首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustainable agricultural systems are based on managing soils according to their capabilities and constraints. To facilitate the identification of constraints and appropriate management strategies for upland soils, a decision support framework ‘Soil Constraints and Management Package’ (SCAMP) has been developed. Basic soil data (both field and laboratory) are entered into an Access database and are processed to output reports that identify soil constraints to productivity and that tabulate appropriate management strategies. Where spatially referenced soil data are available, maps of constraints can be readily produced in a Geographic Information System. To demonstrate the ability of SCAMP to identify soil constraints at plot scale, it was applied to soil data sets from the two major soil types (Ferralsols and Acrisols) of Gia Lai Province, Vietnam. Phosphorus (P) fixation, aluminium toxicity and low cation exchange capacity (CEC) were identified as common constraints to productivity on Ferralsols, and low plant available water capacity, compaction and low K status as common constraints to productivity on Acrisols. Field experiments were undertaken on a Ferralsol and an Acrisol to assess management strategies for minimizing these constraints in the presence of adequate N, P and K. Maize (Zea mays) yields from the Ferralsol were increased by applying a plant amendment (Tithonia diversifolia) (selected to increase soil pH and decrease P fixation) and high activity clay (selected to increase CEC). Water‐soluble P fertiliser recovery was increased in this high P‐fixing soil by placing the fertiliser in a sub‐surface band. For the Acrisol, maize was grown in mounded rows and yields were maximized by applying a super‐absorbent material (selected to increase soil water holding capacity) or a high activity clay (selected to increase the low CEC of this soil). To demonstrate the usefulness of SCAMP on a catchment/regional scale, spatially referenced soil survey data of the Herbert River catchment, Queensland, Australia, were used to produce a map identifying areas of low pH, high acidification hazard and low CEC. These applications demonstrate the usefulness of SCAMP for linking soil data to management strategies for sustainable productivity at both plot and catchment scale.  相似文献   

2.
Agricultural production in the Northern Highlands of Ethiopia is low, stagnant or unsustainable. The objectives of this study were to explore long-term dynamics of soil organic carbon (C), nitrogen (N) and phosphorus (P) and the consequences for crop-available N and P to support the design of sustainable farm management practices for higher yields and improved livelihoods in the Northern Highlands of Ethiopia. Simplified soil N and P dynamics modules are described. C dynamics have been linked to the dynamics of organic N via the C:N ratio. The model has been calibrated on the basis of empirical data from the study area. The N and OC modules have been validated on the basis of an empirical data set for fields continuously cultivated for 7–53 years in smallholder farms in the Highlands of Ethiopia. The model has been applied for exploration of long-term dynamics of soil N, OC and P and crop available N and P under alternative farm management regimes. The simulation results indicate that, in terms of soil OC, the control management results in 44, 42 and 38% depletion, respectively, in Cambisols, Luvisols and Leptosols; current management practice (Alt1) results in 16% reduction in Cambisols, 32% in Luvisols, but a 22% increase in Leptosols; Alt2 (returning all non-economic organic material to the soil) results in 27% reduction in Luvisols, whereas in Cambisols and Leptosols it increases by 1 and 57%, respectively, after 50 years of cultivation. The rates of changes in soil N are similar to those in OC under current management, Alt1 and Alt2. In terms of total soil P, the control management and Alt2 result in 46 and 43% depletion in Cambisols and 53 and 52% in Luvisols over the 50 years. On the other hand, Alt1 results in build-up of total soil P in Cambisols (69% higher after 50 years), but still to depletion (8%) in Luvisols. All other management regimes are not ‘sustainable’ in terms of soil N, OC and P, and lead to ‘soil mining’. Finally, the model has been used to estimate the required organic amendments and inorganic P inputs to maintain the current status of soil OC and P, as a benchmark of management practices. To maintain the current status of soil OC, the required composted organic amendments were 5.3, 15.0 and 2.1 Mg ha−1 annually for Cambisols, Luvisols and Leptosols, respectively. To maintain the current soil P-levels, required inorganic P-doses (in addition to organic P contributions from composted organic fertilizer from 5.3 (in Cambisols) and 15.0 (in Luvisols) Mg ha−1 year−1) were 8 kg ha−1 year−1 in Cambisols and 23 kg in Luvisols. The model is relatively easy to parameterize for specific situations and reproduces the most important aspects of soil nutrient dynamics. The modelling approach developed in this study can support the design of appropriate soil N, OC and P management practices that eventually should lead to higher yields and improved livelihoods.  相似文献   

