首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection of appropriate plant species and rhizosphere manipulation to enhance metal uptake are considered key factors in the development of phytoextraction technologies. A pot trial was conducted with two contaminated soils to investigate the effect of EDTA and ammonium sulfate on the accumulation of heavy metals into shoots of the low‐biomass hyperaccumlator Thlaspi goesingense Hálácsy (Brassicaceae) and the high‐biomass non‐hyperaccumulating plant Amaranthus hybridus (Amaranthaceae). Upon application of 1 g EDTA (kg soil)—1 metal extractability with 1 M NH4NO3 increased substantially, whereas the application of (NH4)2SO4 was less effective. The EDTA treatment increased the heavy metal concentrations in both plant species, however, the difference to the control was larger for A. hybridus. EDTA enhanced shoot concentrations in A. hybridus grown on soil Arnoldstein from 32.7 mg kg—1 to 1140 mg kg—1 for Pb and from 3.80 mg kg—1 to 10.3 mg kg—1 for Cd. Cd concentrations in shoots of T. goesingense were also increased by EDTA application, however, a slight decrease was observed for Pb. T. goesingense accumulated 2840 mg Pb kg—1 without any treatment. This is the first report of Pb hyperacumulation by T. goesingense. A decrease of shoot Pb concentration was observed in T. goesingense upon treatment with ammonium sulfate. Although metal concentrations in the shoots were rather large and significantly increased upon application of EDTA, plant growth and heavy metal removal were still too small to obtain reasonable extraction rates in soils heavily polluted by metals. It should be also noted that metal lability largely increased in EDTA‐treated soils and this lability persisted for several weeks after the application of the chelating agent, which is likely to be associated with the risk of groundwater contamination.  相似文献   

2.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

3.
Soil‐plant transfer of metals is a nonlinear process. We therefore aimed at evaluating the potential of Freundlich‐type functions (cPlant = b × cSoila) to predict Cd, Cu, Pb, and Zn concentrations in wheat (Triticum aestivum L.) grain and leaf (cPlant) from soil concentrations (cSoil). Wheat plants and soil A horizons, mainly developed from Holocene sediments, were sampled at 54 agricultural sites in Slovakia. Metals were extracted from soils with 0.025 M EDTA at pH 4.6 and concentrated HNO3/HClO4 (3:1); plant samples were digested with concentrated HNO3. Total metal concentrations of soil samples were 0.07—25 mg Cd kg—1, 9.3—220 mg Cu kg—1, 14—1827 mg Pb kg—1, and 34—1454 mg Zn kg—1. On average, between 20 % (Zn) and 80 % (Cd) of the total concentrations were EDTA‐extractable. The total metal concentrations of grain samples were < 0.01—1.3 mg Cd kg—1, 1.3—6.6 mg Cu kg—1, < 0.05—0.30 mg Pb kg—1, and 8—104 mg Zn kg—1. The leaves contained up to 3.2 mg Cd kg—1, 111 mg Cu kg—1, 4.3 mg Pb kg—1, and 177 mg Zn kg—1. Linear regression without data transformation was precluded because of the nonnormal data distribution. The Freundlich‐type function was suitable to predict Cd (grain: r = 0.71, leaf: 0.86 for the log‐transformed data) and Zn concentrations (grain: 0.69, leaf: 0.68) in wheat grain and leaf from the EDTA‐extractable metal concentrations. The prediction of Cu and Pb concentrations in grain (Cu: r = 0.44, Pb: 0.41) was poorer and in leaf only possible for Pb (0.50). We suggest to use the Freundlich‐type function for defining threshold values instead of linear regression because it is more appropriate to simulate the nonlinear uptake processes and because it offers interpretation potential. The results suggest that the coefficient b of the Freundlich‐type function depends on the intensity of metal uptake, while the coefficient a reflects the plants' capability to control the heavy metal uptake. The latter is also sensitive to metal translocation in plants and atmospheric deposition.<?show $6#>  相似文献   

