首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous suspensions and oil emulsions of a commercial [14C]diflubenzuron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide) formulation (Dimilin W-25) remained on the leaf surface of greenhouse-treated plant tissues. Absorption, translocation, and metabolism of the [14C]diflubenzuron were not significant. Less than 0.05% of the applied 14C was found in newly developed plant tissues 28 days after spray treatment. [14C]Diflubenzuron was degraded in soil. After 91 days, biometer flask studies showed that 28% of the 14C incorporated into the soil as [14C]diflubenzuron was recovered as 14CO2. Major dichloromethane-soluble soil residues were identified as unreacted [14C]diflubenzuron and [14C]4-chlorophenylurea. A minor unknown degradation product cochromatographed with 2,6-difluorobenzoic acid. Insoluble 14C-residues increased with time and represented 67.8% of the residual 14C in the soil 89 days after treatment. Cotton plants grown for 89 days in [14C]diflubenzuron-treated soil contained only 3% of the 14C applied to the soil. Small quantities of acetonitrile-soluble [14C]4-chlorophenylurea were isolated from the foliar tissues. Root tissues contained small amounts of [14C]diflubenzuron and trace quantities of a minor 14C-product that chromotographed similarly to 2,6-difluorobenzoic acid. Most of the 14C in the plant tissues (84–93%) was associated with an insoluble residue fraction 89 days after treatment.  相似文献   

2.
Studies of the absorption and translocation of foliage-applied ring-labelled [14C]asulam [methyl (4-aminobenzenesulphonyl) carbamate] were carried out using glasshouse and field-grown bracken plants. Translocation of 14C from the treated frond was primarily according to a 'source to sink’pattern with intense accumulation of radioactivity in the metabolically active sinks viz. rhizome apices, frond buds, root tips and young frond tissue. In the case of field bracken, translocation and distribution of 14C was extensive in the rhizome system, accumulation occurring in the active as well as dormant buds situated on the non-frond-bearing and storage rhizome branches. Treatment of fully expanded fronds with 100μl of [14C]asulam (1 mg, 1.0–1.5 μCi) as 2 μl droplets resulted in a rapid initial uptake during the first week, followed by progressive entry and distribution with time. Basipetal translocation to the rhizome system was positively correlated with total uptake. High humidity (95%) and high temperature (30°C) stimulated uptake and subsequent basipetal translocation to a considerable degree. Uptake was greater through the stomatal-bearing abaxial than through the adaxial cuticle. Incorporation of a surfactant (Tergitol-7, 0.1%) increased penetration by up to 30%. Uptake declined markedly as the frond aged, while translocation was predominantly acropetal in young treated fronds, becoming exclusively basipetal when the fronds matured. Optimum uptake and maximum distribution of [14C]asulam in the rhizome and its associated buds was achieved when treatments were applied to almost fully expanded fronds. The translocated 14C (asulam and possibly some of its metabolites) showed a considerable degree of persistence in the rhizome system, 8% of the applied activity still remaining in the rhizome 40 weeks after treatment.  相似文献   

3.
Uptake, movement, and metabolism of unformulated ioxynil and bromoxynil salts were investigated in Matricaria inodora and Viola arvensis. The morphology of these two species did not give rise to different spray retention and contact angles. After 7 days, uptake of [14C]ioxynil-Na reached 8.26% of applied 14C activity in M. inodora and 16.77% of that in V. arvensis compared with 1.54 and 3.83%, respectively, for [14C]bromoxynil-K. Over 98% of the 14C activity detected in the plant after 7 days remained in the treated leaves of V. arvensis following [14C]ioxynil-Na treatment. However, 8.7% of the 14C activity detected in [14C]ioxynil-Na-treated M. inodora was recovered from the apex and developing leaves reflecting a greater translocation. [14C]Bromoxynil-K was more mobile in both species and after 7 days 87.5 and 91.39% were detected in the treated leaves of M. inodora and V. arvensis, respectively. In both species the majority of translocated 14C activity was recovered from the apex and developing leaves. Up to 20% of the applied [14C]ioxynil-Na and [14C]bromoxynil-K was not detected within the treated plant. Extraction of treated plants revealed no detectable metabolic breakdown of ioxynil-Na to halogenated derivatives in either species. However, metabolic breakdown of bromoxynil-K was apparent in V. arvensis. No significant root exudation was detected when [14C]ioxynil-Na and [14C]bromoxynil-K were applied to hydroponically grown S. media and V. arvensis. Losses of 14C activity were due to herbicide volatility or degradation to volatile products on the leaf surface.  相似文献   

