首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desertification is reversible and can often be prevented by adopting measures to control the causal processes. Desertification has generally decreased in most of the arid and semiarid areas of China during the last few decades because of the restoration of degraded vegetation and soil nutrients. However, little is known about the responses of soil nutrients in different particle‐size fractions to the restoration process and about the importance of this response to the restoration of bulk‐soil nutrients. In this study, we separated bulk‐soil samples in different sieve fractions: coarse‐fine sand (2·0–0·1 mm), very fine sand (0·10–0·05 mm) and silt + clay (<0·05 mm) fractions. Soil organic carbon (SOC), N, P and K contents stored in the silt + clay were greater than the contents of non‐protected nutrients in the coarser fractions. During the restoration of desertified land, the content and stability of bulk‐soil SOC, total N and P and available N, P and K increased with increasing nutrient contents in all fractions. Topsoil nutrients stored in coarse‐fine sand and very fine sand fractions were more sensitive than those stored in the silt + clay fraction to the fixation of mobile sandy lands and vegetation recovery. The changes of bulk‐soil nutrients and their stability were decided by the soil nutrients associated with all particle‐size fractions. Path analysis revealed that SOC and total nutrients in very fine sand and available nutrients in coarse‐fine sand were the key factors driving the soil recovery. These results will help us understand soil recovery mechanisms and evaluate the degree of recovery. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
选取福州城郊典型蔬菜种植区,调查分析了猪粪农用和污灌对土壤和蔬菜铬含量的影响。结果表明:施用猪粪及污灌条件下菜地土壤铬含量是未施用猪粪菜地土壤的1.35~2.75倍;蔬菜各器官铬浓度顺序为根〉叶〉茎;施用猪粪及污灌后,蔬菜不同器官铬浓度提高到未施用猪粪的1.14~5.82倍,尤其是食用块茎铬浓度提高最大;施用猪粪及污灌后,铬元素在蔬菜各器官的分配格局发生改变,根部份额减小,茎、叶份额增大(尤其食用部位),以马铃薯食用块茎铬浓度份额增大最明显。因此,畜禽养殖废物农用增加了蔬菜食用的安全风险。  相似文献   

3.
Better understanding of how the loess soils respond to topography and land use under catchment‐scale vegetation restoration is needed to enable science‐based land management interventions for the policy‐driven “Grain‐for‐Green” eco‐restoration program in the Loess Plateau of China. The objective of this study was to characterize the relationships of four selected soil quality indicators to land use under vegetation restoration and topography for a small catchment (0·58 km2) in the Loess Plateau. The major land uses established in the catchment are cropland, fallow (i.e., natural revegetation), grassland, and jujube orchard. The four soil quality indicators were soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), and mean root zone soil water content during the wet season (MRZSWwet). SOC, STN, and MRZSWwet were significantly different (p < 0·05) for different land uses. Grassland showed the highest values for these three properties, whereas cropland had relatively low values for SOC and STN. Land use had no effect on STP, although the lowest value was observed in grassland. Spatial analysis showed that various relations between soil quality indicators and topography (slope and elevation) were observed. These relations were generally weak for most of them, and they varied with land uses. Further analyses indicated that land uses, slope, and elevation had significant effects on the relations between different soil quality indicators. The results here should provide useful information for the further development of “Grain‐for‐Green” program. