首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysimeters are valuable for studying the fate and transport of chemicals in soil. Large‐scale field lysimeters are used to assess pesticide behaviour and radionuclide transport, and are assumed to represent natural field conditions better than laboratory columns. Field lysimeters are usually characterized by a free‐draining lower boundary. As a result, the hydraulic gradient is disrupted, and leachate cannot be collected until the bottom of the lysimeter becomes saturated. We compared heterogeneously structured, free‐drainage lysimeters and field soils with respect to water flow and solute transport. Numerical simulations were carried out in a two‐dimensional heterogeneous sandy soil under unsaturated water flow conditions with the CHAIN_2D code. Three different soil structures (isotropic, horizontal, and vertical) were generated, and Miller–Miller similitude was used to scale the hydraulic properties of the soil. The results showed that ponding occurs at the bottom of the lysimeter for the three soil structures and that it occurred faster and was more pronounced with the vertical structure (preferential flow effect). Breakthrough curves of a conservative solute (bromide) showed that solutes are moving faster in the field than in the lysimeters. Fewer differences between lysimeters and field soils were found with the horizontal soil structure than with the isotropic and vertical structures.  相似文献   

2.
3.
Two soil–water balance models were tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge, and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin‐Dahlem, Germany. One model calculated the soil water balance using the Richards equation. The other one used a capacitance approach. Both models used the same modified Penman formula for the estimation of potential evapotranspiration and the same simple empirical vegetation model for the calculation of transpiration, interception, and evaporation. The comparisons of simulated with measured model outputs were analyzed using the modeling‐efficiency index IA and the root mean squared error RMSE. At some lysimeters, the uncalibrated application of both models led to an underestimation of cumulative and annual rates of groundwater recharge and capillary rise, despite a good simulation quality in terms of IA and RMSE. A calibration of soil‐hydraulic and vegetation parameters such as maximum rooting depth resulted in a better fit between simulated and observed cumulative and annual rates of groundwater recharge and capillary rise, but in some cases also decreased the simulation quality of both models in terms of IA and RMSE. The results of this calibration indicated that, in addition to a precise determination of the soil water‐retention functions, vegetation parameters such as rooting depth should also be observed. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.  相似文献   

4.
This study focuses on fluxes of elements from, and changes in the soil properties of shallow organic material rich soil as a result of changes in precipitation acidity. Intact soil columns including natural vegetation from two areas (one exposed to acidic precipitation and one unpolluted) were used in a lysimeter experiment. The lysimeters were watered with simulated normal rain (pH 5.3) or simulated acidic rain (pH 4.3) for four years. Sulphuric acid and ammonium nitrate were used to regulate the quality of the simulated rain. Significantly more SO4 2? was leached from lysimeters receiving acid rain. Rain acidity had no significant effect on NO3 ? leaching. Significantly more Mg2+ was leached from lysimeters receiving acid rain, but this only applied for the soils from the unpolluted area. Four years of treatment did not cause any significant effect on the soil acidity and the amounts of base cations in the soil. The more acidic rain did, however, cause a significant lower cation exchange capacity. For the soils from the polluted area the acid precipitation did cause a lowering of the exchangeable K+ in the upper 5 cm of the soil. Different quality of the soil organic material indicated by different vegetation types appeared to cause significant differences in the amount of components leached from the soil, but did not cause any difference in response to the different rain qualities.  相似文献   