3.
Water erosion in the hilly areas of west China is the main process contributing to the overall sediment of the Yellow River and the Yangtze River. The impact of gully erosion in total sediment output has been mostly neglected. Our objective was to assess the sediment production and sediment sources at both the hillslope and catchment scales in the Yangjuangou reservoir catchment of the Chinese Loess Plateau, northwest China. Distribution patterns in sediment production caused by water erosion on hills and gully slopes under different land use types were assessed using the fallout 137Cs technique. The total sediment production from the catchment was estimated by using the sediment record in a reservoir. Sediment sources and dominant water erosion processes were determined by comparing 137Cs activities and 210Pb/137Cs ratios in surface soils and sub-surface soils with those of sediment deposits from the reservoir at the outlet of the catchment. Results indicated that landscape location had the most significant impact on sediment production for cultivated hillslopes, followed by the terraced hillslope, and the least for the vegetated hillslope. Sediment production increased in the following order: top>upper>lower>middle for the cultivated hillslope, and top>lower>upper>middle for the terraced hillslope. The mean value of sediment production declined by 49% for the terraced hillslope and by 80% for the vegetated hillslope compared with the cultivated hillslope. Vegetated gully slope reduced the sediment production by 38% compared with the cultivated gully slope. These data demonstrate the effectiveness of terracing and perennial vegetation cover in controlling sediment delivery at a hillslope scale. Averaged 137Cs activities and 210Pb/137Cs ratios in the 0–5 cm surface soil (2.22–4.70 Bq kg−1 and 20.70–22.07, respectively) and in the 5–30 cm subsoil (2.60 Bq kg−1 and 28.57, respectively) on the cultivated hills and gully slopes were close to those of the deposited sediment in the reservoir (3.37 Bq kg−1 and 29.08, respectively). These results suggest that the main sediment sources in the catchment were from the surface soil and subsoil on the cultivated slopes, and that gully erosion is the dominant water erosion process contributing sediment in the study area. Changes in land use types can greatly affect sediment production from gully erosion. An increase in grassland and forestland by 42%, and a corresponding decrease in farmland by 46%, reduced sediment production by 31% in the catchment.  相似文献   