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In the northern highlands of Ethiopia, establishment of exclosures to restore degraded communal grazing lands has been practiced for the past three decades. However, empirical data on the effectiveness of exclosures in restoring degraded soils are lacking. We investigated the influence of exclosure age on degree of restoration of degraded soil and identified easily measurable biophysical and management‐related factors that can be used to predict soil nutrient restoration. We selected replicated (n = 3) 5‐, 10‐, 15‐, and 20‐year‐old exclosures and paired each exclosure with samples from adjacent communal grazing lands. All exclosures showed higher total soil nitrogen (N), available phosphorus (P), and cation exchange capacity than the communal grazing lands. The differences varied between 2·4 (±0·61) and 6·9 (±1·85) Mg ha−1 for the total N stock and from 17 (±3) to 39 (±7) kg ha−1 for the available P stock. The differences in N and P increased with exclosure age. In exclosures, much of the variability in soil N (R2 = 0·64) and P (R2 = 0·71) stocks were explained by a combination of annual average precipitation, woody biomass, and exclosure age. Precipitation and vegetation canopy cover also explained much of the variability in soil N (R2 = 0·74) and P (R2 = 0·52) stocks in communal grazing lands. Converting degraded communal grazing lands into exclosures is a viable option to restore degraded soils. Our results also confirm that the possibility to predict the changes in soil nutrient content after exclosure establishment using regression models is based on field measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
基于废弃物的潞安煤矿废弃地改良土壤基质配比研究   总被引:2,自引:0,他引:2  
王乐  郭小平  韩祖光  邓川  王川  曾旸  李峰  程冀南 《土壤》2020,52(1):145-152
为解决潞安矿区煤矸石山、塌陷地生态修复缺土少肥问题,本研究将粉煤灰、污泥与垃圾堆肥以5%、10%、20%体积比例正交混合配制改良土壤基质进行盆栽试验,观测不同配比土壤的理化性质、养分及重金属含量、高羊茅与紫叶小檗生长状况,并用主成分–聚类分析法筛选最优配比。结果表明:添加垃圾堆肥可以提高土壤有效养分与有机质含量,对土壤理化性质改良有明显效果;添加污泥仅提升土壤有效磷含量;添加粉煤灰在降低土壤容重、增大总孔隙度与非毛管孔隙度上效果明显,但对土壤p H、阳离子交换量(CEC)与碱解氮的改良具有显著负效应。各废弃物改良基质的碱解氮、有效磷、速效钾、有机质等含量均较高,土壤重金属含量也处在安全范围,而土壤容重、非毛管孔隙、pH、电导率(EC)与CEC等指标性质较优的处理组为粉煤灰∶污泥∶垃圾堆肥∶土=5%∶20%∶20%∶55%、10%∶10%∶20%∶60%、20%∶5%∶20%∶55%3个处理。经过综合筛选,本研究基质最优混合配比为粉煤灰∶污泥∶垃圾堆肥∶土=5%∶20%∶20%∶55%,可作为当地矿区废弃地生态修复客土材料推荐方案。  相似文献   

6.
Soil samples were collected from a field with a long‐term (10 yr) oily wastewater application history, containing 70 mg g–1 of oil and grease and an accumulation of heavy metals, and also from a short‐term (1 yr) wastewater application involving different rates of waste, tillage, and nitrogen (N) fertilization. Prior to ATP extraction, the soils were incubated at 22 °C and a water potential of –60 kPa for 21 d and 2 d for the long‐ and short‐term trials, respectively. The light emitted from the bioluminescence reaction was partly quenched in the extract of steam‐sterilized long‐term waste‐treated soil, and curvilinearly responded to the addition of ATP at concentrations higher than 4 ng ATP per assay in contrast to the linear response from the pure extractant and the extract of control soil. Calibration curves developed from the extracts of steam‐sterilized soils were used for calculating ATP in that given soil. ATP determined in the long‐term treated soil was as high as 3201 ng (g soil)–1. Still, residual oil to ATP concentration ratio was about an order of magnitude higher in the long‐ than in the short‐term waste‐treated soil, reflecting the accumulation of recalcitrant material. In the short‐term treated soils, ATP ranged from 355 to 760 ng (g soil)–1 and responded to the rate of waste application, tillage, and fertilization. The use of ATP measurement has potential for assessing land management effects and developing tillage and fertilization recommendations for enhanced biodegradation of the oil waste.  相似文献   

7.