4.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

5.
The metabolism of the insecticide SD 8280 [2-chloro-1-(2,4-dichlorophenyl)vinyl dimethyl phosphate] in rice plants has been examined. When rice seedlings were treated with [14C]-SD 8280 the major metabolite was 1-(2,4-dichlorophenyl)ethanol which was present mainly conjugated with plant carbohydrates. This compound was also the major metabolite present in grain and straw from rice treated with [14C]-SD 8280 and grown to maturity under paddy conditions both in the glasshouse and in an outdoor enclosure. Other metabolites detected in the mature plants included 2-chloro-1-(2,4-dichlorophenyl)vinyl methyl hydrogen phosphate and 2,4-dichloro-benzoic acid, both of which occurred in free and conjugated forms. Paddy water was sampled at intervals after the application of [14C]-SD 8280 and the total residue in the water fell from initial levels of 0.28–1.1 μg/ml (expressed as SD 8280 equivalent) immediately after treatment to <0.01 μg/ml after 2–3 weeks. The total residues in the soil from these experiments were low and did not exceed 0.20 mg/kg (SD 8280 equivalents) through the 0–15 cm profile.  相似文献   

6.
The effects of octylphenol (OP) and four of its ethoxylated derivatives on uptake into, and distribution within, maize leaf of 2-deoxy-glucose (2D-glucose), atrazine and o, p′-DDT are reported. The surfactants and OP (2 g litre?1 in aqueous acetone) increased the uptake, at both 1.5 and 24 h, of the three model compounds (applied at 1 g litre?1) having water solubilities in the g, mg and μg litre?1 ranges. The uptake of 2D-glucose was positively correlated with the hygroscopicity of the surfactants. The uptake of DDT and atrazine increased with the uptake of the surfactants, being inversely related to their hydrophile:lipophile balance (HLB). Uptake of 2D-glucose and atrazine was enhanced at high humidity, the relative enhancement for atrazine increasing with increasing ethylene oxide (EO) content of the surfactants. A significant proportion of the atrazine and DDT entering the leaf was recovered from the epicuticular wax, the amount of atrazine recovered from the wax increasing with the EO content of the surfactants. The proportion of the surfactants taken up which was recovered from the epicuticular wax was minimal at an EO content of 12.5–16 mole equivalents. The appearance of the deposits on the leaf surface differed markedly among the surfactants, with similar trends for all three chemicals and without visible evidence for infiltration of the stomatal pores. The total quantities of glucose and atrazine translocated were increased by all surfactants but that of DDT was not, despite increases in uptake of up to 7.5-fold. Relative translocation (export from treated region of leaf as a percentage of chemical penetrating beyond the epicuticular wax) was reduced in all cases in the presence of surfactant. Up to 30% of the applied [14C]chemicals was not recovered from the treated leaf after 24 h. The reduced recovery of 2D-glucose, but not that of atrazine and DDT, was largely attributable to movement out of the treated leaf, with approximately 70% of the chemical taken up being translocated basipetally. Loss of atrazine and DDT was a result of volatilisation. There was no evidence that either [14C]2 D-glucose or [14C]atrazine was metabolised to [14C]carbon dioxide.  相似文献   