4.
Man‐made and natural sediment sinks provide a practical means for reducing downstream reservoir sedimentation by decreasing soil erosion and enhancing the rate of sedimentation within a catchment. The Minizr catchment (20 km2) in the northwest Ethiopian highlands contains numerous man‐made soil and water conservation (SWC) structures such as soil bunds (Erken), fanya juu ridge (Cab) and micro‐trenches and natural sediment sinks such as wetlands, floodplains and grassed waterways. These sediment sinks reduce downstream sedimentation into the Koga reservoir, located at the catchment outlet, however, a large quantity of sediment is still reaching the reservoir. This study evaluates the function and effectiveness of both man‐made SWC structures and natural sediment sinks in reducing sediment export from the Minizr catchment. SWC structures and natural sediment sinks were digitized using Google Earth Imagery. Sediment pins and vertical sampling through the deposit were used to quantify the amount of deposited sediment. In addition, inflow and outflow of suspended sediment data were used to calculate the sediment‐trapping efficacies (STE) of man‐made SWC structures (soil bunds and fanya juu ridges) and natural sediment sinks. Results reveal that 144 km soil bunds and fanya juu ridges trapped 7,920 Mg y−1 (55 kg m−1 y−1) and micro‐trenches trapped 13·26 Mg y−1, each micro‐trench on average trapped 23 kg y−1. The 17 ha floodplain located in the centre of the catchment trapped 9,970 Mg y−1 (59 kg m−2 y−1), while a wetland with a surface area of 24 ha, located near the outlet of the catchment, trapped 8,715 Mg y−1 (36 kg m−2 y−1). The STEs of soil bunds and fanya juu ridges, wetlands and floodplains were 54%, 85% and 77%, respectively. Substantial differences were observed between the STE of grassed and un‐grassed waterways at 75% and 21%, respectively. Existing man‐made and natural sediment sinks played an important role in trapping sediment, with 38% (26,600 Mg y−1) of transported sediment being trapped, while 62% (43,000 Mg y−1) is exported from the catchment and thus enters the Koga reservoir. Therefore, additional catchment treatment measures are required as an integrated catchment scale sediment trapping approach to help reduce sediment loads entering Koga reservoir. Moreover, to maximize the effectiveness of sediment trapping measures, avoid structural failure and ensure their sustainability, regular maintenance is needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
As one part of the ‘Three Norths’ forest protection system, dense farmland shelterbelt networks in northeastern China could greatly modify water and sediment flows. In this paper, catchment soil erosion rate and sediment yield (SY) that are impacted by farmland shelterbelts were estimated using WaTEM/SEDEM model. The shelterbelts reduced catchment soil erosion and SY to some extent. The mean soil erosion rate and specific sediment yield (SSY; defined as the ratio of SY to catchment area; t km?2 yr?1) of the 25 reservoir catchments decreased from 351.6 and 93.9 t km?2 yr?1 under the supposed scenario without shelterbelts to 331.1 t km?2 yr?1 and 86.3% t km?2 yr?1 under the current situation with shelterbelts. The sediment trap efficiencies (STEs) varied from 0.01% to 23.6% with an average value of 7.6%. The STEs were significantly correlated with shelterbelt density, catchment perimeter, topographic factors, RUSLEP‐factor and land use patterns including patch density (PD), patch cohesion index (COHESION), Shannon's diversity index (SHDI) and aggregation index (AI). The multiple regression equation involving factors of catchment's topography and morphology and land use pattern has a satisfactory performance, and mean slope gradient (MSG) and AI explained most of the variability of shelterbelts’ STE. This information can help land managers to better design shelterbelts and to reduce water‐derived soil loss at catchment scale.  相似文献   

6.
According to the World Reference Base for Soil Resources (IUSS Working Group WRB, 2006), the differentiation of Acrisols and Alisols is based on the cation‐exchange capacity of clay, which cannot be directly determined in the field, but needs expensive and time‐consuming soil‐chemical analyses. This is an unsatisfactory situation for pedologists, who urgently require a rapid field method to distinguish illuviation‐type reference soil groups (Alisols, Acrisols, Luvisols, Lixisols). In this study, we tested the ability of gamma‐ray spectrometry to separate major WRB reference soil groups in the field. The underlying hypothesis is that Alisols and Acrisols are distinguished by their clay mineral composition, which should be reflected by geochemistry and consequently gamma‐ray radiation (i.e., K‐containing illite vs. K‐free kaolinite). Highly significant differences in their gamma‐ray spectrum for K, Th, and U were found for limestone and its soils. Especially the K and Th signatures allowed a clear separation of Acrisols and Alisols. In general, the surface radiation was sufficient to separate these soils. Best results were revealed considering parent rock and the whole soil profile. This means by using a portable radiometer and a pH meter, all illuviation‐type reference soil groups could be distinguished in this case. If applicable at other sites, this approach could enormously reduce expenditures for soil‐chemical analysis needed to assist soil classification.  相似文献   

7.
Intensive farming is a primary cause of increased sediment and associated nitrogen (N) and phosphorus (P) loads in surface water systems. Determining their contributing sources, pathways and loads present major challenges in the high-intensity agricultural catchments. Herein, we quantify the sediment sources and magnitude of sediment total N and total P from different sources using a novel application of compound-specific stable isotope (CSSI) and fallout radionuclides (FRNs) of 137Cs and 210Pbex in an intensive agricultural catchment in North China. Sediment sources from surface and sub-surface soils were estimated from FRNs fingerprint and accounted for 62 ± 7% and 38 ± 7% respectively, while surface soil from land uses that originated from hillslope were identified by CSSI fingerprint. Using a novel application of FRNs and CSSI sediment fingerprinting techniques, the dominant sediment source was derived from maize farmland (44 ± 0.1%), followed by channel bank (38 ± 7%). The sedimentation rate (13.55 ± 0.30 t ha−1 yr−1) was quantified by the 137Cs cores (0–60 cm) at the outlet of this catchment. The total N and total P in sediment were both mostly derived from maize farmland and least from channel banks. The channel banks are significant sediment sources but contribute little to the input of sediment N and P for eutrophication. It implies that chemically-applied farmlands are the main hotspots for catchment erosion control and pollution prevention. The novel application of FRNs and CSSI techniques cost-effectively quantified sediment N and P loads from different sources with a single visit to the catchment, enabling rapid assessment for optimizing soil conservation strategies and land management practices. Keywords: Sediment sources, Land use, N and P loads, Compound-specific stable isotope, Fallout radionuclides.  相似文献   