Abstract

Municipal waste compost can improve the fertility status of tropical soils. The redistribution of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in tropical soils after amendment with solid municipal waste compost was investigated. Four tropical agricultural soils from Mali characterized by poor trace‐element status were amended with compost and incubated for 32 weeks at 35°C. The soil were analyzed at the beginning and the end of the incubation experiment for readily available fractions, organic fractions, and residual fractions as operationally defined by sequential extraction. Readily available Fe increased significantly with compost application in most soils. Readily available Mn was mostly unaffected by compost application. After 32 weeks, readily available Zn had increased, and readily available Cu had decreased. Readily available levels of the elements remained greater than deficiency levels in the compost‐amended soils. Organic fractions of the elements increased after compost addition. The organic fractions and residual forms, depending on the element and the soil, remained constant or increased within the duration of the experiment.  相似文献   

8.
This study was conducted in the South East New Territories landfill in Hong Kong, with the objectives to (i) investigate the plant and animal communities' establishment and performance within 10 years after restoration and (ii) provide important information on pioneer plants species selection recommendations for restoring sanitary landfills. The studying sites were re‐vegetated in 2003, with 14 pioneer plant species, including Acacia auriculiformis, A. confusa and Schefflera heptaphylla, planted. In total, four permanent quadrats (10 m × 10 m) were used for monitoring at three restored sites (sites E, N and S) and the control site C. The soil properties and plant and animal communities inside plots were investigated annually in summer and winter between 2003 and 2014. The similarity of plant and animal communities between the restored and control sites was compared using Jaccard's index. Ten years after restoration, animal and plant communities were gradually established at all sites. No animal was introduced into the restored sites in 2003; however, there were 29, 31 and 44 animal species recorded at sites E, N and S, respectively, between 2003 and 2012. Within the studying period, 38 plant species (trees: 52·63%, shrub: 21·05%, herbs: 23·68% and climber: 2·63%) were recorded in all sites and 17 (36·84%) of them were self‐seeding. Exotic species, such as those from the family Acacia and Mimosaceae, were dominant at all restored sites, which implies that exotic species are more competitive and suitable to be used as pioneer species in sanitary landfill restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Observable differences in particle size, smoothness and compaction between cap site (slope 2·8 per cent) and batter site (slope 20·7 per cent) surfaces on the waste rock dump at Ranger Uranium Mine were quantified in terms of revised universal soil loss equation (RUSLE) parameter values. Cap site surface material had a Km (erodibility corrected for sediment density) of 0·030 and batter site surface material had a Km of 0·0056. Using these Km values (derived from particle size distributions), slope length and steepness (LS) factors of 0·36 for the cap site and 3·66 for the batter site, and a cover (C) factor of 0·45 for the cap site and 0·16 for the batter site, the RUSLE predicts an erosion rate from the cap site that is 1·9 times greater than erosion from the much steeper batter site. The RUSLE indicates that the finer particle size and blocky soil structure of the cap site (D50 = 0·91 mm) compared with the looser granular structure of the batter site (D50 = 1·74 mm) strongly influence erosion. The predictions are similar to observed soil losses from erosion plots on these sites under rainfall simulation events, for which the measured erosion rate from the cap site was approximately twice that from the batter site. For the RUSLE to predict the observed erosion rates, the support practice (P) factor for the cap site would have to be approximately 30 per cent greater than the P factor for the batter site. The higher cap site P factor probably results from smoothing and compaction caused by vehicle movement across the surface. Compaction is considered to have greatly reduced infiltration capacity, thus increasing the erodibility of the cap site. Vehicles probably also crushed the surface material at the cap site, creating the observed finer particle size distribution and further increasing the erodibility. Compaction, through its effects on erodibility (Km) and surface roughness (P), is concluded to be the major cause of higher erosion from the cap site, even though the slope steepness is 10 times less. Parameterisation of the RUSLE quantifies the differences between sites and explains the unexpected erosion rates observed. The results highlight the need for careful management of rehabilitated sites to avoid increases in erosion which may arise from compaction by machinery.  相似文献   

10.
