首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用低频率运转循环水处理系统(含粗滤器、臭氧仪、气液混合器,蛋白分离器、暗沉淀池等)联用池内设施(微泡曝气增氧机与净水网)开展凡纳滨对虾室内集约化养殖实验。研究了养虾池以水处理系统调控水质效果及氮磷收支。结果表明,养虾水经系统处理后,NO2-N(53.4%~64.5%)、CODMn(53.4%~94.4%)与TAN(31.6%~40.4%)被显著去除,有效改进虾池水质;养殖周期内未换水与用药,虾池主要水化指标均控制在对虾生长安全范围,7号实验池(100 d)与8号对照池(80 d)主要水化指标变化范围:DO分别为 5.07~6.70 mg/L和4.38~6.94 mg/L,TAN 0.248~0.561 mg/L和0.301~0.794 mg/L,NO2-N 0.019~0.311 mg/L和0.012~0.210 mg/L,CODMn 10.88~21.22 mg/L和11.65~23.34 mg/L。7号池对虾生长指数优于8号池(80 d虾病暴发终止),单位水体产量分别为1.398 kg/m2与0.803 kg/m2。氮磷收支估算结果:7号与8号池饲料氮磷分别占总收入:氮93.70%与92.37%,磷98.77%与99.09%;初始水层与虾苗含氮共占总收入6.30%与7.63%,磷共占1.23%与0.91%。总水层(含排污水)氮磷分别占总输出:氮56.45%与59.86%,磷53.26%与55.79%;收获虾体氮磷分别占总输出:氮37.07%与31.94%,磷21.37%与13.11%。7号池饲料转化率较高;池水渗漏与吸附等共损失氮磷分别占总输出:氮7.00%与9.34%,磷25.37%与31.10%。实验结果表明,虾池以低频率运转循环水处理系统联用池内设施可有效控制水质与虾病,具较高饲料转化率。  相似文献   

2.
An experiment was conducted in six earthen ponds with 20 shrimp/m2 ( Litopenaeus stylirostris ) during the cold season in New Caledonia to determine the effect of water exchange rate on characteristics of effluents and pond sediment. The nitrogen budget was established, taking into account the different forms of nitrogen in the water, sediment, feed, and shrimp. Mean water exchange rates ranged from 10 to 23% per day. Increasing water exchange rate did not cause any significant change in the average quality of the rearing environment (water and sediment) during the whole growout period. However, the results showed that increasing exchange rates boosted primary productivity. Compounds produced by the mineralisation and metabolism of organic matter (feces, uneaten feed) were exported as particulate, rather than soluble matter. The nitrogen budget showed that the amount of exported wastes from the pond into the coastal environment was only 40–50% of nitrogen inputs due to nitrogen accumulation in the pond sediments and/or release to the atmosphere. The highest accumulation of dry material, as well as the highest Δ N (concentration of total N at the end of rearing - concentration of total N before rearing), was observed in ponds with the highest WER.  相似文献   

3.
Abstract. The application of different combinations and levels of pellet formulated feed and chicken manure to ponds stocked with Macrobrachium rosenbergii (de Man) did not result in any significant differences in water quality, sediment chemistry, or benthic macroinvertebrate populations. Water chemistry data indicated that all ponds were eutrophic. Chlorophyll was strongly correlated with total nitrogen, but not with total phosphorus, suggesting that nitrogen limited algal biomass. There was evidence that added organic matter was rapidly decomposed and mineralized. The sediments appeared to act alternately as sources and sinks of nutrients, although there was least variation in sediment nutrient levels in the treatment which received manure only. Applied pelleted feed was directly consumed by the prawns. In the absence of pelleted feeds, macrobenthos appeared to limit prawn growth after 1 month of culture. Simple nutrient mass-balance equations indicated that the losses of nitrogen, phosphorus and carbon from the treatments receiving feed were not dissimilar to previously reported values in finfish culture.  相似文献   

4.
为揭示河口区陆基养虾塘可溶性有机碳(DOC)、营养盐、叶绿素a时空动态变化及其生态化学计量特征,在福建省闽江河口鳝鱼滩选择3个陆基养虾塘作为研究对象,于2018年5-10月原位测定养虾塘水温、pH、盐度、溶解氧指标,并采集不同深度水样,实验室测定DOC、可溶性无机氮(DIN)、磷酸盐(PO43--P)、叶绿素a浓度,探讨其主要影响因素。结果表明,养虾塘水体中DOC、DIN、PO43--P和叶绿素a质量浓度分别介于5.73~16.79 mg·L-1、0.04~1.80 mg·L-1、0.03~0.16 mg·L-1和15.02~443.08μg·L-1,均存在明显的时空变化特征;养虾塘水体DOC、营养盐、叶绿素a浓度受到养殖水体水环境参数、人为活动、养殖生物的共同影响;养虾塘水体碳(C)、氮(N)、磷(P)营养元素组成与植物、土壤之间具有相似性,并且表现为碳盈余和氮限制。在养殖过程中,加强对养虾塘水体营养盐和叶绿素a的动态变化监测,通过人为方式调节养虾塘水体C、N、P比率,对于防止养虾塘水体富营养化,促进养虾塘生态系统绿色可持续生产具有重要作用。  相似文献   

