共查询到20条相似文献,搜索用时 15 毫秒
1.
酸化土壤中微生物多样性降低是土壤养分减少、土传病害高发、作物产量和品质降低的重要原因。施用碱性土壤改良剂是改善酸化土壤理化特性、减少土传病害发生、提高作物产量的有效手段。为了明确不同碱性土壤改良剂对土壤微生物群落结构及多样性的影响,通过盆栽试验比较施用生石灰(S1)及氨基酸生态肥(S2)和黄腐酸水溶肥(S3)对酸化土壤微生物群落结构的改良效果。结果表明,施用3种土壤改良剂后土壤细菌丰富度和多样性均降低,而真菌群落物种丰富度没有显著变化。改良后土壤的主导菌门与改良前相同,而主导菌属存在较大差异。Iamia、Peroneutypa为S1处理特有主导菌属,节核细菌属(Arthrobacter)、德巴利酵母属(Debaryomyces)、Paraphaeosphaeria为S2处理特有主导菌属。根霉菌属(Rhizopus)、裂褶菌属(Schizophyllum)为S3处理特有主导菌属。各改良土壤中,S1处理对细菌的筛选作用最强,S2处理对真菌群落的影响最大,而S3处理相对丰度增加的菌属最多。3种土壤改良剂均能够抑制有害土壤微生物的生长和定殖,但抑制机制可能存在差异。综上所述,3种土壤改良剂均能... 相似文献
2.
Jeffrey S. Buyer John R. Teasdale Inga A. Zasada Jude E. Maul 《Soil biology & biochemistry》2010,42(5):831-841
Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. The management and environmental factors controlling microbial biomass and community structure were identified in a three-year field experiment. The experiment consisted of a tomato production agroecosystem with the following nine treatments: bare soil, black polyethylene mulch, white polyethylene mulch, vetch cover crop, vetch roots only, vetch shoots only, rye cover crop, rye roots only, and rye shoots only. The following hypotheses were tested: (1) Temperature and moisture differences between polyethylene-covered and cover-cropped treatments are partly responsible for treatment effects on soil microbial community composition, and (2) Different species of cover crops have unique root and shoot effects on soil microbial community composition. Microbial biomass and community composition were measured by phospholipid fatty acid analysis. Microbial biomass was increased by all cover crop treatments, including root only and shoot only. Cover cropping increased the absolute amount of all microbial groups, but Gram-positive bacteria decreased in proportion under cover crops. We attribute this decrease to increased readily available carbon under cover-cropped treatments, which favored other groups over Gram-positive bacteria. Higher soil temperatures under certain treatments also increased the proportion of Gram-positive bacteria. Vetch shoots increased the amount and proportion of Gram-negative bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere of tomato plants. The imposed treatments were much more significant than soil temperature, moisture, pH, and texture in controlling microbial biomass and community structure. 相似文献
3.
Cover crops have traditionally been used to reduce soil erosion and build soil quality, but more recently cover crops are being used as an effective tool in organic weed management. Many studies have demonstrated microbial community response to individual cover crop species, but the effects of mixed species cover crop communities have received less attention. Moreover, the relationship between arable weeds and soil microbial communities is not well understood. The objective of this study was to determine the relative influence of cover crop diversity, early-season weed communities, and tillage on soil microbial community structure in an organic cropping system through the extraction of fatty acid methyl esters (FAMEs). A field experiment was conducted between 2009 and 2011 near Mead, NE where spring-sown mixtures of zero (control), two, and eight cover crop species were included in a sunflower–soybean–corn crop rotation. A mixture of four weed species was planted in all experimental units (excluding the no-cover control), and also included as an individual treatment. Cover crops and weeds were planted in late-March, then terminated in late-May using a field disk or sweep plow undercutter, and main crops were planted within one week of termination. Three (2009) or four (2010–11) soil cores were taken to a depth of 20 cm in all experimental units at 45, 32, and 25 days following cover crop termination in 2009, 2010, and 2011, respectively. Total FAMEs pooled across 2009 and 2010 were greatest in the two species mixture–undercutter treatment combination (140.8 ± 3.9 nmol g−1) followed by the eight species mixture–undercutter treatment combination (132.4 ± 3.9 nmol g−1). Abundance of five (2009 and 2010) and seventeen (2011) FAME biomarkers was reduced in the weedy treatment relative to both cover-cropped treatments and the no-cover control. In 2009 and 2010, termination with the undercutter reduced abundance of most actinomycete biomarkers while termination with the field disk reduced abundance of C18:1(cis11) and iC16:0. Canonical discriminant analysis of the microbial community successfully segregated most cover crop mixture by termination method treatment combinations in 2009 and 2010. Microbial communities were most strongly influenced by the presence and type of early-spring plant communities, as weeds exerted a strong negative influence on abundance of many key microbial biomarkers, including the AMF markers C16:1(cis11) and C18:1(cis11). Weeds may alter soil microbial community structure as a means of increasing competitive success in arable soils, but this relationship requires further investigation. 相似文献
4.