A garbage‐processing technology has been developed that sterilizes and separates inorganic and organic components of municipal solid waste. A study was initiated to evaluate the uncomposted organic by‐product of this process as a soil amendment for establishing native prairie grasses on disturbed Army training lands. The waste was incorporated into a silt loam soil at Fort Campbell Military Reservation in the central United States. The waste material was applied at rates of 0, 4.5, 9, 18, and 36 Mg ha?1 and seeded with native prairie grasses to assess its effects on vegetation for two growing seasons, with an additional unseeded control treatment for comparison to natural recovery. Treatments receiving the highest rate of application had significantly more native grass basal cover and percent composition than the controls. Plant phosphorus accumulation increased significantly with increasing pulp application. Soil phosphorus and lead concentrations increased in the top 10 cm of the highest application rates where pulp was mixed in the soil. Because minimal environmental effects were detected and the pulp improved perennial grass establishment and nutrition at the 36 Mg ha?1 rate, land application should be considered a viable and beneficial alternative to current waste‐management practices.  相似文献   

11.
典型草原大型露天煤矿排土场边坡水蚀控制效果   总被引:5,自引:3,他引:5  
以典型草原区大型露天煤矿排土场边坡不同治理措施为研究对象,利用标准径流场定位观测设施对不同治理措施植被生长-枯萎期间的次降雨产流产沙过程进行了连续观测,研究结果表明:在边坡植被恢复初期,由于实施治理措施对边坡的强烈扰动,不合理的治理措施导致边坡的土壤侵蚀量大于裸地;当植被盖度大于35%时,不同治理措施的拦沙、蓄水、入渗能力明显强于裸地;降雨强度与降雨量是边坡产流产沙的主控因子,随着降雨强度和降雨量的增加而增加;裸露边坡的土壤侵蚀模数最大,为14 183 t/(km2·a),生态袋一字型布设措施的土壤侵蚀模数最小,为5 179 t/(km2·a);生态袋一字型布设措施的土壤侵蚀模数是裸露边坡的36.5%,是沙地柏+绣线菊灌丛(植被恢复4 a)的81.5%。可见,排土场边坡是一种极强烈侵蚀的人工再塑地貌,对其采用合理的生物措施+工程措施的治理措施要优于单纯的生物措施,是控制矿区排土场边坡土壤侵蚀的最有效途径之一。  相似文献   

12.
Prolonged occupation of sodic soils by trees results in the latters' amelioration in terms of decreased pH and electrical conductivity and improved organic matter and fertility status. To assess whether sodic soils reclaimed by tree plantations can be used for growing agricultural crops, a greenhouse pot trial was conducted during winter of 1994–95 (November–April) at the Central Soil Salinity Research Institute, Karnal, India. Wheat (Triticum aestivum, L; cultivar HD 2329) and oat (Avena sativa, L. cultivar local) plants were grown in topsoils (30 cm) collected from 24-year-old plantations of Prosopis juliflora, Acacia nilotica, Eucalpytus tereticornis, Terminalia arjuna and Albizia lebbek that had been established in 1970 on a highly sodic soil (pH2 10·2–10·5), and a reclaimed sodic soil from a farm field adjacent to the plantations. The organic carbon content and nutrient status of the soil under the 24-year-old plantations was much higher than that of a reference farm soil reclaimed through gypsum in 1974. Soil amelioration was highest under Prosopis canopies (pH 7·4 and organic carbon 0·89 per cent) in topsoil and minimum in Eucalpytus canopies (pH 8·6 and organic carbon 0·56 per cent). Reduced sodicity and improved fertility resulted in much better growth reference and productivity of the wheat and oat test crops grown on the five plantation soils, than in the reference farm soil. Grain and straw yields of wheat and oats were maximum in Prosopis soil (wheat 61·7 g grains and 87·5 g straw and oats 87·9 g grains and 111·1 g straw per pot) and minimum in Eucalpytus soil (32·3 and 25·3 g, and 42·7 and 58·5 g per pot). Grain yields of both wheat and oats obtained in the Prosopis soil were 4·5 and 3·5 times more, respectively, than obtained in the reference farm soil. The phosphorus concentration in whole plant tissues of wheat and oats was highest in Prosopis soils reflecting the prevailing phosphorus status and better restoration processes of the soils. Potassium concentration was little affected due to different soil treatments. The study clearly indicated that prolonged afforestation of sodic soils by tree plantations, particularly by Prosopis and Acacia trees, may restore the productivity of abandoned soils to much above the present agricultural production levels. The results further suggest that 24 years' occupation of sodic soils by trees, such as Prosopis, Acacia, Eucalyptus, Terminalia and Albizia, did not result in a build-up or accumulation of toxic allelochemicals which could be injurious to wheat and oats cultivation on such soils. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
