首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planning effective landscape interventions is an important tool to fight against land degradation and requires knowledge on spatial distribution of runoff. The objective of this paper was to test models that predict temporal and spatial distribution of runoff. The selected models were parameter‐efficient semi‐distributed watershed model (PED‐WM), Hydrologiska Byrans Vattenbalansavdelning integrated hydrological modeling system (HBV‐IHMS), and Soil and Water Assessment Tool (SWAT). We choose 7‐km2 Awramba watershed in the Lake Tana basin with detailed hydrological information for testing these models. Discharge at the outlet, rainfall, and distributed information on infiltration rates, water table, and extent of the saturated area were collected from 2013 to 2015. The maximum saturated area was 6·5% of the watershed. Infiltration rates exceeded rainfall intensities 91% of the time. Hence, saturation excess runoff was the main runoff mechanism. Models were calibrated for the rainy seasons in 2013 and 2014 and validated for 2015. For daily flow validation, the PED‐WM model (Nash–Sutcliff efficiency, NSE = 0·61) outperformed HBV‐IHMS (NSE = 0·51) and SWAT (NSE = 0·48). Performance on monthly time step was similar. Difference in model behavior depended on runoff mechanism. In PED‐WM, saturation excess is the main direct runoff process and could predict the maximum extent of the saturated area closely at 6·9%. HBV‐IHMS model runoff simulation depended on soil moisture status and evapotranspiration, and hence was able to simulate saturation excess flow but not the extent of the saturated area. SWAT, where infiltration excess is the main runoff mechanism, could only predict the monthly discharges well. This study shows that prevailing runoff mechanisms and distribution of runoff source areas should be used for proper model selection. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
SWAT模型在黄土丘陵区燕沟流域的应用研究   总被引:1,自引:1,他引:0  
SWAT是基于物理机制的分布式水文模型,能够准确地模拟及预测不同下垫面的径流量。应用SWAT模型对黄土丘陵区燕沟流域2002—2008年逐月径流量进行了模拟。结果表明,模拟率定期和验证期的Nash—Sutticliffe效率系数分别为0.76和0.81,相关系数r2分别为0.79和0.80。模型模拟精度高于评价标准(模拟效率Ens>0.5,r2>0.6),说明SWAT模型适用于黄土丘陵区小流域,模拟效果很好,可以用来监测预报黄土丘陵区的汛情,具有很强的实用性。  相似文献   

4.
The AnnAGNPS model, widely utilized as a practical tool for addressing erosion problems and land use planning, was implemented in a small agricultural watershed located in central Belgium, to assess its prediction capacity of runoff, peak flow and sediment yield in humid temperate conditions. Model performance was evaluated at the event scale by using a database reporting hydrological, geomorphologic and land use data collected during a 2‐year period. Seventeen events were modelled and compared with the corresponding observations at the watershed outlet. The model performed well in predicting the largest runoff volumes, as shown by the high values achieved for the coefficients of efficiency (E = 0·89) and determination (r2 = 0·92). However, some events resulted in zero runoff simulation. The prediction capability for peak flow and sediment yield was poor (E = 0·35 and 0·16, respectively). This inaccuracy can have several causes: the internal model deficiencies may be due to the incomplete representation of watershed complex processes, while external problems may be related to the conditions within the modelled watershed and the quality of recorded data. On the whole the AnnAGNPS model may be considered as being suitable to simulate the significant runoff events in the experimental watershed. However, the model may be seen as better suited for comparative assessments of alternative management and policy scenarios and for gross estimation of nutrient loads rather than the precise prediction of a single event, consequently helping in the prediction of land degradation problems in the experimented conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The flow–sediment relationship is important to understand the soil erosion and land degradation processes in severe eroded areas. This study researches on variations of streamflow, sediment load, and flow–sediment relationship on multi‐temporal scales (annual, flood season and, monthly scales) in a highly erodible catchment of Chinese Loess Plateau. The results demonstrated that the streamflow, sediment load, sediment concentration, runoff coefficient, and sediment coefficient all experienced evident reductions, and the decrease in the middle and downstream stations was more significant compared with the upstream stations. The land use changes and implementation of soil and water conservation measures played major role for the streamflow and sediment load reductions with respect to precipitation change, and the runoff coefficient and sediment coefficient linearly decreased with the percentage of conservation measure area. The runoff‐sediment yield relationship on annual, flood season, and monthly scales could be generally characterized by the linear function, and the slopes during the post‐change period was lower than those during the pre‐change period of sediment load. The sediment concentration–streamflow discharge relationship represented consistent form over the entire study period, and the logarithmic function was appropriate to describe the relationships on the three timescales. The decrease of sediment concentration contributed greatest (60·7%) to sediment reduction compared with runoff productivity of rainfall (30·2%) and precipitation (9·1%). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.