Response of soil microbial communities to compost amendments 总被引:1,自引:0,他引:1
Ana Pérez-Piqueres 《Soil biology & biochemistry》2006,38(3):460-470
Soil organic matter is considered as a major component of soil quality because it contributes directly or indirectly to many physical, chemical and biological properties. Thus, soil amendment with composts is an agricultural practice commonly used to improve soil quality and also to manage organic wastes. We evaluated in laboratory scale experiments the response of the soilborne microflora to the newly created soil environments resulting from the addition of three different composts in two different agricultural soils under controlled conditions. At a global level, total microbial densities were determined by classical plate count methods and global microbial activities were assessed by measuring basal respiration and substrate induced respiration (SIR). Soil suppressiveness to Rhizoctonia solani diseases was measured through bioassays performed in greenhouses. At a community level, the modifications of the metabolic and molecular structures of bacterial and fungal communities were assessed. Bacterial community level physiological profiles (CLPP) were determined using Biolog™ GN microtiter plates. Bacterial and fungal community structures were investigated using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Data sets were analyzed using analysis of variance and ordination methods of multivariate data. The impact of organic amendments on soil characteristics differed with the nature of the composts and the soil types. French and English spent mushroom composts altered all the biological parameters evaluated in the clayey soil and/or in the sandy silty clay soil, while green waste compost did not modify either bacterial and fungal densities, SIR values nor soil suppressiveness in any of the soils. The changes in bacterial T-RFLP fingerprints caused by compost amendments were not related to the changes in CLPP, suggesting the functional redundancy of soil microorganisms. Assessing the density, the activity and the structure of the soil microflora allowed us not only to detect the impact of compost amendment on soil microorganisms, but also to evaluate its effect at a functional level through the variation of soil disease suppressiveness. Differences in disease suppressiveness were related to differences in chemical composition, in availability of nutrients at short term and in microbial composition due to both incorporation and stimulation of microorganisms by the compost amendments. 相似文献
5.
Understanding microbial responses to crop rotation and legacy of cropping history can assist in determining how land use management impacts microbially mediated soil processes. In the literature, one finds mixed results when attempting to determine the major environmental and biological controls on soil microbial structure and functionality. The objectives of this research were to: (1) Qualitatively and quantitatively measure seasonal and antecedent soil management effects on the soil microbial community structure in the rhizosphere of a subsequent tomato crop (Solanum lycopersicum) and (2) Determine phylum scale differences between the rhizosphere and bulk soil microbial community as influenced by the antecedent hairy vetch (Vicia villosa), cereal rye (Secale cereale), or black plastic mulch treatments. In this report, we use terminal restriction fragment length polymorphisms in the 16s rDNA gene to characterize changes in microbial community structure in soil samples from a field replicated tomato production system experiment at USDA-ARS Beltsville Agricultural Research Center, Beltsville, MD, USA. We found season of the year had the strongest influence on the soil microbial community structure of some of the major microbial phyla. Although we monitored just a few of the major microbial phyla (four Eubacteria and Archaea), we found that the effects of the tomato plant on the structural composition of these phyla in the rhizosphere differed dependent on the antecedent cover crop. Increased understanding of how agricultural factors influence the soil microbial community structure under field conditions is critical information for farmers and land managers to make decisions when targeting soil ecosystem services that are microbially driven. 相似文献
6.
7.