7.
Cinidon-ethyl (BAS 615H) is a new herbicide of isoindoldione structure which selectively controls a wide spectrum of broadleaf weeds in cereals. The uptake, translocation, metabolism and mode of action of cinidon-ethyl were investigated in Galium aparine L, Solanum nigrum L and the tolerant crop species wheat (Triticum aestivum L). When plants at the second-leaf stage were foliarly treated with cinidon-ethyl equivalent to a field rate of 50 g ha−1 for 48 h, the light requirement for phytotoxicity and the symptoms of plant damage in the weed species, including rapid chlorophyll bleaching, desiccation and necrosis of the green tissues, were identical to those of inhibitors of porphyrin synthesis, such as acifluorfen-methyl. The selectivity of cinidon-ethyl between wheat and the weed species has been quantified as approximately 500-fold. Cinidon-ethyl strongly inhibited protoporphyrinogen oxidase (Protox) activity in vitro, with I50 values of approximately 1 nM for the enzyme isolated from the weed species and from wheat. However, subsequent effects of herbicide action, with accumulation of protoporphyrin IX, light-dependent formation of 1-aminocyclopropane-1-carboxylic acid-derived ethylene, ethane evolution and desiccation of the green tissue, were induced by cinidon-ethyl only in the weed species. After foliar application of [14C] cinidon-ethyl, the herbicide, due to its lipophilic nature, was rapidly adsorbed by the epicuticular wax layer of the leaf surface before it penetrated into the leaf tissue more slowly. No significant differences between foliar and root absorption and translocation of the herbicide by S nigrum, G aparine and wheat were found. After foliar or root application of [14C]- cinidon-ethyl, translocation of 14C into untreated plant parts was minimal, as demonstrated by combustion analysis and autoradiography. Metabolism of [14C]cinidon-ethyl via its E-isomer and acid to further metabolites was more rapid in wheat than in S nigrum and G aparine. After 32 h of foliar treatment with 50 g ha−1 of the [14C]-herbicide, approximately 47%, 36%, and 12% of the absorbed radioactivity, respectively, were found as unchanged parent or its biologically low active E-isomer and acid in the leaf tissue of G aparine, S nigrum and wheat. In conclusion, cinidon-ethyl is a Protox-inhibiting, peroxidizing herbicide which is effective through contact action in the green tissue of sensitive weed species. It is suggested that a more rapid metabolism, coupled with moderate leaf absorption, contribute to the tolerance of wheat to cinidon-ethyl. © 1999 Society of Chemical Industry  相似文献   

8.
The uptake, translocation and metabolism of glyphosate [N-(phosphonomethyl) glycine] by Canada thistle (Cirsium arvense (L.) Scop.) (susceptible) and leafy spurge (Euphorbia esula (L.)) (resistant) were examined in an attempt to elucidate the nature of the differential sensitivity. The pattern of uptake and translocation was similar in both species. Glyphosate moved readily in the apoplast and the symplast. High humidity and/or surfactant greatly increased the amount of 14C-glyphosate absorbed and translocated over that in low humidity and/or without surfactant. No 14Cmetabolites were detected in either species 1 week after treatment with 14C-glyphosate. More of a glyphosate spray solution containing a fluorescent dye was received and retained on Canada thistle by virtue of its growth habit than on leafy spurge. More glyphosate should therefore be available for uptake by Canada thistle and this may account for the differential sensitivity of these two species.  相似文献   

9.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

10.
The persistence of [14C] 2,4-D at a rate equivalent to 1 kg/ha was compared under laboratory conditions in samples of heavy clay, sandy loam, and clay loam at 85% of field capacity moisture and 20 ± 1°C which had either received no pre-treatment, or had been pre-treated for 7 days at the 2 μg/g level with the herbicides benzoylprop-ethyl, diclofop-methyl, dinitramine, flamprop-methyl, nitrofen, picloram, tri-allate, trifluralin, and a combination of tri-allate and trifluralin. The breakdown of [14C] 2,4-D was also studied in the same soils that had similarly received pre-treatments of 2 μg/g of the cereal seed dressing Vitaflo-DB, the insecticide, malathion, and a combination of Vitaflo-DB and malathion. In each soil type, the half-life of the 2,4-D was similar regardless of whether the soil had, or had not, received any pre-treatment, indicating that none of the chemicals investigated adversely affected the soil degradation of 2,4-D.  相似文献   

11.
Imazalil had no effect on the initial growth of mycelia of Penicillium italicum (for 10 hr) or Aspergillus nidulans (for 2 hr). In P. italicum during this period neither respiration nor cell permeability was affected, but uptake of [32P]phosphate, [14C]leucine, or [14C]uridine was partially inhibited. The initial (5 hr) inhibition of substrate uptake coincided with a 50% reduction in ergosterol content. Within 0.5 hr, incorporation of [14C]acetate into C-4-desmethyl sterols was strongly inhibited in mycelia of A. nidulans treated with 0.5 μg/ml of imazalil. However, radioactivity in C-4-methyl and dimethyl sterols exceeded that of control cultures. Concentrations of imazalil as low as 0.005 μg/ml caused short-term (1 hr) declines of incorporation into desmethyl sterols and increases into the C-4-methyl and dimethyl sterols. Incorporation into phospholipids, triglycerides, and free fatty acids was not affected. These data suggest that the primary antifungal action of imazalil is inhibition of demethylation in the biosynthesis of ergosterol.  相似文献   