Purpose

The study aimed to use the Soil and Water Assessment Tool (SWAT) model to simulate erosion processes in an alpine–prealpine catchment in order to provide data and information that may be relevant for managers so as to minimize reservoir siltation and water quality degradation. The main objective was to assess sediment production across the catchment and sediment supply to the main reservoir.

Materials and methods

The Barasona reservoir catchment (1,509 km2) is located in the Central Spanish Pyrenees, in the Ebro Basin. This catchment was selected for the case study given the regional significance of the Barasona reservoir and its siltation problems. The catchment has a mountain climate, with strong altitudinal and north–south gradients. The catchment is characterized by heterogeneous topography and lithology, resulting in a varied mosaic of slopes, soil types, and land covers. The Jueu karst system and two small headwater reservoirs were parameterized and calibrated in the model. The SWAT model sediment calibration for the catchment was based on a prior monthly hydrologic calibration, and the model validation was based on the sediment depositional history of the Barasona reservoir.

Results and discussion

The simulation period (2003–2006) and the validation period (1993–2002) produced average sediment yields to the reservoir of 643,000 and 575,000 t year?1, respectively. Large variations in sediment production were found between the subcatchments in the Barasona catchment due to differences in rock outcrops, land cover, and slope gradient. Sediment loss in the Jueu karst system was 15,500 t and the two small headwater reservoirs retained 31,200 and 50,300 t. Sediment production in relation to precipitation showed high temporal variability, with specific sediment yields to the Barasona reservoir ranging from 2.74 to 8.25 t ha?1 year?1. Strong lithological control was observed for sediment production in the subcatchments. The main sediment sources were located in the badlands developed on marls in the middle part of the catchment (internal depressions).

Conclusions

The proposed model has proved useful for identifying areas where significant erosion processes take place in large alpine–prealpine catchments at a regional level and also for assessing discharge losses by the karst system and the sedimentary role of the small reservoirs. The information obtained through this research will be of interest in assessing the spatial distribution of sediment sources and areas of high sediment yield, which will be useful to establish criteria for remediation strategies.  相似文献   

7.
基于SWAT模型的中尺度流域产流产沙模拟研究   总被引:42,自引:5,他引:42  
以黄河下游小花间(小浪底-花园口)区域洛河卢氏水文站以上流域为研究区,在GIS技术支持下,应用分布式模型SWAT(Soil and Water Assessment Tool)进行了流域产流产沙模拟。采用卢氏水文站1992~1997连续6年的实测月均径流和泥沙数据对模型进行了校准:在模型校准过程采用自动数字滤波技术将径流总量划分为直接径流和基流,并分别对直接径流和基流进行了校准,以达到径流总量的拟合,在此基础上对流域泥沙负荷进行了校准;采用1998~1999连续2年的实测月均径流和泥沙数据对模型的适用性进  相似文献   