H. P. Collins A. Alva R. A. Boydston R. L. Cochran P. B. Hamm A. McGuire E. Riga 《Biology and Fertility of Soils》2006,42(3):247-257
Sodium N-methyldithiocarbamate (metam sodium) and 1,3 dichloropropene are widely used in potato production for the control of soil-borne
pathogens, weeds, and plant parasitic nematodes that reduce crop yield and quality. Soil fumigation with metam sodium has
been shown in microcosm studies to significantly reduce soil microbial populations and important soil processes such as C
and N mineralization. However, few published data report the impact of metam sodium on microbial populations and activities
in potato production systems under field conditions. Fall-planted white mustard (Brassica hirta) and sudangrass (Sorghum sudanense) cover crops may serve as an alternative to soil fumigation. The effect of metam sodium and cover crops was determined on
soil microbial populations, soil-borne pathogens (Verticillium dahliae, Pythium spp., and Fusarium spp.), free-living and plant-parasitic nematodes, and C and N mineralization potentials under potato production on five soil
types in the Columbia Basin of Eastern Washington. Microbial biomass C was 8–23% greater in cover crop treatments compared
to those fumigated with metam sodium among the soil types tested. Replacing fumigation with cover crops did not significantly
affect C or N mineralization potentials. Cumulative N mineralized over a 49-day laboratory incubation averaged 18 mg NO3-N kg−1 soil across all soil types and treatments. There was a general trend for N mineralized from fumigated treatments to be lower
than cover-cropped treatments. Soil fungal populations and free-living nematode levels were significantly lowered in fumigated
field trials compared to cover-cropped treatments. Fumigation among the five soil types significantly reduced Pythium spp. by 97%, Fusarium spp. by 84%, and V. dahliae by 56% compared to the mustard cover crop treatment. The percentage of bacteria and fungi surviving fumigation was greater
for fine- than coarse-textured soils, suggesting physical protection of organisms within the soil matrix or a reduced penetration
and distribution of the fumigants. This suggests the potential need for a higher rate of fumigant to be used in fine-textured
soils to obtain comparable reductions in soil-borne pathogens. 相似文献
8.
Parham J. A. Deng S. P. Da H. N. Sun H. Y. Raun W. R. 《Biology and Fertility of Soils》2003,38(4):209-215
Studies were conducted to evaluate microbial populations and community structures in soils under different management systems in a long-term continuous winter wheat experiment. These soils had been treated with cattle manure for over a century, and P, NP, NPK, or NPK plus lime for over 70 years. Cattle manure application promoted the growth of bacteria, but not fungi, when compared with the control soil. Application of chemical fertilizers enriched the K-strategist bacterial community, while application of manure enriched both r- and K-strategists. DNA recovered was most abundant in the manure-treated soil. Effects on bacterial species richness and evenness following long-term soil treatments were also demonstrated by analyzing bacterial community DNA using amplified ribosomal DNA restriction analysis and repetitive extragenic palindromic-polymerase chain reaction fingerprinting. The richness and evenness of the bacterial community were enhanced by manure treatment and treatments that included N and P, which were positively correlated with soil productivity. 相似文献
9.
以江苏太仓设施番茄发生次生盐渍化土壤为研究对象,通过农田小区定位试验,研究施用微生物肥料对设施栽培土壤次生盐渍化的缓解作用和对番茄生产的影响。结果表明,与常规施肥相比,施用微生物肥各处理土壤中微生物量均明显提升,其中细菌、放线菌比对照平均分别增加了64.80%、40.28%;土壤含盐量显著下降,其中施用1.2 kg/m~2时,pH值提升最高,NO3-含量下降最为显著,分别达60.29%、96.18%;T1、T2、T3、T4总盐含量分别下降了0.76、1.49、1.54、1.87 g/kg;土壤质量和养分含量也有所改善,其中土壤容重下降了1.60%~11.20%,有机质含量上升幅度为4.81%~28.35%;全氮在0.9 kg/m~2时含量最高,提高了29.41%;而速效养分含量随微生物肥用量增加却呈下降趋势,有效磷下降了3.88%~29.85%;施用微生物肥亦降低了土壤中Cd浓度,且在1.2 kg/m~2时下降幅度最大,达到76.09%;微生物肥对番茄生长状况也产生了显著影响,茎粗、叶龄在生长期内有所提高,尤其在0.3、0.6 kg/m~2时,对生长指标的促进作用尤为明显;施用微生物肥对番茄产量也产生显著影响,在微生物肥用量为0.9 kg/m~2时坐果数和总重最大,分别高于常规施肥处理42.86%、36.36%。由此得出,施用微生物肥料能改善土壤条件,降低土壤含盐量,缓解设施土壤次生盐渍化状况,从而增加番茄产量,提高番茄品质。综合考虑土壤改良效果与经济成本,每公顷施用6 000~9 000 kg为宜。 相似文献
10.