8.
Sediment budgets have been established for two small (<4 km2), lowland, agricultural catchments, by using 137Cs measurements, sediment source fingerprinting and more traditional monitoring techniques to quantify the individual components of the budget. The gross and net erosion rates for the fields on the catchment slopes were estimated using 137Cs measurements within selected fields, which encompassed a representative range of slope angles, slope lengths and land use. These estimates were extrapolated over the entire catchment, using a simple topographically driven soil erosion model (Terrain-Based GIS, TBGIS) superimposed on a DEM, to derive catchment average gross and net erosion rates. Suspended sediment yields were measured at the catchment outlets and sediment source fingerprinting techniques were used to establish the relative contributions from the catchment surface, subsurface tile drains and eroding channel banks to the sediment yields. In-channel and wetland storage were quantified using both direct measurements and 137Cs measurements. The sediment budgets established for the catchments highlighted the importance of subsurface tile drains as a pathway for sediment transfer, accounting for ca. 60% and 30% of the sediment output from the two catchments. Erosion from channel banks contributed ca. 10% and 6% of the sediment output from the two catchments. Although the suspended sediment yields from these catchments were considered high by UK standards (ca. 90 t km−2 year−1), the sediment delivery ratios ranged between 14% and 27%, indicating that a major proportion of the mobilised sediment was stored within the catchments. In-field and field-to-channel storage were shown to be of similar magnitude, but storage of sediment in the channel system and associated wetlands was relatively small, representing <5% of the annual suspended sediment yield.  相似文献   

9.
We investigated how organic matter may, directly and indirectly, modify the porosity of Ferralsols, that is, deeply weathered soils of the tropics and subtropics. Although empirical and anecdotal evidence suggests that organic matter accumulation may increase porosity, a mechanistic understanding of the processes underlying this beneficial effect is lacking, especially so for Ferralsols. To achieve our end, we leveraged the fact that the Profundihumic qualifier of Ferralsols (PF) is distinguished from Haplic Ferralsols (HF) by both a much larger average carbon content in the first 1 m of soil depth (19 kg C m−3 in PF vs. 10 kg C m−3 in HF) and a significantly lower bulk density (1.05 ± 0.08 kg L−1 in PF vs. 1.21 ± 0.05 kg L−1 in HF). Through exhaustive modelling of carbon – bulk density relationships, we demonstrate that the lower bulk density of PF cannot be satisfactorily explained by a simple dilution effect. Rather, we found that bulk density correlated with carbon content when combined with carbon: nitrogen ratio (r2 = 0.51), black carbon content (r2 = 0.75), and Δ14C (r2 = 0.81). Total pore space was greater in PF (61 ± 3%) than in HF (55 ± 2%), but x-ray computed tomography revealed that pore space inside soil aggregates of 4–5 mm diameter does not vary between the studied Ferralsols. We further observed nearly twice as many roots and burrows in PF compared with HF. We thus infer that the mechanism responsible for the increase in porosity is most likely an enhancement of resource availability (e.g., energy, carbon, and nutrients) for the organisms (earthworms, ants, termites, etc.) that physically displace soil particles and promote soil aggregation. As a result of increased resource availability, soil organisms can create especially the mesoscale structural soil features necessary for unrestricted water flow and rapid gas exchange. This insight paves the way for the development of land management technologies to optimize the physical shape and capacity of the soil bioreactor.  相似文献   