8.
祁敏  张超 《水土保持研究》2017,24(3):283-287
阿克苏河流域地处中国西北干旱区域,受高寒气候影响,其冰川和积雪融化补给对流域径流量变化、区域水资源合理优化及生态环境的保护影响重大。结合阿克苏河流域融雪径流的产流、汇流的独特之处,应用SWAT分布式水文模型对其月均径流进行了模拟研究。收集阿克苏河流域7个气象站点1980—2013年的逐日观测数据和阿拉尔水文站2000—2013年月均实测径流数据,基于DEM数据、土地利用数据、土壤数据,建立适合阿克苏河流域的融雪径流模型并进行月均径流的模拟。结果表明:SWAT模型在阿克苏河流域具有良好的适用性,校准期和验证期相对误差RE均在8%以内,决定性系数R2和Nash-Sutcliffe效率系数NS均高于0.82,达到了模型的评价标准,为高海拔干旱区建立分布式水文模型提供了参考。  相似文献   

9.
基于3个站点校准与验证的晋江流域径流模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
 应用分布式水文模型SWAT,对东南沿海晋江流域内3个水文站点的年、月径流和基流分别进行模拟。选取1972—1975年作为模型校准期,以效率系数、平均误差、相对误差和决定系数为评价指标,率定出6个模型敏感参数,并用1976—1979年的资料进行模型验证。结果表明:利用3个站点模拟的方法可以从流域尺度上更客观地率定模型参数,改善模型的模拟效果;模型在东南沿海流域的模拟效果较好,精度较高;模拟期内降水量的差异以及水库年径流调节均会对水量模拟结果造成影响。  相似文献   

10.

Purpose

The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment.

Materials and methods

The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario.

Results and discussion

Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha?1 year?1, while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha?1 year?1, respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions.

Conclusions

This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields.  相似文献   

11.

Purpose

Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (100–104 km2).

Materials and methods

Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed.

Results and discussion

Rainfall erosivity in the study area was moderate (4600 MJ mm ha?1 h?1 year?1), whereas runoff depths (16–60 mm year?1), and therefore the sediment transport capacity, were low. Consequently, ~60 % of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km2 per reservoir) also limits sediment propagation, retaining up to 47 % of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 % of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km2 basin, the SDR was reduced to 1 % downstream of a large reservoir (1940-hm3 capacity).

Conclusions

Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential.  相似文献   

12.
土地利用变化对产流和产沙的影响分析   总被引:55,自引:4,他引:55  
LUCC(土地利用覆盖变化)对径流的影响研究主要集中在对年径流量的影响,选用基于ArcviewGIS的SWAT模型,利用情景模拟来分析土地利用变化对产流量和产沙量的影响,并重点探讨森林对产流的影响。以黄河下游支流洛河上游卢氏水文站以上流域为研究区域,选取了1992~2000年24个雨量站的雨量资料和同期的气象资料,采用土壤类型图(1∶4000000)以及设定的不同土地利用情景,作为模型的输入,进行土地利用变化的产流量和产沙量的情景模拟。模拟表明:森林的存在增加了径流量,减少了产沙量;草地也能减少产沙量;农业用地的增加将会增加产沙量;平水年土地利用变化对产流量影响最小,降雨量的增大能弱化下垫面对产流量的影响。  相似文献   

13.
以东辽河吉林省境内河段为研究对象,采用SWAT分布式水文模型对东辽河泉太水文站进行径流模拟,模型采用2006—2008年实测的逐月径流资料进行参数的率定,并以2009—2010年为模型的验证期,分析对水文过程影响较大的因素、模型的模拟精度及对研究区的适用性。结果表明:泉太水文站率定期与验证期径流的模拟值与实测值总体上拟合较好,率定期与验证期径流模拟的相关系数(R2)均大于0.6,Nash-Suttclife效率系数(Ens)均大于0.75,相对误差(R)均小于30%。验证期的月径流模拟相对误差较率定期小,且相关系数R2、效率系数均大于0.9,降雨是径流的重要影响因素,月径流模拟值与年内的降雨过程存在较好的正相关性,且率定期相关性较验证期相关性大。应用率定后的参数在SWAT模型中进行径流模拟的结果较好,精度较高。将SWAT模型应用于东辽河吉林省段的径流过程模拟,具有较强的适用性。  相似文献   