5.
6.
Floodplain soils are characterized by frequent and extreme redox changes caused by inundation with river water or imbibition of groundwater. Depending on the duration and extent of inundation, biogeochemical processes run at sub‐/anoxic conditions, which may result in the mobilization and relocation of dissolved and particulate matter within the soil. In this study, we investigated the effect of inundation events on the composition of mobilized matter in the topsoil horizon of a floodplain soil. We conducted experiments with soil columns in the laboratory and gravitational lysimeters in the field to identify redox‐mediated (im)mobilization processes and to estimate their relevance under field conditions. The lysimeters were filled with topsoil monoliths and run under in situ conditions during a ≈ 2.5‐y period. The soil columns were run with the same soil material either under strictly anoxic or mixed oxic–anoxic conditions. Effluents from mixed oxic–anoxic soil were composed fundamentally different [comparably high: Mn, Al, nitrate, sulfate; comparably low: pH, organic C (OC); not detected: Fe, As] compared to effluents from strictly anoxic soil (comparably high: pH, Fe, Mn, OC, As; comparably low: Al; not detected: nitrate, sulfate). Matter, which was mobile under anoxic conditions (e.g., Fe, As, OC), was effectively immobilized as soon as the mobile phase passed anoxic–oxic boundaries within soil (exception: Mn). We assume that the solution in the soil monoliths always passed such anoxic–oxic boundaries during downwards migration independent of lysimeter flooding with river water. This is indicated by the similar composition of the lysimeter seepage water and the effluents from mixed oxic–anoxic soil columns. Both solutions contained “fingerprints” from anoxic (Mn) and oxic conditions (nitrate). Inundations with river water and the duration of these floods (1–22 d) did not affect the composition of the lysimeter seepage water. In conclusion, immediate changes in the composition of the solution, which enters either the subsoil or nearby receiving waters, cannot be expected from regular topsoil flooding.  相似文献   

7.
Nitrate and chloride transport in loess monolithes under quasistationary conditions The transport of nitrate and chloride has been investigated in an experiment with loess-monolithes under non-steady conditions and by a simple mathematical simulation technique approximating non-stationary flow by quasi-stationary conditions. Six precipitation cycles were followed by analysing soil solution drawn off by means of porous cups from the soil columns at different depths and times. At all times, the simulated “pure” transport profiles compare reasonably well with the experimental profiles. In the columns, however, nitrogen mineralisation took place during and before the experiment.  相似文献   

8.
Engineering and operation of a lysimeter station for the estimation of pesticide leaching through soil profiles An above ground, air-conditioned, lysimeter station was constructed for measuring pesticide leaching into soil profiles (Fluvisol; Cambisol). Specially transport in soil macropores was investigated by using sprinkler irrigation simulating high precipitation. Twelve soil monoliths (30 diameter, 100 cm depth) can be investigated simultaneously. Engineering and operation of this station are described. The lysimeters consist cf stainless steel cylinders with a special leaching water collector and low pressure equipment. In the soil monolith tensiometers with electronic pressure transducer and temperature sensors are installed. Measured data are recorded with a PC continously.  相似文献   

9.
不同规格微型蒸渗仪测定土壤蒸发的试验研究   总被引:6,自引:1,他引:5  
以陕北风沙土为研究对象,比较了微型蒸渗仪高度(10、15、20和25 cm)、内径(10和15 cm)和封底材料(薄铁皮和细纱布)对土壤蒸发测定结果的影响。结果表明,不同规格蒸渗仪测定的土壤蒸发量具有很好的相关性。当内径为10 cm时,土壤蒸发量的测定值随高度的增加而增加,高度为20 cm时的测定值显著大于10 cm时。当高度为10 cm时,将内径由10 cm增加至15 cm对土壤蒸发的测定没有显著影响。高度和内径一定时,将封底材料由薄铁皮换为细纱布时测定的土壤蒸发量显著增加。高度为20 cm时,土壤蒸发测定的精度最高,为98.5%,其次是高度为25 cm和15 cm时,精度分别为96.3%和93.5%。综合考虑精度和便捷性,推荐使用高度为20 cm、内径为10 cm且用薄铁皮封底的微型蒸渗仪。  相似文献   