4.
The effect of a new pesticide, acetamiprid, applied at normal field concentration (0.5 mg kg−1 dried soil) and at high concentration (5 and 50 mg kg−1 dried soil), on soil enzyme activities and soil respiration in upland soil was studied. The results showed that acetamiprid had a strong negative influence on soil respiration and phosphatase activity, and the enzyme activities in soil treated with 5 and 50 mg kg−1 dry soil were significantly (P < 0.05) lower than the CK over the course of incubation. The 7-, 14-, and 35-day EC10 for phosphatase were 11, 15, and 11 mg kg−1 dry soil, respectively. The 21-day EC10 and EC50 for soil respiration was 0.005 and 83 mg kg−1 dry soil. The activity of dehydrogenase was enhanced after acetamiprid application for 2 weeks and the enzyme activities in samples treated with 0.5, 5 and 50 mg kg−1 dry soil was about 2.5-, 1.5- and 2-fold to that of the control on sample day 28. Variance of urease and catalase had no distinct relationship with the application concentration. The activity of proteinase was not significantly affected within the first 2 weeks but inhibited from the fourth week after acetamiprid application and was only 0.45-fold to that of the control on sample day 28. Overall, acetamiprid at normal field dose would not pose a toxicological threat to soil enzymes, but a certain potential threat to soil respiration.  相似文献   

5.
The extraction of soil organic phosphorus by the NaOH–EDTA procedure was assessed in detail for a tropical forest soil (clay‐loam, pH 4.3, total carbon 2.7%). Optimum conditions for the quantification of soil organic phosphorus and characterization of its composition by solution 31P NMR spectroscopy were extraction in a solution containing 0.25 m NaOH and 50 mm Na2EDTA in a 1:20 solid to solution ratio for 4 hours at ambient laboratory temperature. Replicate analyses yielded a coefficient of variation of 3% for organic phosphorus as a proportion of the spectral area. There was no significant difference in total phosphorus extraction from fresh and air‐dried soil, although slightly more organic phosphorus and less paramagnetic ions were extracted from dried soil. The procedure was not improved by changing the concentration of NaOH or EDTA, extraction time, or solid to solution ratio. Pre‐extraction with HCl or Na2EDTA did not increase subsequent organic phosphorus extraction in NaOH–EDTA or improve spectral resolution in solution 31P NMR spectroscopy. Post‐extraction treatment with Chelex resin did not improve spectral resolution, but removed small concentrations of phosphorus from the extracts. Increasing the pH of NaOH–EDTA extracts (up to 1.0 m NaOH) increased the concentration of phosphate monoesters, but decreased DNA to an undetectable level, indicating its hydrolysis in strong alkali. The standardized NaOH–EDTA extraction procedure is therefore recommended for the analysis of organic phosphorus in tropical forest soils.  相似文献   