《European Journal of Soil Biology》2007,43(1):31-38
A greenhouse pot experiment was conducted to investigate the influence of soil moisture content and plant species on soil microbial community structure using cultivation-independent methods. White clover and ryegrass were grown individually or in a mixture. Plants were subjected to soil moisture content corresponding to 60% field capacity (FC) and 80% FC. Total plant biomass of white clover and ryegrass increased with increasing soil moisture contents. At a given soil moisture content, total biomass of white clover was lower in the ryegrass–clover (RC) mixture compared with those grown individually, while total biomass of ryegrass was higher. Microbial community structure assessed by phospholipid fatty acid analysis (PLFA) was more affected by plant species than soil moisture. Community level physiological profiles (CLPP), in terms of diversity of substrate utilization and average well colour development (AWCD) were affected by plant species and soil moisture. Soil moisture effects were more pronounced in clover than in ryegrass. AWCD and diversity of substrate utilization in the ryegrass–clover mix were similar to those of sole clover while they differed from that of ryegrass suggesting a dominant effect of clover in the mix. 相似文献
11.
The effect of glyphosate on soil microbial activity,microbial community structure,and soil potassium
Matthew Lane Nicola Lorenz Jyotisna Saxena Cliff Ramsier Richard P. Dick 《Pedobiologia》2012,55(6):335-342
The herbicide, glyphosate [N-(phosphonomethyl) glycine] is extensively used worldwide. Long-term use of glyphosate can cause micronutrient deficiency but little is known about potassium (K) interactions with glyphosate. The repeated use of glyphosate may create a selection pressure in soil microbial communities that could affect the nutrient dynamics such as K. The objective of this study was to determine the effect of single or repeated glyphosate applications on microbial and K properties of soils. A 54 day incubation study (Exp I) had a 3 × 5 factorial design with 3 soils (silt loam: fine, illitic, mesic Aeric Epiaqualf) of similar physical and chemical characteristics, that varied in long-term glyphosate applications (no, low, and high glyphosate field treatments) and five glyphosate rates (0, 0.5×, 1×, 2×, and 3× recommended field rates applied once at time zero). A second 6 month incubation study (Exp II) had a 3 × 3 factorial design with three soils (as described above) and three rates of glyphosate (0, 1×, and 2× recommended field application rates applied monthly). For each study microbial properties [respiration; community structure measured by ester linked fatty acid methyl ester (EL-FAME) analysis and microbial biomass K] and K fractions (exchangeable and non-exchangeable) were measured periodically. For Exp I, glyphosate significantly increased microbial respiration that was closely related to glyphosate application rate, most notably in soils with a history of receiving glyphosate. For Exp II, there was no significant effect of repeated glyphosate application on soil microbial structure (EL-FAME) or biomass K. We conclude that glyphosate: (1) stimulates microbial respiration particularly on soils with a history of glyphosate application; (2) has no significant effect on functional diversity (EL-FAME) or microbial biomass K; and (3) does not reduce the exchangeable K (putatively available to plants) or affect non-exchangeable K. The respiration response in soils with a long-term glyphosate response would suggest there was a shift in the microbial community that could readily degrade glyphosate but this shift was not detected by EL-FAME. 相似文献
12.