14.
This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès–Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000–2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. The model was calibrated using daily flow data for the year 2010, which yielded satisfactory results. Even so, significant differences were obtained on days with high‐intensity rainfall events, when the model overestimated runoff and peak discharge. In these vineyards, the simulated average soil losses per sub‐basin ranged between 0·13 and 9·73 Mg ha−1 y−1, with maximum values of between 26·32 and 42·60 Mg ha−1 y−1 registered in fine‐loamy soils developed on unconsolidated Tertiary marls. Other findings were related to problems associated with SWAT calibration under Mediterranean conditions characterised by major climate variability and high‐intensity rainfall events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Introduced pigs (Sus scrofa ) are recognised as having significant environmental impacts. Here, we quantify the effect of feral pigs in a catchment (undisturbed by Europeans) in the monsoonal tropics of northern Australia. Field data collected over a 5‐year period showed that the areal extent of pig disturbance ranged from 0·3 to 3·3% of the survey area (average 1·2%, σ = 0·9%). Mass of exhumed material was considerable and ranged from 4·3 to 36·0 Mg ha−1 y−1 (average 10·9 Mg ha−1 y−1). The excavations produce surface roughness which acts as sediment traps. Over the 5‐year study period, there was no evidence to suggest that pigs produce any rill or gully erosion. There does not appear to be any relationship between rainfall amount and area disturbed or volume of material exhumed. However, a significant positive relationship was observed between number of disturbances and rainfall. The location of any disturbance appears to be random and has no relationship with topography or geomorphic attributes such as slope, upslope contributing area or wetness indices derived from a high‐resolution digital elevation model of the site. While pigs are disturbingly relatively large volumes of soil, there is no clear evidence to support any increase in local erosion and soil structural change may be occurring slowly and only be observable over the long term. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Unpaved roads play an important role in soil loss in small watersheds. In order to assess the impact of these unpaved roads in the Loess Plateau of China, runoff and sediment yields from road‐related sources must be quantified. Field rainfall simulation experiments were conducted under three slope gradients and five rainfall intensities on unpaved loess roads in a small watershed. Results showed that the runoff generation was very fast in loess road surface (time to runoff < 1 min) and produced a high runoff coefficient (mean value > 0·8). Soil loss rates were decreased as surface loose materials were washed away during a rainstorm. Rainfall intensity, initial soil moisture, and slope gradient are key factors to model surface runoff and sediment yield. Soil loss on loess road surface could be estimated by a linear function of stream power (R2 = 0·907). Four commonly interrill erosion models were evaluated and compared, and the interrill erodibility adopted in the Water Erosion Prediction Project model was determined as 1·34 × 106 (kg s m−4). A new equation taking into account different parameters like rainfall intensity, surface flow discharge, and slope gradient was established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the Annualized Agricultural Non‐Point Source (AnnAGNPS) model has been used to estimate runoff, peak discharge and sediment load at the event scale in a Mediterranean watershed. The study area is the Carapelle torrent, Southern Italy (area = 506 km2), where continuous rainfall, streamflow and sediment load data are available. Nineteen flood events have been registered in the period 2007–2009 and were used for the application of the model. The aim of the paper is to evaluate the predictive accuracy of the model at the event scale, in a medium‐size watershed, given the specific conditions of the semi‐arid environments. A sensitivity analysis has been carried out to assign the correct parameterization: the mean normalized output variation of the most meaningful input parameters pointed out the influence of the curve number on runoff, peak discharge and sediment load predictions (values greater than 1); the MN Manning's roughness coefficient and K, C and P factors of the universal soil loss equation showed a moderate influence on sediment load simulations (values between 0·5 and 1). The selection of the Soil Conservation Service synthetic storm types has been based on the observed storm events analysis to improve the peak discharge simulations. The model prediction has proved to be good for runoff (R2 = 0·74, NSE = 0·75, W = 0·92) and peak discharge (R2 = 0·85, NSE = 0·70, W = 0·94), and satisfactory for sediment yield (R2 = 0·70, NSE = 0·63, W = 0·91). The relative error is lower for high events; this result is quite interesting in semi‐arid environments, where most of the annual sediment yield is concentrated in a few, severe events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Rill is a major type of erosion on upland slopes. Continuous rainfall is commonly used in laboratory studies on rill erosion despite the fact the rainfall was often discontinuous in the field; this is particularly true in the Chinese Loess Plateau. This study compares rill erosion under continuous and intermittent rainfalls by using laboratory experiments. The experiments include two rainfall‐intensity treatments (90 and 120 mm h−1) and two rainfall‐pattern treatments (continuous and intermittent). The results indicate that rill formation had a significant effect on runoff and sediment concentration. For continuous and intermittent rainfall at the rainfall intensity of 90 mm h−1, the mean sediment concentrations were 1·91 and 1·73 times after rill initiation than those before rill initiation, respectively, and the rill erosion accounted for 75·5% and 77·7% of runoff duration, respectively. For continuous and intermittent rainfall at the rainfall intensity of 120 mm h−1, the mean sediment concentrations after rill initiation were 1·38 and 1·32 times that those before rill initiation, respectively, and the rill erosion represented 88·7% and 78·8% of the total runoff duration, respectively. We observed sediment sorting under all treatments; however, the low rainfall intensity boosted but the high rainfall intensity lowered the clay fraction; in contrast, the sorting remained roughly the same between the rainfall‐pattern treatments. The runoff velocity also affected the sediment sorting. Our empirical results indicated the important significance of the rainfall intermittence in predicting rill erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Kern  U.  Westrich  B. 《Water, air, and soil pollution》1997,99(1-4):105-112
The sediment, budget of a reservoir on the Neckar River, Germany, was investigated by means of experimental and numerical methods. Field measurements of channel bathymetry show that. sedimentation and erosion occur primarily in the lower backwater-influenced section of the reservoir, which stores approximately 350,000 m3 of fine-grained deposits. Sediment load balances for two major storm events in Dec. 1993 and Apr. 1994 showed net erosion of 32,000 ±10,000 tonnes and 24,000 ± 5,000 tonnes of sediment, respectively. A balanced sediment budget, was found for a minor flood in Jan. 1995. In agreement with the field data, numerical simulation of sediment transport. over a period of 45 years demonstrates that the river reservoir served initially as a sediment trap from 1950 to 1978, and since then as a temporary storage basin for sediment.  相似文献   