12.
Bromoxynil octanoate labelled with 14C in the ring or in the cyano-group was applied to wheat seedlings at the two-leaf or fully-tillered stage and at rates equivalent to up to 16 oz a.i./acre. The plants were grown either in environmental chambers under controlled conditions for up to 28 days, or outdoors under field conditions for various periods up to harvest. Initially, elimination of radioactivity occurred more rapidly with bromoxynil-cyano-[14C]-octanoate than with bromoxynil-ring-[14C]-octanoate, indicating metabolic attack on the cyano group. Under outdoor conditions with ring-[14C]-herbicide applied at the two-leaf stage, only 12% of the radioactivity was retained after 28 days, principally in the treated leaves. When application was made at fully-tillered stage, about 33% of the 14C was retained after 56 days, almost entirely in the treated senescent leaves at the base of the plant. There was very little translocation of the herbicide or of any major metabolite. The level of radioactivity in harvested grain and in straw more than 7.5 cm above the ground was very low, even after very late application of ring-[14C]-labelled herbicide. The amount of bromoxynil octanoate, together with any metabolite retaining part of the aromatic ring, did not collectively exceed the equivalent of approx. 0.01 parts/million bromoxynil octanoate.  相似文献   

13.
The effects of the herbicide isouron and of its plant degradation products designated as metabolite l {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N-methylurea} and metabolite 2 {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-urea} on the metabolism of enzymatically isolated leaf cells of soybean [Glycine max (L.) Merr., cv. Essex] were compared under laboratory conditions. Photosynthesis, protein synthesis, ribonucleic acid synthesis, and lipid synthesis were assayed by the incorporation of NaH14CO3, [14C]-leucine, [14C]-uracil, and [14C]-acetate, respectively, into the isolated cells. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10 and 100 μM of the three herbicides. The urea derivative of isouron (metabolite 2) was the least active of the three compounds. The activity of the mono-methylated derivative of isouron (metabolite 1) was comparable to that of isouron and the sensitivity of the four processes to both chemicals decreased in the order: photosynthesis > ribonucleic acid synthesis > lipid synthesis > protein synthesis. The concentration of isouron that caused a 50% inhibition of photosynthesis of the isolated soybean leaf cells was calculated at 0.51 μM. The effects of isouron and metabolite 1 on photosynthesis, lipid and RNA synthesis appeared to be independent of incubation lime as maximal inhibition occurred within 30 min. Inhibition of protein synthesis by both chemicals was time-dependent, increasing in magnitude with concomitant increases in incubation time.  相似文献   

14.
The fungicide mancozeb belongs to ethylenebis(dithiocarbamate) group of fungicides which is used to control brown and black rust, leaf spot, leaf blight, downy mildew etc. on a variety of plants including egg plants, tomato, potato and others. [14C]mancozeb, when applied to the foliage of egg plants (Solanum melongena L.) during summer months, dissipated very rapidly with a half-life of only 10·6 days. Ethylenethiourea (ETU), ethyleneurea (EU), ethylenethiuram disulfide (ETD), ethylenethiuram monosulfide (ETM) were the metabolites of [14C]mancozeb detected in all the plant parts at different times after the treatment. The amount of ETU in fruits after fourteen days of treatment was only 206 μg kg?1 which is below the maximum permissible level and ultimately came down to 4·6 μg kg?1 after 42 days. EU was found to be the predominant metabolite, suggesting the breakdown of unstable ETU to relatively stable EU under subtropical conditions.  相似文献   

15.
The distribution of 2.5 mM-[14C]MCPA
  • 1 MCPA = (2-methyl-4-chlorophenoxyacetic acid).
  • and [14C]MCPB
  • 2 MCPB = (4-(2-methyI-4-chlorophenoxy) butyric acid).
  • formulated as sodium salts with 0.05% tergitol, have been investigated when applied to an isolated leaf/agar block sink system of Vicia faba L. Results are presented which show the effect on absorption and translocation of method of application, age of treatment leaf, treatment period, pretreatment with 5 μM ATP and removal of cuticle wax by chloroform wipe treatment. Significant negative correlations between cuticle wax fixation/translocation and leaf tissue content/translocation were recorded for both compounds, particularly MCPB, suggesting the involvement of both physicochemical and metabolic components in the process of absorption and translocation. The nature of the mechanisms involved was further investigated using isolated cuticle/epidermal systems and tightly-coupled mitochondria isolated from roots of V. faba L. The results suggest that non-movement of MCPB in this species is largely due to its enhanced retention within the cuticle and to the fact that it is a more effective uncoupler of oxidative phosphorylation than MCPA. The importance of these findings in terms of the relative efficiency of translocation of MCPA and MCPB when applied in vivo is discussed.  相似文献   