6.
Anionic polyacrylamide (PAM) can prevent soil erosion, but its effect on fine particulate phosphorus (P), such as colloidal P, has not been thoroughly examined. The effects of PAM on the release potentials of water‐dispersible colloids (WDC) and total P, molybdenum‐reactive P (MRP), and molybdenum‐unreactive P (MUP) in the colloidal and truly dissolved phases (i.e., TPcoll, MRPcoll, MUPcoll, TPtruly, MRPtruly, and MUPtruly) from six soils across South China were tested in this study. The results showed that the release potentials of TPcoll in the control treatments were 6·9–46·1 mg kg−1 and generally highest in sandy loam soil. Following low (12·5 kg ha−1), middle (25 kg ha−1), and high (50 kg ha−1) levels of PAM application, the release potential of TPcoll decreased by 41·7, 63·2, and 77·4% compared to the control group, respectively. Additionally, PAM may trigger MRPcoll and TPtruly releases in sandy loam and/or silt soils, and for most soils, MRPtruly and MUPtruly showed the highest release potentials at middle or high PAM levels. A significant PAM application level by soil site interaction for the release potentials of WDC and colloidal P was observed. Multiple linear regression showed that the PAM rate combined with soil sand content can successfully predict the release potentials of WDC (R2 = 0·552, p  < 0·001) and TPcoll (R2 = 0·738, p  < 0·001). Our results suggest that PAM can effectively reduce the loss of soil colloids and colloidal P, while its effects are related to both application level and soil texture. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two recently discovered processes in the nitrogen cycle that are catalysed by anammox bacteria and n-damo bacteria, respectively. Here, the depth-specific distribution and importance of anammox bacteria and n-damo bacteria were studied in an urban wetland, Xixi Wetland, Zhejiang Province (China). Anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, and n-damo bacteria related to “Candidatus Methylomirabilis oxyfera” were present in the collected soil samples. The abundance of anammox bacteria (2.6–8.6 × 106 copies g−1 dry soil) in the shallow soils (0–10 cm and 20–30 cm) was higher than that (2.5–9.8 × 105 copies g−1 dry soil) in the deep soils, whereas the abundance of n-damo bacteria (0.6–1.3 × 107 copies g−1 dry soil) in the deep soils (50–60 cm and 90–100 cm) was higher than that (3.4–4.5 × 106 copies g−1 dry soil) in the shallow soils. Anammox activity was detected at all depths, and higher potential rates (12.1–21.4 nmol N2 g−1 dry soil d−1) were observed at depths of 0–10 cm and 20–30 cm compared with the rates (3.5–8.7 nmol N2 g−1 dry soil d−1) measured at depths of 50–60 and 90–100 cm. In contrast, n-damo was mainly occurred at depths of 50–60 cm and 90–100 cm with potential rates of 0.7–5.0 nmol CO2 g−1 dry soil d−1. This study suggested the niche segregation of the anammox bacteria and n-damo bacteria in wetland soils, with anammox bacteria being active primarily in deep soils and n-damo bacteria being active primarily in shallow soils.  相似文献   

8.
Agricultural activities emit greenhouse gases (GHGs) and contribute to global warming. Intensive plough tillage (PT), use of agricultural chemicals and the burning of crop residues are major farm activities emitting GHGs. Intensive PT also degrades soil properties by reducing soil organic carbon (SOC) pool. In this scenario, adoption of no‐till (NT) systems offers a pragmatic option to improve soil properties and reduce GHG emission. We evaluated the impacts of tillage systems (NT and PT) and wheat residue mulch on soil properties and GHG emission. This experiment was started in 1989 on a Crosby silt loam soil at Waterman Farm, The Ohio State University, Columbus, Ohio, USA. Mulching reduced soil bulk density and improved total soil porosity. More total carbon (16.16 g kg−1), SOC (8.36 mg L−1) and soil microbial biomass carbon (152 µg g−1) were recorded in soil under NT than PT. Mulch application also decreased soil temperature (0–5 cm) and penetration resistance (0–60 cm). Adoption of long‐term NT reduced the GHG emission. Average fluxes of GHGs under NT were 1.84 g CO2‐C m−2 day−1 for carbon dioxide, 0.07 mg CH4‐C m−2 day−1 for methane and 0.73 mg N2O‐N m−2 day−1 for nitrous oxide compared with 2.05 g CO2‐C m−2 day−1, 0.74 mg CH4‐C m−2 day−1 and 1.41 mg N2O‐N m−2 day−1, respectively, for PT. Emission of nitrous oxide was substantially increased by mulch application. In conclusion, long‐term NT reduced the GHG emission by improving the soil properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Excessive nitrogen (N) fertilizer input leads to higher N loss via ammonia (NH3) volatilization. Controlled‐release urea (CRU) was expected to reduce emission losses of N. An incubation and a plant growth experiment with Gossypium hirsutum L. were conducted with urea and CRU (a fertilizer mixture of polymer‐coating sulfur‐coated urea and polymer‐coated urea with N ratios of 5 : 5) under six levels of N fertilization rates, which were 0% (0 mg N kg−1 soil), 50% (110 mg N kg−1 soil), 75% (165 mg N kg−1 soil), 100% (220 mg N kg−1 soil), 125% (275 mg N kg−1 soil), and 150% (330 mg N kg−1 soil) of the recommended N fertilizer rate. For each type of N fertilizer, the NH3 volatilization, cotton yield, and N uptake increased with the rate of N application, while N use efficiency reached a threshold and decreased when N application rates of urea and CRU exceeded 238.7 and 209.3 mg N kg−1 soil, respectively. Ammonia volatilization was reduced by 65–105% with CRU in comparison to urea treatments. The N release characteristic of CRU corresponded well to the N requirements of cotton growth. Soil inorganic N contents, leaf SPAD values, and net photosynthetic rates were increased by CRU application, particularly from the full bloom stage to the initial boll‐opening stage. As a result, CRU treatments achieved significantly higher lint yield by 7–30%, and the N use efficiency of CRU treatments was increased by 25–124% relative to that of urea treatments. These results suggest that the application of CRU could be widely used for cotton production with higher N use efficiency and lower NH3 volatilization.  相似文献   