An overview of modern ideas on the ecological and geochemical state of soils and vegetation in the sites of landfills and municipal solid waste storage is presented. The technogenic impact on the environment and soil is determined by the (1) withdrawal of land for landfills, (2) production of filtration water with toxic components upon decomposition of solid wastes, and (3) biogas generation. The heavy metal pollution of surface soil horizons is characteristic for the sites of solid waste storage and their impact zones irrespectively of climatic conditions, ways of waste management, and stages of the life cycle. At the same time, heavy metals accumulate in ruderal herbaceous plants. Changes in the geochemical and microbiological characteristics of soils and disturbances in the plant cover are not restricted to the area of the designated sanitary protection zone. Buried landfills, where the decomposition of organic matter under anaerobic conditions results in the production of carbon dioxide and methane with their concentration in the soil and ground air also become dangerous for the environment. In the sites of landfills and municipal solid waste storage, weakly developed surface and chemically transformed soils, technosols and technogenic surface formations are being formed.  相似文献   

14.
This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès–Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000–2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. The model was calibrated using daily flow data for the year 2010, which yielded satisfactory results. Even so, significant differences were obtained on days with high‐intensity rainfall events, when the model overestimated runoff and peak discharge. In these vineyards, the simulated average soil losses per sub‐basin ranged between 0·13 and 9·73 Mg ha−1 y−1, with maximum values of between 26·32 and 42·60 Mg ha−1 y−1 registered in fine‐loamy soils developed on unconsolidated Tertiary marls. Other findings were related to problems associated with SWAT calibration under Mediterranean conditions characterised by major climate variability and high‐intensity rainfall events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Restoration and management of riparian areas have recently become important issues. Soil and salinity surveys are required before planning restoration activities and land‐uses if the riparian area is salt‐affected. In this study, we characterise the soils and salinity conditions of a riparian area that underwent irrigated agriculture with significant soil salinisation, to assess the general site suitability for riparian restoration and potential land‐uses. Throughout the area, 19 profiles were described and classified and 95 soil samples were collected for their chemical and physical characterisation. The salinity of the 35‐ha presumably salt‐affected area was analysed by reading the bulk soil electrical conductivity (ECa) with the hand‐held electromagnetic‐induction sensor Geonics‐EM38 at 558 locations and by measuring the electrical conductivity of the saturation extract (ECe) and sodium adsorption ratio (SAR) of 60 soil samples collected at 30 of those locations. The regression of ECe on EM readings predicted ECe with R2 > 0·92 at the 0–100 cm soil depth. The geo‐referenced soil classification (three soil units were established) and salinity maps identified the soil constraints for the area's restoration potential. The major limiting soil factors were soil salinity, sodicity and waterlogging in the southern half of the soil unit #3, and soil compaction in most of the area. The value of those limiting factors, along with differences in soil texture, as a means of assessing restoration potential of riparian vegetation and for identifying suitable land‐uses for the three soil units was discussed. Agro‐forestry, planned grazing, recreational and educational land‐uses are possible for the site. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The spatial distribution of soil moisture and its multiple‐scale correlations to other environmental factors were examined along the Upper Minjiang River valley, China, a landscape subject to severe land degradation of soil and water erosion but also under investigation for potential ecosystem restoration. Results showed that: (1) Soil moisture was highest in the headwaters, and lowest in the arid valley, while moderate values characterized outside the arid valley. The polynomial model of soil moisture distribution on slopes was concave in the lightly disturbed headwaters, convex in the highly damaged arid valley, while convex on south facing slopes and concave on north facing slopes in highly damaged areas in better environmental condition. (2) Soil moisture was correlated with environmental factors at different scales, where elevation and air humidity were only correlated at the sample plot scale, light intensity and wind speed were found to be significant at both slope and site scales and slope and sample plot scales; while slope angle was correlated at all the three scales. From this we conclude that it is