Rafael S. Teixeira Ivan F. Souza Rafael S. Santos Lucas C. Gomes Silvano R. Borges Leonardus Vergütz Ivo R. Silva 《植物养料与土壤学杂志》2019,182(4):515-523
The reclamation of bauxite‐mined areas can be favored by the application of organic and/or chemical fertilization to restore the vegetation. Otherwise, the impact of fertilizations on soil microbiota or plant–microbe interactions as land reclamation progresses is less understood. To address this issue, we evaluated the impact of organic and chemical fertilization on plants and soil microbial community within the first 36 months of land reclamation in a bauxite‐mined site. The experiment was set up according to a split‐plot design in which the main plots received fertilizations [non‐fertilized control (NF), chemical fertilization (CF; NPK and rock phosphate), organic fertilization (OF; poultry litter), and CF+OF combined], and the subplots received cover crops [no cover crops (NC), grass (B; Brachiaria), legume (S, Stylosanthes), and B+S combined]. Cover crops biomass yield was assessed annually with five field campaigns per year. We used phospholipid fatty acids (PLFAs) to infer the impacts of mining and restoration practices on actinobacteria, Gram‐negative and Gram‐positive bacteria, arbuscular mycorrhizal fungi, and fungi. Accordingly, PLFAs were determined before bauxite mining (pre‐mining), six months after topsoil reconfiguration (post‐mining), and after 14 and 36 months following the application of the fertilizations and cover crops. PLFAs results indicated that in post‐mining, the living microbiota was significantly lower than in pre‐mining. Cover crops biomass yield was highest for B and B+S fertilized with CF+OF at 14 and 36 months. Both parametric and non‐parametric statistics showed a temporal variation in the response of living microbes to the treatments applied. After 14 months, living microbes showed greatest response to OF, while at 36 months their response was strongest in the treatments with highest plant biomass production (B and B+S). These results suggest that in the early stages of land reclamation, living microbial biomass benefit the most from organic fertilizers. As this initial boost decline, living microbes are more likely to thrive in areas undergoing reclamation where they can develop synergistic interactions with plants. 相似文献
13.
Anja Kotzerke Ute Hammesfahr Kristina Kleineidam Marc Lamshöft Sören Thiele-Bruhn Michael Schloter Berndt-Michael Wilke 《Biology and Fertility of Soils》2011,47(2):177-186
Difloxacin (DIF) belongs to the fluoroquinolones, a frequently detected group of antibiotics in the environment. It is excreted
in pig manure to a large extent and may consequently reach soils in potentially effective concentrations via manuring. The
aim of this study was to assess the effects of DIF-spiked manure on microbial communities and selected functions in soils
in a microcosm experiment up to 1 month after application. To test a dose dependency of the effects, three different concentrations
of DIF (1, 10 and 100 mg/kg of soil) were used. Microcosms with application of pure manure, as well as untreated microcosms
served as control. The addition of pure manure resulted in an increase of microbial biomass and soil respiration as well as
a reduced bacteria/fungi ratio. Due to the fast and strong immobilisation of DIF, effects of the antbiotic compound were only
visible up to 8 days after application (microbial biomass; respiration; potential denitrification; ratio of bacteria/fungi).
As expected these short-term effects resulted in reduced potential denitrification rates as well as a reduced bacteria/fungal
ratio in the treatments were DIF has been applied. Surprisingly, microbial biomass values as well as respiration rates were
increased by DIF application. Other parameters like nitrate and ammonium content in soil were not influenced by DIF application
at any time point. Long-term effects (32 days after application) were only visible for the potential nitrification rates.
For those parameters that were influenced by the DIF application a clear dose dependency could not be described. 相似文献
14.
菌肥对青稞根际土壤理化性质以及微生物群落的影响 总被引:6,自引:0,他引:6
应用化学分析、聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE)技术和DNA测序技术,研究了西藏棕色砂壤土中微生物肥料不同施用量和施用期对青稞根际土壤理化性质和细菌群落多样性的影响。结果表明,施用谷特菌肥能显著提高土壤全氮、全磷、全钾、有机质、碱解氮、有效磷和速效钾的水平,如播前施用菌肥浓度750 ml hm-2的处理较不施用菌肥的处理上述指标分别提高13.32%、28.42%、16.20%、9.81%、21.36%、39.35%和30.48%,拔节期施用菌肥浓度2 250 ml hm-2的处理较不施用菌肥的处理分别提高7.25%、29.35%、18.04%、12.86%、15.90%、43.27%和53.99%。DGGE分析表明,相同施用方式中不同施用量土样中微生物的DGGE图谱相似。非加权组平均法(UPGMA)聚类分析将DGGE图谱分为2大类群。Shannon-Wiener指数表明,施用菌肥的土壤细菌多样性先增加后逐渐降低,播前以喷施谷特菌浓度750 ml hm-2时的细菌多样性最高;拔节期则以喷施谷特菌浓度2 250 ml hm-2处理的细菌多样性最高,且两种施用方式土壤养分的释放与Shannon指数的变化规律均为播前﹥拔节期。测序结果表明,不同施肥浓度土样微生物种群分布较为广泛,其中Actinobacteria纲细菌种类略多,少数菌种为未经培养菌种(Uncultured bacterium)。典型对应分析(CCA)表明,DGGE图谱条带分布与土壤理化性质密切相关,碱解氮、全磷和全氮是影响微生物群落的主要环境因子。研究结果表明,施用谷特菌肥可明显改善青稞根际土壤理化性状,提高土壤细菌多样性。 相似文献
15.