10.
The sediment budget is a key concept and tool for characterizing the mobilization, transfer and storage of fine sediment within a catchment. Caesium‐137 measurements can provide valuable information on gross and net erosion rates associated with sheet and rill erosion that can be used to establish the slope component of a catchment sediment budget. However, there is a need to validate the use of 137Cs measurements for this purpose, because their reliability has sometimes been questioned. The study reported focuses on a small (3·04 ha) steepland (mean slope 37%) catchment in Southern Italy. It exploits the availability of information on the medium‐term sediment output from the catchment provided by the construction of a reservoir at its outlet in 1978 and the existence of estimates of soil redistribution rates derived from 137Cs measurements made on 68 replicate soil cores collected from the slopes of a substantial proportion of the catchment in 2001, to validate the use of 137Cs measurements to construct the slope component of the catchment sediment budget. An additional 50 replicate soil cores were collected from the catchment slopes for 137Cs analysis, to complement the data already available. Nine cores collected from the area occupied by the reservoir were used to estimate the mean annual sediment input to the reservoir. In the absence of evidence that the poorly developed channel system in the catchment was either a significant sediment source or sink, it was possible to directly compare the estimate of net soil loss from the catchment slopes (7·33 Mg ha−1 y−1) with the estimate of sediment output from the catchment provided by the reservoir deposits (7·52 Mg ha−1 y−1). Taking account of the uncertainties involved, the close agreement of the two values is seen as providing a convincing validation of the use of 137Cs measurements to both estimate soil redistribution rates and as a basis for constructing the slope component of the sediment budget of a small catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.

Purpose

The study aimed to use the Soil and Water Assessment Tool (SWAT) model to simulate erosion processes in an alpine–prealpine catchment in order to provide data and information that may be relevant for managers so as to minimize reservoir siltation and water quality degradation. The main objective was to assess sediment production across the catchment and sediment supply to the main reservoir.

Materials and methods

The Barasona reservoir catchment (1,509 km2) is located in the Central Spanish Pyrenees, in the Ebro Basin. This catchment was selected for the case study given the regional significance of the Barasona reservoir and its siltation problems. The catchment has a mountain climate, with strong altitudinal and north–south gradients. The catchment is characterized by heterogeneous topography and lithology, resulting in a varied mosaic of slopes, soil types, and land covers. The Jueu karst system and two small headwater reservoirs were parameterized and calibrated in the model. The SWAT model sediment calibration for the catchment was based on a prior monthly hydrologic calibration, and the model validation was based on the sediment depositional history of the Barasona reservoir.

Results and discussion

The simulation period (2003–2006) and the validation period (1993–2002) produced average sediment yields to the reservoir of 643,000 and 575,000 t year?1, respectively. Large variations in sediment production were found between the subcatchments in the Barasona catchment due to differences in rock outcrops, land cover, and slope gradient. Sediment loss in the Jueu karst system was 15,500 t and the two small headwater reservoirs retained 31,200 and 50,300 t. Sediment production in relation to precipitation showed high temporal variability, with specific sediment yields to the Barasona reservoir ranging from 2.74 to 8.25 t ha?1 year?1. Strong lithological control was observed for sediment production in the subcatchments. The main sediment sources were located in the badlands developed on marls in the middle part of the catchment (internal depressions).

Conclusions

The proposed model has proved useful for identifying areas where significant erosion processes take place in large alpine–prealpine catchments at a regional level and also for assessing discharge losses by the karst system and the sedimentary role of the small reservoirs. The information obtained through this research will be of interest in assessing the spatial distribution of sediment sources and areas of high sediment yield, which will be useful to establish criteria for remediation strategies.  相似文献   