10.
In upland soils aerobic methane-oxidizing bacteria (MOB) catalyze methane (CH4) oxidation, and thus regulate the sole terrestrial sink for atmospheric CH4. While confirmed in mature upland soils, little is known about this important function in young mountainous soils in glacier forefields, which are progressively formed as a result of glacier recession. We assessed four attributes of the soil CH4 sink, i.e., soil-atmosphere CH4 flux (Jatm), CH4 oxidation activity (k), MOB abundance and variation in community composition along the 6–120-yr soil chronosequence in two Alpine glacier forefields on siliceous and calcareous bedrock. At most sampling locations soil CH4 profiles showed stable uptake of atmospheric CH4, with Jatm in the range of −0.082 to −2.2 mg CH4 m−2 d−1. Multiple-linear-regression analyses indicated that Jatm significantly increased with soil age, whereas k did not. Instead, water content and CH4 profiles in the youngest soils often indicated dry, inactive top layers with k < 0.1 h−1, and active deeper layers (0.2 h−1 ≤ k ≤ 11 h−1) with more favorable water content. With increasing soil age the zone of highest CH4 oxidation activity gradually moved upwards and eventually focused in the 10–40-cm layer (0.2 h−1 ≤ k ≤ 16 h−1). Copy numbers of pmoA genes significantly increased with soil age at both sites, ranging from 2.4 × 103 to 5.5 × 105 copies (g soil w.w.)−1, but also correlated with mineral nitrogen content. Terminal restriction-fragment-length-polymorphism and cluster analyses showed differences in MOB community composition apparently related to bedrock type rather than soil age. Yet, regardless of bedrock type, the soil CH4 sink established within a few years of soil development, and Jatm increased to values comparable to mature soils within decades. Thus, young mountainous soils have the potential to consume substantial amounts of atmospheric CH4, and should be incorporated into future estimates of global soil CH4 uptake.  相似文献   

11.

Background, aim, and scope  

Various metals such as cationic metals (Cu, Pb, Zn) and anionic metals (As, Cr) often coexist in real soils, and normal soil washing techniques for the removal of cationic metals with a single-washing reagent make it rather difficult to simultaneously remove all of them. Oxalate could effectively remove anionic As and EDTA could effectively remove the cationic metals, so it was possible to remove all coexisting cationic and anionic metals by washing with the combination of Na2EDTA and oxalate. The objective of this study was to (1) discuss the possibility of removing five metals, As, Cd, Cu, Pb, and Zn, effectively from the soil by washing with Na2EDTA-combined oxalate; (2) optimized through the consecutive washing.  相似文献   