We analyzed soil prokaryotic and fungal community composition in soils with varying histories of cattle manure application. The manure treatments were (i) annual application for 43 years (MF), (ii) annual application for 14 years followed by 29 years without application (MF14), and (iii) annual application for 30 years followed by 13 years without application (MF30). An annual application of chemical nitrogen (N) fertilizer (CNF) and a non-amended control (Con) were also included. Soil prokaryotic evenness and diversity significantly decreased in MF relative to other treatments in fall, but were similar to the other fertilizer treatments in spring and summer. Distinct prokaryotic and fungal community composition was observed in MF compared to other treatments across fall, spring, and summer seasons. The MF treatment significantly increased the relative abundance of Firmicutes, Gammaproteobacteria, and Gemmatimonadetes, but significantly decreased the relative abundance of Acidobacteria. In fall, the soil prokaryotic and fungal community composition with MF30 was significantly different than the other fertilization treatments. Overall, the study showed that annual manure application (MF) led to a different microbial community composition than the other fertilizer treatments. Soil without manure application for 13 years (MF30) had a significantly different microbial community composition from other fertilizer treatments in fall, while the soil without manure application for 29 years (MF14) resembled a microbial community that had never received manure. 相似文献
16.
Lisbet Holm Bach John-Arvid Grytnes Mikael Ohlson 《Soil biology & biochemistry》2010,42(11):1934-1943
Biological communities differ over time and in space, and in the forest these communities often vary according to trees and tree gaps, mediated by mechanisms that are likely to change over time and as a tree are removed. In this paper we ask the questions: What is the influence of individual trees on soil microbial community structure? Does the soil microbial community change in the short-term when a tree is removed, and does this change depend on the initial influence of the tree? We use phospholipid fatty acid (PLFA) analysis and a geostatistical approach to study effects of trees and tree removal (thinning) on soil microbial community structure in a young boreal Norway spruce (Picea abies) forest. An experiment was setup where half (four) of the included trees were cut and soil was collected prior to (t0) and one month after (t1) tree felling. The samples were collected along two perpendicular transects originating from each of the eight study trees. A tree influence index was calculated for each sample point from the distances to neighbouring trees, weighted by tree diameter. We found that individual trees are important in structuring the soil microbial community as microbial community structure responded to the gradient in tree influence. Also strong spatial structure was found corresponding to the patch structure induced by trees. Changes in microbial community structure before and after tree felling (t0 and t1) was found to differ significantly between felled and non-felled trees: samples from felled trees came to resemble samples with a low value of tree influence and samples from below non-felled trees came to resemble samples with a high value for tree influence. We thus found that soil microbial community structure in a boreal forest is spatially structured by the distribution of single trees, and that soil microbial community structure varies seasonally and is affected by tree removal, in an intricate manner that reflects the initial influence of trees. 相似文献
17.
为了探明蚯蚓粪配施鼠李糖脂对小白菜及生菜品质的影响,基于盆栽试验,研究了蚯蚓粪及其与鼠李糖脂(0.027%、0.054%和0.108%)配施处理对小白菜和生菜产量、生长指标和品质指标的影响。结果表明,蚯蚓粪与鼠李糖脂配施可以不同程度地提高小白菜及生菜品质,相比不施肥处理蚯蚓粪配施鼠李糖脂处理小白菜及生菜的产量、叶面积、可溶性糖、可溶性蛋白和可滴定酸均显著提高。蚯蚓粪配施鼠李糖脂处理小白菜和生菜产量、可溶性糖、可溶性蛋白、可滴定酸及硝酸盐含量与蚯蚓粪处理无显著性差异。随着鼠李糖脂浓度的增大,蚯蚓粪配施鼠李糖脂处理的小白菜产量呈现下降趋势,未达到显著性差异。蚯蚓粪配施鼠李糖脂相比蚯蚓粪处理可显著提高小白菜游离氨基酸含量。综上,蚯蚓粪配施鼠李糖脂具有显著提高蔬菜产量的效果,蚯蚓粪配施鼠李糖脂与蚯蚓粪处理对蔬菜产量及品质方面的影响没有显著性差异,二者配施没有降低蚯蚓粪的肥效,说明蚯蚓粪与鼠李糖脂配施具有药肥开发的可行性。 相似文献
18.