12.
A Holocene sediment budget was constructed for the 758 km2 Dijle catchment in the Belgian loess belt, in order to understand long-term sediment dynamics. Hillslope sediment redistribution was calculated using soil profile information from 809 soil augerings, which was extrapolated to the entire catchment using morphometric classes. As large parts of the forests within the catchment prove to have undergone little or no erosion since medieval times, a correction was applied for the presence of forests. Total Holocene erosion amounts 817 ± 66 Mt for the catchment, of which 327 ± 34 Mt was deposited as colluvium. This corresponds with a net Holocene soil erosion rate of 10.8 ± 0.8 × 103 Mg ha− 1 for the entire Dijle catchment. Alluvial deposits were studied through 187 augerings spread over 17 cross-valley transects. The total alluvial sediment deposition equals 352 ± 11 Mt or 42% of total eroded sediment mass. Results indicate that at the scale of a medium-sized catchment the colluvial sediment sink is as important as the alluvial sediment sink and should not be neglected. As a result the estimation of erosion through alluvial storage and sediment export would yield large errors. Dating of sediment units show an important increase in alluvial deposition from medieval times onwards, indicating the important influence of agricultural activities that developed from that period. Mean sediment export rates from the catchment for the last 1000–1200 years range between 0.8 and 1.3 Mg ha− 1 a− 1 and are consistent with present suspended sediment measurements in the Dijle. Erosion for agricultural land for this period is 9.2 ± 2.2 Mg ha− 1 a− 1. Sediment budgets for the various tributary catchments provide an insight in the sources and sinks of sediment at different scales within the catchment.  相似文献   

13.
The aim of study was to evaluate the variation of soil microbial biomass carbon (Cmic) and microbial respiration (MR) in three types soil (Chromic Cambisols, Chromic Luvisols and Eutric Leptosols) of mixed beech forest (Beech- Hornbeam and Beech- Maple). Soil was randomly sampled from 0–10 cm layer (plant litter removed), 90 soil samples were taken. Cmic determined by the fumigation-extraction method and MR by closed bottle method. Soil Corg, Ntot and pH were measured. There are significant differences between the soil types concerning the Cmic content and MR. These parameters were highest in Chromic Cambisols following Chromic Luvisols, while the lowest were in Eutric Leptosols. A similar trend of Corg and Ntot was observed in studied soils. Two-way ANOVA indicated that soil type and forest type have significantly effect on the most soil characteristics. Chromic Cambisols shows a productive soil due to have the maximum Cmic, MR, Corg and Ntot. In Cambisols under Beech- Maple forest the Cmic value and soil C/N ratio were higher compared to Beech-Hornbeam (19.5 and 4.1 mg C g–1, and 16.3 and 3.3, respectively). This fact might be indicated that Maple litter had more easy decomposable organic compounds than Hornbeam. According to regression analysis, 89 and 68 percentage of Cmic variability could explain by soil Corg and Ntot respectively.  相似文献   

14.
Land degradation due to soil erosion is the major problem facing Ethiopia today. In the Lake Alemaya catchment soil erosion is caused by the intense rainfall, steep topography, and poor vegetation cover coupled with cultivation of steep lands, and inadequate conservation practices. Sediment from the catchment has affected the storage capacity of Lake Alemaya. This study has integrated the Agricultural Non‐point Source Pollution Model (AGNPS) and the technique of the Gographic Information System (GIS) to quantify soil erosion in the Lake Alemaya catchment. After application of the AGNPS, it appears that 66 per cent of the catchment has a soil erosion rate of 10 to more than 80 t ha−1 y−1. The annual soil loss is estimated at 31 t ha−1, which is more than the permissible value of 1–16 t ha−1 for different agro‐ecological zones of Ethiopia. The sediment yield of the catchment is about 10 148 ton with a delivery ratio of 6·82 per cent. Therefore, an effective management plan is needed for the conservation and rehabilitation of the catchment and to maintain the storage capacity of Lake Alemaya. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Soil development with time was investigated on beach ridges with ages ranging from about 1380 to 6240 14C-years BP at the eastern coast of central Patagonia. The main pedogenic processes are accumulation of organic matter and carbonate leaching and accumulation within the upper part of the soils. Soil formation is strongly influenced by incorporation of eolian sediments into the interstitial spaces between the gravel of which the beach ridges are composed. Different amounts of eolian material in the soils lead to differentiation into Leptosols (containing ≤ 10% fine earth in the upper 75 cm) and Regosols (containing > 10% fine earth). Soil depth functions and chronofunctions of organic carbon, calcium carbonate, pH, Ca:Zr, Mg:Zr, K:Zr, Na:Zr, Fe:Zr, Mn:Zr, and Si:Al (obtained from X-ray fluorescence analysis) were evaluated. To establish soil chronofunctions mean values of the horizon data of 0–10 cm below the desert pavement were used, which were weighted according to the horizon thicknesses. The depth function of pH shows a decrease towards the surface, indicating leaching of bases from the upper centimeters. Chronofunctions of pH show that within 6000 radiocarbon years of soil development pH drops from 7.0 to 6.6 in the Leptosols and from 8.1 to 7.5 in the Regosols. The higher pH of the Regosols is due to input of additional bases from the eolian sediments. Chronofunctions of Ca:Zr and K:Zr indicate progressive leaching of Ca and K in the Regosols, showing close relationships to time (R2 = 0.972 and 0.995). Na leaching as indicated by decreasing Na:Zr ratios shows a strong correlation to time only in the Leptosols (R2 = 0.999). Both, Leptosols and Regosols show close relationships to time for Fe:Zr (R2 = 0.817 and 0.824), Mn:Zr (R2 = 0.940 and 0.803), and Si:Al (0.971 and 0.977), indicating enrichment of Fe and Mn and leaching of Si. Leaching of mobile elements takes place on a higher level in the Regosols than in the Leptosols from the beginning of soil formation. Hence, a significant part of the eolian sediments must have been incorporated into the beach ridges very soon after their formation.  相似文献   