5.
Mass balance estimates of carbon and nitrogen flux through two extensive shrimp ponds in the Mekong delta, Vietnam, were constructed to identify major sources and sinks of organic matter potentially available for shrimp production. Nutrient transformations in the sediments were measured to further assess rates of decomposition and burial and quality of organic matter. Tidal exchange was the major pathway for inputs and outputs of carbon and nitrogen in both ponds, with net primary production, nitrogen fixation and precipitation being minor inputs. No fertilizers or artificial feeds were added to either pond. The nutrient budgets identified burial and respiration as the next most important outputs after tidal exchange losses of particulate and dissolved carbon and nitrogen. There was no measurable denitrification in either pond, and volatilization was negligible. Mineralization efficiency of carbon in the water column was high (> 100%) in pond 23 reflecting rapid respiration rates; efficiency was lower (36%) in pond 12 waters. Mineralization efficiency of sediment nutrients averaged 34% for C and 41% for N in the pond with a higher annual shrimp yield (pond 12); lower mineralization efficiencies (11% for C, 10% for N) were calculated for the lower yield pond (pond 23). High burial efficiencies for both C (66–89%) and N (59–90%) in the sediments of both ponds suggest that little organic matter was shunted into biological production. Conversion efficiency for shrimp averaged 16% for C and 24% for N from pond 12, and 6% for C and 18% for N from pond 23. The high quantity but low quality of organic matter entering the ponds coupled with other factors, such as poor water quality, limits shrimp productivity. On average, nutrient outputs were greater than inputs in both ponds. This imbalance partly explains why shrimp yields are declining in these ponds.  相似文献   

6.
A phosphorus budget for a single crop was prepared for a 685‐ha semi‐intensive shrimp farm that consistently has produced about 3000 tonnes/yr of black tiger prawn, Penaeus monodon. Phosphorus inputs were shrimp stock, 0.31 kg/ha; triple superphosphate, 1.38 kg/ha; incoming water, 25.8 kg/ha; and feed, 65.3 kg/ha. Phosphorus outputs were harvested shrimp, 5.43 kg/ha, and outflow for water exchange and draining, 42.7 kg/ha. The high clay‐content soil in pond bottoms adsorbed 45.2 kg/ha of phosphorus. Water was taken from and released back into the same estuary and bay. The phosphorus contribution of shrimp farming to the receiving water body was the difference between the amount of phosphorus in effluent and that in the incoming water, which was 16.9 kg/ha. Bottom soil accumulated 67.8% of phosphorus added to the ponds. Another estimate of soil phosphorus uptake based on the relationship between cumulative phosphorus applied to ponds as fertilizer and feed and soil phosphorus concentration suggested that 63.2% of fertilizer and feed phosphorus had accumulated in pond bottoms. The farm effluent phosphorus load was 23.5 tonnes/yr. The estuary and bay system has an estimated volume of 4.8 × 109 m3, and the annual phosphorus input from the farm had a concentration equivalent of 0.005 mg/L, and there were no other major inputs of phosphorus. The estuary and bay are flushed by freshwater inflow and tidal action, and the farm input is not likely to cause eutrophication.  相似文献   

7.
Monthly budgets for nitrogen and phosphorus for a marine fish pond in Eilat were determined for the period September 1983 to June 1984. The ponds are operated as a semi-open system, 41% of the pond water being replaced each day by water from a nearby seawater well. Only 29% of the phosphorus and 36% of the nitrogen are incorporated into harvestable fish flesh (Sparus aurata or Mugil sp.). The remainder reaches the pond as uneaten food, fish faeces or excreted matter, and it is then available to support high levels of phytoplankton and heterotrophic activity. The total input of nutrients supplied to the ponds showed a seasonal trend, with the lowest amount being supplied at the beginning of the sampling period (October) (5.2 moles N/day, 0.25 moles P/day), and increasing in June to 10.6 moles N/day, 0.57 moles P/day. All the increase was due to the amount of food fed. A large proportion (70–80%) of the excess nutrients was exported from the system as dissolved or particulate matter in the overflow. Because of this the water quality of the ponds has remained at levels which have enabled 6.5–12 tons fish/ha to be cultured without regular drying of the ponds. Oysters have been grown on the plankton carried out with the overflow. The ponds have a surplus of nutrient inflow in October/November (1.9 moles N/day, 0.06 moles P/day), a small deficit of N (0.4 moles/day), and surplus of P (0.01 moles/day) in spring, and a large surplus again in May and June of 1.3 moles N/day, 0.11 moles P/day. In all, 60–120% of the nutrient inputs are directly accounted for.  相似文献   