12.
Sodium (Na+) dominated soils reduce saturated hydraulic conductivity (Ks) by clay dispersion and plugging pores, while gypsum (CaSO4•2H2O) application counters these properties. However, variable retrieval of texturally different saline–sodic soils with gypsum at soil gypsum requirement (SGR) devised to define its quantity best suited to improve Ks, leach Na+ and salts. This study comprised loamy‐sand (LS), sandy loam (SL), and clay loam (CL) soils with electrical conductivity of saturation extract (ECe) of ~8 dS m−1, sodium adsorption ratio (SAR) of ~44 (mmol L−1)1/2 and exchangeable sodium of ~41%, receiving no gypsum (G0), gypsum at 25% (G25), 50% (G50) and 75% (G75) of SGR. Soils packed in lysimeters were leached with low‐carbonate water [EC at 0·39 dS m−1, SAR at 0·56 (mmol L−1)1/2 and residual sodium carbonate at 0·15 mmolc L−1]. It proved that a rise in gypsum rate amplified Ks of LS ≫ SL > CL. However, Ks of LS soil at G25 and others at G75 remained efficient for salts and Na+ removal. Retention of calcium with magnesium (Ca2+ + Mg2+) by LS and SL soils increased by G50 and decreased in G75, while in CL, it also increased with G75. The enhanced Na+ leaching efficiency in LS soil with G25 was envisaged by water stay for sufficient time to dissolve gypsum and exchange and leach out Na+. Overall, the superiority of gypsum for LS at G25, SL at G50 and CL at G75 predicted cost‐effective soil reclamation with a decrease in ECe and SAR below 0·97 dS m−1 and 5·92 (mmol L−1)1/2, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Red lead (Pb3O4) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such “pylon soils” were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH4NO3, sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg−1 and 635 Zn mg kg−1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH4NO3-extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3–4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg−1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg−1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.  相似文献   

14.
Indicators of soil quality associated with N‐cycling were assessed under different land‐use systems (native forest – NAT, reforestation with Araucaria angustifolia or Pinus taeda and agricultural use – AGR) to appraise the effects on the soil potential for N supply. The soil total N ranged from 2 to 4 g/kg (AGR and NAT, respectively), and the microbial biomass N ranged from 80 to 250 mg/kg, being higher in NAT and A. angustifolia, and lower in P. taeda and AGR sites. Activities of asparaginase (ca. 50–200 mg NH4+‐N/kg per h), glutaminase (ca. 200–800 mg NH4+‐N/kg per h) and urease (ca. 80–200 mg NH4+‐N/kg/h) were also more intense in the NAT and A. angustifolia‐reforested soils, indicating greater capacity for N mineralization. The NAT and AGR soils showed the highest and the lowest ammonification rate, respectively (ca. 1 and 0.4 mg NH4+‐N/kg per day), but the inverse for nitrification rate (ca. 12 and 26%), indicating a low capacity for N supply, in addition to higher risks of N losses in the AGR soil. A multivariate analysis indicated more similarity between NAT and A. angustifolia‐reforested sites, whilst the AGR soil was different and associated with a higher nitrification rate. In general, reforestation with the native species A. angustifolia had less impact than reforestation with the exogenous species P. taeda, considering the soil capacity for N supply. However, AGR use caused more changes, generally decrease in indicators of N‐cycling, showing a negative soil management effect on the sustainability of this agroecosystem.  相似文献   

15.
The isotopically exchangeable metal pool (E‐value) of zinc (Zn), cadmium (Cd) and lead (Pb) were simultaneously measured, using stable isotope dilution, in soils contaminated by Pb/Zn mining activities and varying in properties likely to affect metal reactivity, including pH, organic matter content, metal concentration and land use. E‐values were compared with single and sequential extraction schemes. Results showed a wide range of metal reactivity (approximately 1–100% of total) depending on the extent of contamination and on the prevailing soil conditions. Across the range of soils, the E‐values showed no consistent correspondence to any single chemical extraction procedure (EDTA, DTPA and HNO3) although there was reasonable agreement with the extractants 0.05 m EDTA and 0.43 m HNO3 in acidic organic soils. Extraction with 0.005 m DTPA substantially under‐estimated the isotopically exchangeable metal content. E‐values corresponded reasonably well with the exchangeable metal (fraction 1 (F1) of the sequential extraction procedure) in calcareous soils but relatively poorly and inconsistently with F1–F2, F1–F3 or F1–F4 in acidic‐neutral soils. Operational aspects associated with determination of multi‐element E‐values are discussed.  相似文献   

