m2/g,总孔容为1.041cm3/g,微孔孔容为0.385 6cm3/g,亚甲基蓝吸附值为240 mg/g。  相似文献   

10.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

11.
以杉木屑为原料,在不额外添加粘结剂的工艺下,采用磷酸活化法制备自成型颗粒活性炭,并对其活化工艺、孔隙结构和甲烷吸附性能进行了分析。结果表明:随着活化温度的升高,颗粒活性炭的吸附性能先升后降,450℃时吸附性能最佳,强度不断升高;浸渍比的增加有利于颗粒活性炭吸附性能的提高,不利于其强度的增大。氮气吸附等温线和压汞法分析表明:颗粒活性炭具有发达的微孔、中孔和大孔结构,浸渍比的增加有利于颗粒活性炭比孔容积的增加,不利于堆积密度和表观密度的增加。在活化温度450℃,压力3.4 MPa时单位质量和单位体积的颗粒活性炭的甲烷吸附值在浸渍比1.25时达到最大,分别为125.6 m L/g和115.2 L/L。  相似文献   

12.
薄皮核桃壳基活性炭的制备及表征   总被引:1,自引:0,他引:1  
【目的】以农林废弃物薄皮核桃壳为原料,通过化学活化-高温炭化法制备多孔活性炭材料,优化制备工艺过程,表征吸附性能机理,为薄皮核桃壳的开发利用提供技术指导。【方法】以碘吸附值和亚基甲蓝吸附值为考察指标,进行活化剂的筛选,并进一步考察原料粒度、料液比、活化时间、炭化温度和炭化时间对制备出的活性炭的吸附性能的影响。采用N2吸附-脱附等温线、元素分析仪和FTIR测定了活性炭的孔隙结构、主要元素组成和表面官能团,扫描电镜分析形貌结构,XRD和TG分析活性炭的结晶度和热稳定性。【结果】选用磷酸为最佳活化剂,薄皮核桃壳活性炭的最佳制备工艺条件为:核桃壳粉100目、料液比1:4、活化时间120 min、炭化温度500℃、炭化时间60 min,此工艺条件下制备出的活性炭的碘吸附值为657.42±3.16 mg/g、亚甲基蓝吸附值为248.55±1.94 mg/g。制备出的活性炭的表面积为449.80 m2/g,具有丰富的孔隙结构,孔容积为1.11 m2/g,平均孔径为7.87 nm。碳元素含量为65.56%,结晶度不高,为无定型结构,活性炭在400℃左右发生热降解,主要含有羧基、酚基、醇羟基等活性官能团。【结论】采用磷酸活化法制备出的薄皮核桃壳活性炭的孔隙结构发达,具有良好的吸附性能,碘吸附值和亚甲基蓝吸附值均高于国家标准,具有将废弃物资源循环利用的价值和前景。  相似文献   

13.
磷酸活化工艺条件对活性炭性质的影响   总被引:8,自引:0,他引:8  
探讨了磷酸浓度、浸渍比、活化温度三个主要工艺参数对活性炭性质的影响。结果表明磷酸浓度、浸渍比和炭活化温度对磷酸活化法活性炭的碘吸附值、亚甲基蓝脱色力和焦糖脱色力都有影响:浸渍比(纯磷酸与绝干原料质量之比) 的影响最显著,但1.5:1之后影响不大;磷酸浓度对活性炭的碘吸附值影响显著,对亚甲基蓝脱色力的影响次之,而对焦糖脱色力的影响很小;炭活化温度对碘吸附值和焦糖脱色力的影响随磷酸浓度和浸渍比的不同而有较大的差异,但在不同的磷酸浓度和浸渍比的情况下炭活化温度的升高都提高亚甲基蓝脱色力。磷酸活化活性炭的孔隙结构能通过调整磷酸浓度、浸渍比和炭活化温度进行控制。  相似文献   