10.
The composition of soil solutions obtained from the field varies with the method of extraction. Variations in sampling methods and the difficulties in extracting representative samples from soils in space and time, can explain divergent results. In this study we compared soil solutions from a forest soil in northern Sweden obtained by a centrifuge drainage technique and by zero-tension monolith lysimeters. Zero-tension lysimeters were destructively sampled, and centrifuge solutions from this soil were compared with that from soil outside. In our study we found three major differences in the solute composition between the centrifugate and the lysimeter leachate: (i) larger concentrations of most solutes in the mor layer centrifugate than in the mor layer leachate, (ii) accumulation of nitrate in the lysimeters, and (iii) larger concentrations of base cations in the zero-tension lysimeters below 0.3 m depth. Water contents within the lysimeters were up to 3.5 times greater than under natural conditions and the water yields from the lysimeters indicate that water residence time ranged from < 1 to >5 years. This study shows that differences in results from the two methods are due to inherent differences in the methods themselves and not just to the collection of different soil waters. The hydrological anomaly and disturbance induced by the zero-tension lysimeters affects the solute chemistry and thus the applicability of the results to field conditions.  相似文献   

11.
A technique is described which allows collection and transportation of undisturbed soil monoliths in glass fibre casings 80 cm in diameter and 135 cm deep. The technique has been used to obtain 150 monoliths from a range of soil types in England and Wales, including soils with compact or chalky horizons. Measurements from lysimeters containing a non-swelling sandy loam and a swelling clay showed that the hydraulic properties of both soils were not affected by encasement of the profiles, provided that supplementary drainage outlets at the depth of field mole drains were provided in the lysimeters containing the clay soil. Aeration of the clay monoliths was comparable with that of the same soil in the field. When winter wheat plants growing on the lysimeters were surrounded by a similar guard crop, yields were equivalent to those obtained in the field. Edge effects were not significant; plants grown adjacent to the lysimeter wall yielded the same weight of grain per unit soil area as those in the central area of the monolith.  相似文献   

12.
Abstract. A laboratory experiment was designed to assess the impact of surface seal development on the hydrological response of a clay soil. The influence of surface sealing on vertical macropore flow and lateral throughflow was of particular interest. The extent and development of the surface seal in repacked lysimeters was designed to match that recorded over two growing seasons at a clay field site in Essex, and was not extensive enough to reduce significantly the infiltration capacity of the soil. Consequently, the hydrological response of the lysimeters was similar under sealed and unsealed conditions, with a more rapid wetting response under sealed conditions being attributed to the higher soil moisture content required to create the surface seal. Macropore flow was initiated at the A/B soil boundary of the lysimeters, in response to the development of a saturated layer. The rate of macropore and throughflow in the soil was dictated by rainfall intensity at the soil surface as this controlled the depth of water in the perched water table. Simulation of the tensiometer response in the lysimeters demonstrated that it was possible to attribute the rapid movement of water through the A horizon to water displacement processes alone, without recourse to preferential flow processes.  相似文献   

13.
Quantification of soil water flow is a prerequisite to accurate prediction of solute transfer within the unsaturated zone. The monitoring of these fluxes is challenging because the results are required to answer both scientific and practical questions regarding protection of groundwater, sustainable management of agricultural, forestry, mining or set‐aside industrial areas, reducing leachate loss from landfills or explaining the fate of environmentally harmful substances. Both indirect and direct methods exist for estimating water‐flux rates and have been used with varying success. In Europe, the use of direct lysimetry methods for measuring water and solute fluxes in soils has increased in recent years. This technique ensures reliable drainage data, but requires relatively large investment and maintenance expenses. Other research groups, especially in the USA, have developed alternative techniques. In this paper we compare the functioning of a passive‐wick sampler, especially the deep‐drainage meter type (DDM), with two different types of drainage lysimeters (weighing and non‐weighing) under field conditions in Germany for the measurement period from May 2004 until April 2009. The study showed that under sandy soil conditions no significant differences occurred between the measurements from DDM and both drainage lysimeter types. Only in periods with increased precipitation was there a tendency of drainage over‐estimation by the DDM in comparison with the lysimeters tested. For longer periods, no significant differences in the amount of drainage or the pattern of drainage formation were found between weighing and non‐weighing gravitation lysimeters. The practical use of DDMs is restricted because the groundwater level must be >2 m from the soil surface. Suggestions are made for the technical improvement of the DDM as well as the testing of the device with more cohesive soils.  相似文献   