16.
Nitrous oxide emitted from urine patches is a key source of agricultural greenhouse gas emissions. A better understanding of the complex soil environmental and biochemical regulation of urine-N transformations in wet soils is needed to predict N2O emissions from grazing and also to develop targeted mitigation technologies. Soil aeration, gas diffusion and drainage are key factors regulating N transformations and are affected by compaction during grazing. To understand how soil compaction from animal treading influences N transformations of urine in wet soils, we applied pressures of 0, 220 and 400 kPa to repacked soil cores, followed by 15N-labeled synthetic urine, and then subjected the cores to three successive saturation–drainage cycles on tension tables from 0 to 10 kPa.Compaction had a relatively small effect on soil bulk density (increasing from 0.81 to 0.88 Mg m−3), but strongly affected the pore size distribution. Compaction reduced both total soil porosity and macroporosity. It also affected the pore size distribution, principally by decreasing the proportion of 30–60 μm and 60–100 μm pores and increasing the proportion of micropores (<30 μm).Rates of urine-N transformations, emissions of N2 and N2O, and the N2O to N2 ratio were affected by the saturation/drainage cycles and degree of compaction. During the first saturation–drainage cycle, production of both N2O and N2 was low (<0.4 mg N m−2 h−1), probably because of anaerobic conditions inhibiting nitrification. In the second saturation/drainage cycle, the predominant product was N2 at all compaction rates. By the third cycle, with increasing availability of mineral-N substrates, N2O was the dominant product in the uncompacted (max = 4.70 mg N m−2 h−1) and 220 kPa compacted soils (max = 7.65 mg N m−2 h−1) with lower amounts of N2 produced, while N2 was produced in similar quantities to N2O (max = 3.11 mg N m−2 h−1) in the 400 kPa compacted soil. Reduced macroporosity in the most compacted soil contributed to more sustained N2 and N2O production as the soils drained. In addition, compaction affected the rate of change of soil pH and DOC, both of which affected the N2O to N2 ratio.Denitrification during drainage and re-saturation may make a large contribution to soil N2O emissions. Improving soil drainage and adopting grazing management practices that avoid soil compaction while increasing macroporosity will reduce total N2O and N2 emissions.  相似文献   

17.
《Soil biology & biochemistry》2001,33(7-8):1077-1093
We studied soil moisture dynamics and nitrous oxide (N2O) fluxes from agricultural soils in the humid tropics of Costa Rica. Using a split-plot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter content, water retention capacity, and hydraulic conductivity. The top 2–3 cm of the soils consists of distinct small aggregates (dia. <0.5 cm). We measured a strong gradient of bulk density and moisture within the top 7 cm of the clay soil. Using automated sampling and analysis systems we measured N2O emissions at 4.6 h intervals, meteorological variables, soil moisture, and temperature at 0.5 h intervals. Mean daily soil moisture content at 5 cm depth ranged from 46% water filled pore space (WFPS) on clay in April 1995 to near saturation on loam during a wet period in February 1996. On both soils the aggregated surface layer always remained unsaturated. Soils emitted N2O throughout the year. Mean N2O fluxes were 1.04±0.72 ng N2O-N cm−2 h−1 (mean±standard deviation) from unfertilized loam under annual crops compared to 3.54±4.31 ng N2O-N cm−2 h−1 from the fertilized plot (351 days measurement). Fertilization dominated the temporal variation of N2O emissions. Generally fluxes peaked shortly after fertilization and were increased for up to 6 weeks (‘post fertilization flux’). Emissions continued at a lower rate (‘background flux’) after fertilization effects faded. Mean post-fertilization fluxes were 6.3±6.5 ng N2O-N cm−2 h−1 while the background flux rate was 2.2±1.8 ng N2O-N cm−2 h−1. Soil moisture dynamics affected N2O emissions. Post fertilization fluxes were highest from wet soils; fluxes from relatively dry soils increased only after rain events. N2O emissions were weakly affected by soil moisture during phases of low N availability. Statistical modeling confirmed N availability and soil moisture as the major controls on N2O flux. Our data suggest that small-scale differences in soil structure and moisture content cause very different biogeochemical environments within the top 7 cm of soils, which is important for net N2O fluxes from soils.  相似文献   