    16.
    Colony growth and germ tube emergence of sporangia and encysted zoospores of Phytophthora infestans were highly sensitive to cymoxanil (ED50 0.5–1.5 μg/ml), whereas differentiation of sporangia and zoospore release were insensitive at concentrations up to 100 μg/ml. Treated sporangia did not show distorted germ tubes. Oxygen consumption for glucose oxidation by germinating sporangia and zoospore motility were not inhibited at concentrations up to 100 μg/ml. Cymoxanil hardly affected the uptake of radiolabeled precursors of DNA, RNA, and protein at concentrations up to 100 μg/ml. Incorporation of [14C]phenylalanine into protein was completely insensitive. RNA synthesis as measured by [3H]uridine incorporation was differentially inhibited in the various developmental stages of the fungus. Inhibition did not occur at differentiation of sporangia, whereas at cyst and sporangial germination and mycelial growth this process was inhibited 20–45% at a concentration of 100 μg cymoxanil/ml. Endogenous RNA polymerase activity of isolated nuclei was not inhibited by cymoxanil. DNA synthesis as measured by [methyl-3H]thymidine incorporation was inhibited 20–80% at the various stages of development at cymoxanil concentrations higher than 10 μg/ml. Metalaxyl, a specific inhibitor of ribosomal RNA synthesis, inhibited [3H]uridine incorporation 40–60% at all developmental stages. The data suggest that although DNA synthesis is affected more than RNA synthesis, inhibition of both biosynthetic processes is a secondary effect. The primary mode of action of cymoxanil thus remains unknown.  相似文献   

    17.
    The distribution and metabolic fate of [14C]-daminozide in silver maple and American sycamore seedlings were studied by use of autoradiography, ion-exchange chromatography, thin-layer chromatography (t.l.c.), and liquid scintillation spectrometry. Within one day after treatment with [14C]-daminozide, radioactivity was detected in all parts of the plant. The 14C concentrated in meristematic regions of the leaves. Ion-exchange and thin-layer chromatographic analyses of the 50% methanol extracts indicated that no detectable metabolites of daminozide were formed in any of the plant parts but approximately 20% of the applied 14C, most of it in the stem tissue, was not extractable by aqueous methanol.  相似文献   

    18.
    The metabolism of 3-phenoxybenzoic acid, a common plant metabolite of deltamethrin, cypermethrin and fenvalerate, has been studied in abscised leaves of cabbage, cotton, cucumber, kidney bean and tomato plants. The [14C]-acid was readily converted into more polar conjugates by esterification with glucose, 6-O-malonylglucose, gentiobiose, cellobiose, glucosylxylose and two types of triglucose with different isomerism. Other metabolites identified were the glucosyl ether of 3-(4-hydroxyphenoxy)benzoic acid, and a 3-(2-hydroxyphenoxy)benzoic acid derivative with a total of two molar equivalents of glucose linked to the carboxyl and phenolic -OH groups. The conjugation pathways were somewhat plant-specific. The glucosylxylose ester was found only in cotton, and the cellobiose and triglucose esters were found only in tomato. All of the conjugates except the glucose and glucosylxylose esters were plant metabolites that had not been identified previously. Furthermore, this is the first report to show the presence of cellobiose and triglucose conjugates in plants. However, neither of the acetyl derivatives of the [14C]-triglucoside was identical with the synthetic deca-acetyl derivative of [1→6]-triglucoside.  相似文献   

    19.
    Enzymatically isolated leaf cells from navy beans (Phaseolus vulgaris L., cv. “Tuscola”) were used to study the effect of buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) on photosynthesis, protein, ribonucleic acid (RNA), and lipid synthesis. The incorporation of NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetic acid as substrates for the respective metabolic process was measured. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was very sensitive to both buthidazole and tebuthiuron and was inhibited in 30 min by 0.1 μM concentrations. RNA and lipid syntheses were inhibited 50 and 87%, respectively, by buthidazole and 42 and 64%, respectively, by tebuthiuron after 120 min at 100 μM concentration. Protein synthesis was not affected by any herbicide at any concentration or any exposure time period. The inhibitory effects of buthidazole and tebuthiuron on RNA and lipid syntheses may be involved in the ultimate herbicidal action of these herbicidal chemicals.  相似文献   

    20.
    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号