14.
This paper considers the development of lysimeters and their role in the evolution of our understanding of the dynamics of water and plant nutrients in ecosystems. Lysimeters are delineated volumes of soil. They can be divided into those filled with repacked soil, and those enclosing an undisturbed monolith. The original repacked lysimeter was developed to investigate the concept that all life stems from water, and is considered to be the first quantitative experiment in history. It focussed on the growth of a willow tree and how much of the increment was derived from the soil solids. From this start some 360 years ago lysimeters quickly contributed to the quantification of the transpiration stream and the differentiation of water loss by evaporation from the soil from loss via the leaves of plants. Chronologically, further development began about 210 years ago with the exploration of whether precipitation could account for all the water moving from the land to the oceans, and was the origin of springs. In part, this required a careful quantification of soil evaporation, runoff and deep drainage. This in turn led to the quantification of the soil water balance. As a result, we are able to predict indices, such as crop water use efficiency, drainage and irrigation requirements, contributions to stream flow, groundwater recharge and nutrient loss by leaching. Recognition that the quantification of drainage and leaching required soils of natural structure and profile integrity resulted in the building of the first monolith lysimeter and the development of ‘pan’ or ‘Ebermayer’ lysimeters. Improved technology allowed a better understanding of the role of soil in the regional water balance through the development of small diameter lysimeters that could be transported to a central location subject to the same climatic variables. In contrast, other technological changes allowed the impact of typical soil management operations carried out using regular machinery to be applied on field‐scale lysimeters. The contribution of the different types of lysimeter to the development of our understanding of soil use and management is considered.  相似文献   

15.
Undisturbed Soil Monoliths: a Method for Preparing, Installation, and Sprinkling in the Laboratory A method for preparing undisturbed soil monoliths is described. The columns are encased with water-repellant cement. Because of the intense contact between soil and cement edge effects are prevented. On account on the cement, the pH-value in the periphery of the soil columns increase by one degree. The monoliths are sprinkled by a precipitation simulator at any adjustable intervall. Soil monoliths of this kind are suitable for testing chemicals, if the soil has to be analyzed, as well as for investigations concerning the water flow.  相似文献   

16.
大型蒸渗仪的设计、建造与安装(英)   总被引:1,自引:1,他引:0  
蒸渗仪是用来研究营养元素在农田中的运移的系统,本文系统描述了一种大型蒸渗仪的设计,建造与安装。试验采用湖北地区典型土壤类型黄棕壤与潮土,在华中农业大学校园内每种土壤安装16个大型蒸渗仪。蒸渗仪采用减少土柱的扰动的方法建造,并填充凡士林减少土壤水分的边缘流动。蒸渗仪采用外径630 mm高700 mm厚10 mm的PVC管作材料。土柱建成后安装在预制PVC底座上,底座中间有一圆孔外接淋失液收集装置。淋失液收集后用来测定淋失液离子含量。试验结果表明,相同土壤土柱之间淋失量差异不显著,没有检测到水分的边缘流动;同时建设效率高,费用低。  相似文献   

17.
The techniques of measuring oxygen concentrations, oxygen flux and redox potential have been adapted for use in lysimeters. The accuracy and precision of the measurements have been improved, as well as their convenience for use in the limited soil volume of lysimeters. Concentrations of dissolved and gaseous oxygen are measured with a membrane covered polarographic electrode. The analysis is made on samples of air or solution carefully extracted from collection vessels permanently in the soil. Oxygen flux is measured with bare platinum electrodes. Careful choice is made of effective voltage for the measurement of equilibrium oxygen related currents. Redox potential is measured by the same platinum electrode and the reproducibility of measurements from permanently installed electrodes was assessed. The effect of soil structure upon the three kinds of measurement was seen and attributed to differences between the volumes of soil sampled by the different instruments.  相似文献   