18.
The purpose of this study was to use zero‐valent iron nanoparticles (nZVI) and cellulosic wastes to reduce bioavailability of lead (Pb) and cadmium (Cd), and to establish Persian maple seedlings (Acer velutinum Bioss.) in contaminated soil. One‐year‐old seedlings were planted in pots filled with unpolluted soil. Lead [Pb(NO3)2] and Cd [Cd(NO3)2] were added with concentrations of 0 (Control), 100 (Pb100), 200 (Pb200), and 300 (Pb300) mg kg−1 and 10 (Cd10), 20 (Cd20), and 30 (Cd30) mg kg−1. Cellulosic wastes were mixed with soil at the same time of planting [four levels: 0, 10 (W1), 20 (W2), 30 (W3) g 100 g−1 soil]. The nZVI was prepared by reducing Fe3+ to Fe0 and injected to pots [four levels: 0, 1 (N1), 2 (N2), and 3 (N3) mg kg−1]. Height, diameter, biomass, tolerance index of seedlings, bioavailability of heavy metals in soil, and removal efficiency of amendments were measured. The highest values of seedling characteristics were observed in N3. The highest removal efficiency of Pb (Pb100: 81.95%, Pb200: 75.5%, Pb300: 69.9%) and Cd (Cd10: 92%, Cd20: 73.7%, Cd30: 68.5%) was also observed in N3. The use of nZVI and cellulosic waste could be a proper approach for seedling establishment in forests contaminated with heavy metals.  相似文献   

19.
In order to promote the transformation of a burnt Mediterranean forest area into a dehesa system, 10 t ha−1 of dry matter of the same sewage sludge in three different forms: fresh, composted and thermally‐dried, were added superficially to field plots of loam and sandy soils located on a 16 per cent slope. This application is equivalent to 13ċ8 t ha−1 of composted sludge, 50 t ha−1 of fresh sludge and 11ċ3 t ha−1 of thermally‐dried sludge. The surface addition of a single application of thermally‐dried sludge resulted in a decrease in runoff and erosion in both kinds of soil. Runoff in thermally‐dried sludge plots was lower than in the control treatment (32 per cent for the loam soil and 26 per cent for the sandy soil). The addition of any type of sludge to both soil types also reduces sediment production. Significant differences between the control and sludge treatments indicate that the rapid development of plant cover and the direct protective effect of sludge on the soil are the main agents that influence soil erosion rates. Results suggest that the surface application of thermally‐dried sludge is the most efficient way to enhance soil infiltration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The intensive conversion from woodland to tea plantation in subtropical China might significantly change the potential supply processes and cycling of inorganic Nitrogen (N). However, few studies have been conducted to investigate the internal N transformations involved in the production and consumption of inorganic N and N2O emissions in subtropical soils under tea plantations. In a 15N tracing experiment, nine tea fields with different plantation ages (1-y, 5-y and 30-y) and three adjacent woodlands were sampled to investigate changes in soil gross N transformation rates in humid subtropical China. Conversion of woodland to tea plantation significantly altered soil gross N transformation rates. The mineralization rate (MNorg) was much lower in soils under tea plantation (0.53–0.75 mg N kg−1 d−1) than in soil sampled from woodland (1.71 mg N kg−1 d−1), while the biological inorganic N supply (INS), defined as the sum of organic N mineralized into NH4+ (MNorg) and heterotrophic nitrification (ONrec), was not significantly different between soils under woodland and tea plantation, apart from soil under 30-y tea plantation which had the largest INS. Interestingly, the contribution of ONrec to INS increased from 19.6% in soil under woodland to 65.0–82.4% in tea-planted soils, suggesting ONrec is the dominant process producing inorganic N in tea-planted soils. Meanwhile, the conversion from woodland to tea plantation destroyed soil NO3 retention by increasing ONrec, autotrophic nitrification (ONH4) and abiotic release of stored NO3 while decreasing microbial NO3 immobilization (INO3), resulting in greater NO3 production in soil. In addition, long-term tea plantation significantly enhanced the potential release of N2O. Soil C/N was positively correlated with MNorg and INO3, suggesting that an increase in soil C/N from added organic materials (e.g. rice hull) is likely to reduce the increased production of NO3 in the soils under tea plantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号