16.
Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay‐rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm?3 increased to 1.05 g cm?3 in the wet soil and 0.92 g cm?3 in the dry soil. Saturated hydraulic conductivities, initially >250 mm h?1, declined to a minimum of around 10 mm h?1 in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run‐off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.  相似文献   

17.
Tropical deforestation and land use change is often perceived as the major cause of soil loss by water erosion and of sediment load in rivers that has a negative impact on the functioning of hydropower storage reservoirs. The Sumberjaya area in Sumatra, Indonesia is representative for conflicts and evictions arising from this perception. The purpose of this study as part of a Negotiation Support System approach was to assess sediment yield both at plot and catchment scale and to relate it to a variety of possible clarifying factors i.e. land use, geology, soil and topography. Sediment yield at catchment scale per unit area, was found to be 3–10 times higher than soil loss measured in erosion plots. A stepwise regression showed that the dominant factors explaining sediment yield differences at catchment scale in this volcanic landscape were a particular lithology (Old Andesites) and slope angle followed by the silt fraction of the top soil. In lithologically sensitive areas soil loss at the plot scale under monoculture coffee gardens decreases over time from on average 7–11 Mg ha? 1 yr? 1 to 4–6 Mg ha? 1 yr? 1, mainly because of the development of surface litter layers as filters and top soil compaction in the areas without litter, but remains higher than under shade coffee systems or forest. The runoff coefficient under monoculture coffee remains on average significantly higher (10–15%) than under forest (4%) or under shade coffee systems (4–7%). In lithologically stable areas soil loss remained below 1.8 Mg ha? 1 yr? 1 and the runoff coefficient below 2.5% under all land use types, even bare soil plots or monoculture coffee gardens. Less than 20% of the catchment area produces almost 60% of the sediment yield. The reduction of negative off-site effects on e.g. the life time of a storage reservoir would benefit greatly from an improved assessment of the lithologies in volcanic landscapes and the consideration of potential sediment source and sink areas. In lithologically sensitive areas, a shift from sun to shade coffee systems may result in reducing surface runoff and soil loss, although water erosion at the plot scale is not the main contributor to sediment yield at the catchment scale. The quantification of land use effects on dominant erosive processes such as river bank and river bed erosion, landslides and the concentrated flow erosion on footpaths and roads can contribute to more targeted efforts and relevant incentives to reduce (or live with) sediment load of the rivers.  相似文献   

18.
Purpose

Analysis of sediment transport is an effective approach for identifying sediment sources and for catchment management. However, a long-term analysis of sediment variability at multiple time scales is less available, especially in mountainous catchments. This study aims to determine sediment sources and to identify sediment transport dynamics, as well as the influencing factors, through analyzing long-term sediment fluxes at different time scales.