18.
The effectiveness of a warm season grass (eastern gamagrass), a cool season grass (annual ryegrass) and a rotation of warm and cool season grasses in the remediation of soil freshly contaminated with trinitrotoluene (TNT) and polybrominated biphenyls (PBBs) was evaluated. A total of 96 columns were filled with a Weswood silt loam soil that was mixed with TNT and PBB compounds to a target concentration of 10 mg of each contaminant. Chemical losses during this two-year field lysimeter experiment were similar for all experimental treatments and at all depths. Although higher microbial biomass was found in the rhizosphere soil, enumeration of soil microorganisms revealed a robust population in both the bulk and rhizosphere soils and the microbial growth was not dependent on root exudates only. Microbial degradation rates in the freshly contaminated soil were more affected by soil properties and the chemical characteristics of the contaminant than the presence of roots. The field data collected from the lysimeter experiment was used to calibrate a recently developed phytoremediation model. The phytoremediation computer model successfully simulated TNT soil concentrations in the column lysimeters. The model may be a valuable tool for the selection and optimization of phytoremediation methods at contaminated field sites.  相似文献   

19.
Soil solutions were collected monthly by tension and zero-tension lysimeters in a low-elevation red spruce stand in east-central Maine from May 1987 through December 1992. Soil solutions collected by Oa tension lysimeters had higher concentrations of most constituents than the Oa zero-tension lysimeters. In Oa horizon soil solutions growing season concentrations for SO4, Ca, and Mg averaged 57, 43, and 30 μmol L?1 in tension lysimeters, and 43, 28, and 19 μmol L?1 in zero-tension lysimeters, respectively. Because tension lysimeters remove water held by the soil at tensions up to 10 kPa, solutions are assumed to have more time to react with the soil compared to freely draining solutions collected by zero-tension lysimeters. Solutions collected in the Bs horizon by both types of collectors were similar which was attributed to the frequency of time periods when the water table was above the Bs lysimeters. Concentrations of SO4 and NO3 at this site were lower than concentrations reported for most other eastern U.S. spruce-fir sites, but base cation concentrations fell in the same range. Aluminum concentrations in this study were also lower than reported for other sites in the eastern U.S. and Ca/Al ratios did not suggest inhibition of Ca uptake by roots. Concentrations of SO4, Ca, K, and Cl decreased significantly in both the Oa and Bs horizons over the 56-month sampling period, which could reflect decreasing deposition rates for sulfur and base cations, climatic influences, or natural variation. A longer record of measured fluxes will be needed to adequately define temporal trends in solution chemistry and their causes.  相似文献   

20.
江西省雨水、灌溉水及渗漏水中的硫对土壤硫的影响   总被引:1,自引:0,他引:1  
Ten rainfall and irrigation water-collecting posts were set up in different ecotype districts of Jiangxi Province,China,to quarterly measure S content in rainfall and irrgation water.A rasinwater chemical composition-collecting device was used to collect the sulphur in rainfall,and the amount of sulphur adsorbed on the resin column in the device was determined.The soil percolating water was gathered using 6 lysimeters built up according to the profile sequence of the red soil derived from red sandstone and the red soil derived from Quaternary red clay,separately.On the lysimeters peanuts,soybean and radish were grown in rotation.Two treatments were designed:without S addition and with S additin at a rate of 14kg S ha^-1,The SO4^2- contents in rainfall,irrigation water and soil percolating water were determined by the turbidimetry.The results in 1997 showed that the average annual S content in rainwater ws 28.13kg S ha^-1.the average S content in irrigation water was 1.7mg S L^-1,and the average content of SO4^2- in soil percolation water was 2.30kg Sha^-1 year^-1 and 4.70 kg Sha^-1 year^-1 in treatments without and with sulphur application,respectively,In Jiangxi Province,apart from the losses by runoff and leaching,the sulphur in rainfall avaliable to crops is 7.3kg S ha^-1 year^-1 and additional S application is required.When rice is grown.however,irrigation water can suply 6.9kg S ha^-1,which,along with the sulphur in rainfall,cal almost meet the S requirement of one cropping of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号