20.
Purpose

Land degradation due to soil erosion is a serious threat to the highlands of Ethiopia. Various soil and water conservation (SWC) strategies have been in use to tackle soil erosion. However, the effectiveness of SWC measures on runoff dynamics and sediment load in terms of their medium- and short-term effects has not been sufficiently studied.

Materials and methods

A study was conducted in 2011 to 2015 in the Gumara-Maksegnit watershed to study the impacts of SWC structures on runoff and soil erosion processes using the soil and water analysis tool (SWAT) model. The study was conducted in two adjacent watersheds where in one of the watersheds, SWC structures were constructed (treated watershed (TW)) in 2011, while the other watershed was a reference watershed without SWC structures (untreated watershed (UW)). For both watersheds, separate SWAT and SWAT-CUP (SWAT calibration and uncertainty procedure) projects were set up for daily runoff and sediment yield. The SWAT-CUP program was applied to optimize the parameters of the SWAT using daily observed runoff and sediment yield data.

Results and discussion

The runoff simulations indicated that SWAT can reproduce the hydrological regime for both watersheds. The daily runoff calibration (2011–2013) results for the TW and UW showed good correlation between the predicted and the observed data (R 2?=?0.78 for the TW and R 2?=?0.77 for the UW). The validation (2014–2015) results also showed good correlation with R 2 values of 0.72 and 0.70 for the TW and UW, respectively. However, sediment yield calibration and validation results showed modest correlation between the predicted and observed sediment yields with R 2 values of 0.65 and 0.69 for the TW and UW for the calibration and R 2 values of 0.55 and 0.65 for the TW and UW for the validation, respectively.

Conclusions

The model results indicated that SWC structures considerably reduced soil loss by as much as 25–38% in the TW. The study demonstrated that SWAT performed well for both watersheds and can be a potential instrument for upscaling and assessing the impact of SWC structures on sediment loads in the highlands of Ethiopia.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号