ABSTRACT Intensive greenhouse production involving excessive fertilizer and organic manure application rates may affect soil chemical and biological quality. Soil samples from 50 commercial greenhouses for tomato production in northern China were collected for the evaluation of the status of soil fertility and identification of the soil chemical factor that exerts the strongest influence on microbial functional diversity. The soil total nitrogen content showed high soil fertility and was 68% higher than 1000 mg kg?1 and 14% higher than 1500 mg kg?1. Differential soil pH values caused statistically significant shifts in microbial metabolic activity (average well color development, AWCD) and Shannon’s diversity index using BiologTM ECO plates assay. The highest soil microbial functional diversity was observed at near neutral pH values. When individual data points were plotted against soil organic matter (SOM), significant positive associations with soil microbial biomass nitrogen and AWCD were observed. The canonical correspondence analysis confirmed that shifts in the soil microbial functional diversity were associated with changes in pH, total nitrogen, and SOM. This study indicated that excessive fertilization changed the community-level physiological profile of the soil microorganisms, and this effect can be a consequence of changes in soil pH under intensive greenhouse management. 相似文献
19.
Effects of compost, coal ash, and straw amendments on restoring the quality of eroded Palouse soil 总被引:2,自引:0,他引:2
Ridgetops in the dryland farming region of eastern Washington suffer from low productivity and poor soil quality from years of erosion. Two studies investigated the effectiveness of soil amendments in restoring soil quality. Study 1 treatments were two rates of compost and a control. Study 2 treatments were compost, coal ash, wheat straw, three rates of inorganic N, and a control. A wide array of soil biological, chemical and physical parameters were measured from 1995 to 1997 and yield of spring barley, spring pea, and winter wheat were measured in different years from 1995 though 1998. In study 1, compost plus N increased barley yield and soil pH. Compost without N in study 2 increased total soil C and continued to immobilize soil N 2 years after incorporation because of the high C:N ratio of the compost. Total soil N, available P and K, some micronutrients, and cation exchange capacity were increased by the compost. Compost reduced soil bulk density and soil impedance, while increasing water-stable aggregates and improving infiltration. Coal ash slightly suppressed phosphatase activity, while tending to increase pH and soil B, and improving infiltration. Straw decreased soil bulk density and microbial activity in 1996 only. Barley grain trace element uptake, barley yield, and pea yield were uninfluenced by amendments. In 1998, 3 years after application of the amendments, winter wheat yield was significantly higher from the compost application than from any other treatments. Compost had the greatest benefit to improving soil quality and crop yield. 相似文献
20.
Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments
Christina L.M. Khodadad Stefan J. Green Jamie S. Foster 《Soil biology & biochemistry》2011,43(2):385-392
The effects of pyrogenic carbon on the microbial diversity of forest soils were examined by comparing two soil types, fire-impacted and non-impacted, that were incubated with laboratory-generated biochars. Molecular and culture-dependent analyses of the biochar-treated forest soils revealed shifts in the relative abundance and diversity of key taxa upon the addition of biochars, which were dependent on biochar and soil type. Specifically, there was an overall loss of microbial diversity in all soils treated with oak and grass-derived biochar as detected by automated ribosomal intergenic spacer analysis. Although the overall diversity decreased upon biochar amendments, there were increases in specific taxa during biochar-amended incubation. DNA sequencing of these taxa revealed an increase in the relative abundance of bacteria within the phyla Actinobacteria and Gemmatimonadetes in biochar-treated soils. Together, these results reveal a pronounced impact of pyrogenic carbon on soil microbial community composition and an enrichment of key taxa within the parent soil microbial community. 相似文献