possible to improve soil moisture conditions in the arid valley by lowering slope angle and adding low‐cost irrigation systems. (3) The practical threshold of soil moisture for growing meadows, shrubs, and forests were 11ċ800 per cent, 3ċ925 per cent, and 16ċ078 per cent respectively; the arid valley displayed soil‐moisture conditions unfavourable to forest growth. The planned reforestation project is not ecologically reasonable. Reducing human disturbance and revegetating with natural shrubs and meadows may produce more effective results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Industrial activities can contribute to the accumulation of heavy metals in soils, which could potentially threaten public health and the environment. This research was conducted to investigate the relationships between pH and total organic carbon (TOC) with soil chemical parameters, including exchangeable and total Cu, Zn, Cd, Pb, K, and Mg concentrations in soils near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and non‐linear regression were used to find statistical relationships between pH, TOC, and the other soil properties studied. The results of correlation tests indicated that pH and TOC had strong relationships with most of the soil properties. The results of PCR [R 2 = 0·87, RMSE = 0·046] and non‐linear regression [R 2 = 0·91, RMSE = 0·041] (pH and the entire parameters), PCR [R 2 = 0·777, RMSE = 0·058] and non‐linear regression [R 2 = 0·871, RMSE = 0·046] (pH and the exchangeable parameters) to model the relationships between pH and soil chemical properties were promising and significant. Exchangeable heavy metal concentrations increased for pH > 5. Even though the relationships between TOC and heavy metals were significant, they were not as powerful as the relationships between pH and these metals. It was concluded that total metal concentrations in the study soils can be predicted by either pH or TOC. Metal mobility could most likely be controlled at the study site by manipulating soil pH and/or TOC. Finally, it is suggested that when there are financial and time limitations, assessment of total exchangeable metal concentrations using soil pH and/or TOC could be productive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Significant differences were found in soil physicochemical and biological effects between various forest restoration approaches of a hilly red‐soil region, southern China. Soil quality was the highest in natural secondary forest (0·95), while in sites revegetated with tea‐oil camellia (Camellia oleifera), Chinese fir (Cunninghamia lanceolata) and slash pine (Pinus elliottii) and control sites, integrated soil quality indices were 0·68, 0·55, 0·36 and 0·04 respectively. The lower soil quality of plantations and controls resulted from increased disruption of soil physical structure, lower quality litter fall, lower litter fall production, reduction in microbial biomass, decline of microbial function and loss of soil nutrients due to periodically artificial tending and accelerated soil erosion. Improvement in soil physicochemical properties and enhanced soil microbial function at a natural secondary forest site demonstrated the inherent restoration of these soils. Hence, natural restoration, as well as reducing human disturbance, is a better approach to improving soil properties than returning farmland to planted woodlands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

In the present study we evaluate the feasibility of using untreated industrial sewage sludge by liming before use as a fertilizer, produced in Pakistan. In a pots experiment, limed industrial sewage sludge (LSW) and non-limed sewage sludge (NLSW), were amended with soil separately and grown sorghum. After maturity, the sorghum grains were analysed for total contents of potentially toxic metals (TPTM), As, Cd, Cr, Cu, Ni, Pb and Zn. The proportion of different mobility fractions of each element in LWS and NLSW, a modified BCR sequential extraction procedure (Community Bureau of Reference) and single extractions with mild extractants (deionized water and CaCl2) were used. In LSW, the availability of most of the elements under study was reduced, probably due to the increased pH of soil, while this was the reverse in the cases of Cd and Cu, their mobility was slightly increased by lime-treated sludge. The sorghum grains grown in LSW have low level As, Cr, Ni, Pb and Zn as compared to grains grown in NLSW, except Cu and Cd, which, however, never exceeded legal limits. Thus the research showed that liming, by augmenting soil alkalinity, allows a safe agricultural use even of industrial sludge, which is environmentally hazardous for its great content of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号