14.
紫茎泽兰制备活性炭及其性质   总被引:7,自引:0,他引:7  
紫茎泽兰(Eupatorium adenophorum)是一种分布广泛的林业恶性杂草,属亚灌木类,俗称解放草(王林等,2004),自从20世纪50年代从西南边境一带传入中国,在云南、四川、贵州等地迅速泛滥  相似文献   

15.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

16.
用磷酸活化草浆造纸黑液木质素制备活性炭.探讨了磷酸在木质素活化过程中的作用,研究了磷料比、活化温度、活化时间对所制活性炭的比表面积和对正丁烷吸附量的影响.结果表明,草浆造纸黑液木质素是一种优良的制备活性炭的原料,磷酸不仅是脱水剂,而且还是活化过程的保护剂.活性炭制备条件为:磷料比值2.5,活化温度450℃,活化时间60...  相似文献   

17.
以杉木屑为原料,采用磷酸氢二铵活化法制备活性炭。讨论了预处理温度、浸渍比和活化温度对活性炭碘吸附值的影响。结果表明,随着预处理温度、浸渍比和活化温度的升高,活性炭的碘吸附值均呈先升后降的趋势。在较佳生产工艺条件下:预处理温度160℃,浸渍比1.25:1,活化温度450℃,活性炭的碘吸附值达到930.2mg·g^-1。  相似文献   

18.
Nitrogen-containing bamboo charcoals were prepared using bamboo processing residues, and modified by melamine or urea. The iodine value of the products we obtained was analyzed, and two samples were chosen for the Cr(VI) adsorption. The experimental results show that under the KOH and carbon ratio of 3:1 (w1/w2), activation temperature 800 °C and activation time 1 h, the activated carbons modified by melamine boasted the iodine value of 1144 mg/g and the activated carbons modified by urea boasted the iodine value of 1263 mg/g. In addition, the equilibrium adsorption capacity is 95.3 mg/g for the activated carbons modified by melamine with the adsorbent dosage of 1.0 g/L at an initial pH 2 in the presence of 100 mg/L K2Cr2O7 at 30 °C for 180 min and it is 94.2 mg/g for the activated carbons modified by urea in the same reaction condition. The pseudo-second-order kinetic model can better reflect the two kinds of nitrogen-containing activated carbons adsorption kinetic process of Cr(VI). The adsorption process conforms to the Langmuir model, indicating that the process is single molecular layer adsorption.  相似文献   

19.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响。综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性炭的比表面积2 312 m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg/g;孔径分布以微孔为主;表面含有羟基(—OH)、活泼氢(—H)等基团。  相似文献   

20.
为了考察磷酸法活性炭作为双电层电容器电极材料的可行性,通过浸渍三聚氰胺后在500、700、900℃下热处理的方法对活性炭进行了表面改性,分别得到改性活性炭AC-N-500、AC-N-700、AC-N-900,考察不同热处理温度对活性炭表面氮元素结合状态的影响,及其对磷酸法活性炭作为双电层电容器电极材料的电化学性能的影响。采用氮气吸附、元素分析、X射线光电子能谱及电化学测试等方法分析表征活性炭的孔隙结构、元素组成、表面官能团存在形式以及电化学性能。结果表明:随着热处理温度的升高,改性活性炭氮元素含量逐渐下降,由AC-N-500的8.49%下降为AC-N-900的4.16%;三聚氰胺改性活性炭比表面积和总孔容明显降低。改性活性炭中氮元素主要以N-6(吡啶型)、N-5(吡咯型)、N-Q(季氮型)、N-X(氮氧型)4种形式存在;随着热处理温度的升高,N-6和N-5型官能团的比例略微减少并部分转变为N-Q。改性活性炭AC-N-700可制备出比电容达203 F/g(扫描电压1 m V/s)的活性炭电极材料,减小电极与电解液间的阻力有利于离子的渗入和电荷的传导,表明磷酸法活性炭具有作为双电层电容器电极材料的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号