Materials and methods

In this paper, 32 years of sediment flux in an instrumented mountainous catchment in eastern Zhenjiang Province, China, was investigated at multiple time scales (i.e., monthly, seasonal, annual, and event). Sediment yields (SYs) during three time periods (i.e., 1964–1977, 1978–1989, and 2010–2015) were first classified by the Mann-Kendall and cumulative anomaly tests, and then sediment fluxes for each period were investigated and compared at multiple time scales.

Results and discussion

Annual SYs ranged from 29 to 308 t year?1 during the recording period and were significantly influenced by several high magnitude flood events. The mean annual SYs decreased from 153.82 t year?1 in 1964–1977, to 97.79 t year?1 in 1978–1989, and to 91.08 t year?1 in 2010–2015 due to improved soil conservation measures and increased reservoirs. At the seasonal scale, over 92% of the sediment was transported in spring and summer over the recording period. Heterogeneous sediment sources, partial areal distribution of rainfalls, and other factors led to complex suspended sediment concentration versus water discharge hysteresis loop patterns at the event and monthly scales.

Conclusions

The improved soil conservation measures and increased reservoirs over the recent decades decreased sediment availability, and the number and the magnitude of flood events from 1964 onward. However, the flood sediment fluxes in a few months were still high due to extreme precipitation events in recent years. The work can provide guidance for addressing sediment problems in this and/or other similar catchments.

  相似文献   

19.
Since the 1960s, the implemented soil conservation measures on steep slopes and the densely planted shelterbelts as well as the constructed reservoirs and ponds in Baiquan County, northeastern China have dramatically altered the landscape and would greatly influence soil erosion and sediment yield (SY ). However, how these land use changes and the constructed dams affected soil erosion and SY still remained unclear. A physically distributed soil erosion model WaTEM/SEDEM that has been calibrated and validated using 25 reservoir SY s in the study area was applied using nine land use scenarios (land uses in 1954, 1975 and 2010, each with 8, 32 and without dams) to assess their impacts on sediment delivery at the Shuangyang catchment (915 km2). The results show that land use changes as well as the increased dam numbers progressively decreased catchment sediment delivery and the impact of dams on sediment delivery was more efficient under the intensified land use condition (1954 land use without reservoirs). With respect to 1954 land use without dams, current land use condition (2010 land use with 32 dams) was simulated to decrease SY by 61·8%. Soil conservation measures (terrace and contour tillage as well as shelterbelts) on the slopes greatly influenced SY and over 80% of the reduced SY were caused by land use changes. This study indicates that soil conservation measures are sustainable sediment control measures for the black soil region because the accumulation of sediment in dams causes shortening of the useful life in reservoirs and ponds and implies increasing financial costs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The widespread adoption of the sediment fingerprinting approach to guide catchment management has been limited by the cost and the difficulty to prepare and process samples for geochemical and radionuclide analyses. Spectral properties have recently been shown to provide a rapid and cost‐efficient alternative for this purpose. The current research objective was (i) to quantify the sediment source contributions in a 1∙19‐km2 rural catchment of Southern Brazil by using mid‐infrared (MIR) spectroscopy and (ii) to compare these results with those obtained with geochemical approach and near‐infrared and ultraviolet–visible spectroscopy methods. The sediment sources to discriminate were cropland surface (n  = 20), unpaved roads (n  = 10) and stream channel banks (n  = 10). Twenty‐nine suspended sediment samples were collected at the catchment outlet during nine significant flood events. The sources could be distinguished by MIR spectroscopy. Cropland and channel bank sources mainly differed in their clay mineral contents, but their similar organic matter content complicated the MIR‐model predictions. Unpaved road contributions were discriminated from the other sources by their lower organic carbon content. When the results of the current research based on MIR spectroscopy are compared with those obtained using other sediment fingerprinting approaches, based on geochemistry and near‐infrared and ultraviolet–visible spectroscopy, an overestimation of channel banks contribution and an underestimation of cropland and unpaved road contributions is found. These results suggest that MIR spectroscopy can provide a useful tool that is non‐destructive, rapid and cheap for tracing sediment sources in rural catchments and for guiding the implementation of soil and water conservation measures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号