8.
A participatory on-farm study analysed water and nutrient budgets of six low and four high water-exchange ponds of integrated agriculture–aquaculture (IAA) farms in the Mekong delta. Water, nitrogen (N), organic carbon (OC) and phosphorus (P) flows through the ponds were monitored, and data on fish production and nutrient accumulation in sediments were collected during a fish culture cycle. Results showed that, on average, only 5–6% of total N, OC or P inputs introduced into ponds were recovered in the harvested fish. About 29% N, 81% OC and 51% P accumulated in the sediments. The remaining fractions were lost through pond water discharges into adjacent canals. Fish yields and nutrient accumulation rates in the sediments increased with increasing food inputs applied to the pond at the cost of increased nutrient discharges. High water-exchange ponds received two to three times more on-farm nutrients (N, OC and P) while requiring nine times more water and discharging 10–14 times more nutrients than the low water-exchange ponds. Water and nutrient flows between the pond and the other IAA-farm components need to be considered when optimizing productivity and profitability from IAA systems.  相似文献   

9.
An experiment was conducted in six earthen ponds with 20 shrimps m?2Litopenaeus stylirostris (Stimpson) during the warm season in New Caledonia to study the dynamics of wastes in relation with water exchange rate (WER). The nitrogen budget was established, taking into account the different forms of nitrogen in the water, sediment, feed and shrimp. Data from a wide range of treatments applied in unreplicated ponds were treated using regression analysis to establish the relationship between WER and partial nitrogen budget, sediment characteristics and shrimp performance. To compare effluent quality between treatments during the season, data were analysed using the non‐parametric sign test. The water outflow was characterized by a decrease in the concentrations of N‐mineral forms (TAN, NO2?–NO3?), an increase in the concentration of organic soluble and sestonic organic forms (expressed in terms of particulate nitrogen, particulate organic carbon, chlorophyll a) compared with the water inflow. Increasing WER increased the amount of exported wastes and mainly in the organic forms and TAN can be considered as negligible. The nitrogen budget showed that 19–46% of nitrogen input (feed+water) was exported into the coastal environment. The results showed that the quality of the sediment decreased as WER decreased. The potential negative impact of the developing industry in New Caledonia on the costal environment could be partially reduced in a first step by decreasing WER. However, if applied in the farms, this practice should be linked to a close survey of the evolution of sediment quality.  相似文献   

10.
The effects of introducing common carp (CC) and of adding artificial feed to fertilized rohu ponds on water quality and nutrient accumulation efficiency were studied. All ponds were stocked with 15 000 rohu ha?1. Treatments included ponds with rohu alone, rohu plus 5000 common carp ha?1 and rohu plus 10 000 CC ha?1. A comparison was also made between supplementally fed and non‐fed ponds. The overall highest nitrogen (N) and phosphorus (P) concentrations were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 and 0 CC ha?1. The largest fractions of N and P inputs accumulating in fish, phytoplankton and zooplankton were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 CC ha?1 and subsequently ponds without CC. Relatively more nutrients accumulated in benthic organisms in ponds without than in ponds with CC. A smaller fraction of the nutrient input was retained in fish, plankton and benthic organisms in ponds without CC compared with ponds with CC. Compared with 5000 CC ha?1, stocking 10 000 CC ha?1 can be considered as overstocking, because this leads to lower fish production and relatively less nutrients retained in plankton and benthic organisms.  相似文献   

11.
Water exchange is routinely used in shrimp culture. However, there are few, if any, systematic investigations upon which to base exchange rates. Furthermore, environmental impacts of pond effluent threaten to hinder further development of shrimp farming in the U.S. The present study was designed to determine effects of normal (25.0%/d), reduced (2.5%/d) and no (0%/d) water exchange on water quality and production in intensive shrimp ponds stocked with Penaeus setiferus at 44 postlarvae/m2. Additional no-exchange ponds were stocked with 22 and 66 postlarvae/m2 to explore density effects. Water exchange rates and stocking density influenced most water quality parameters measured, including dissolved oxygen, pH, ammonia, nitrite, nitrate, Kjeldahl nitrogen, soluble orthophosphate, biochemical oxygen demand, phytoplankton and salinity. Reduced-exchange and no-exchange treatments resulted in reduced potential for environmental impact. Mass balance of nitrogen for the system indicates that 13–46% of nitrogen input via feed is lost through nitrification and atmospheric diffusion. Growth and survival were excellent in ponds with normal exchange, reduced exchange, and a combination of low density with no water exchange. A combination of higher stocking density and no water exchange resulted in mass mortalities. Mortalities could not be attributed to a toxic effect of any one water quality parameter. Production was 6,400 kg/ha/crop with moderate stocking density (44/m2) and reduced (2.5%/d) water exchange and 3,200 kg/ha/crop with lower stocking density (22/m2) and no water exchange. Results indicate that typical water exchange rates used in intensive shrimp farms may be drastically reduced resulting in a cost savings to farms and reduced potential for environmental impact from effluent.  相似文献   

12.
凡纳滨对虾高位池养殖氮、磷收支研究及养殖效果分析   总被引:5,自引:1,他引:5  
对凡纳滨对虾(Litopenaeus vannamei)高位池养殖氮(N)和磷(P)收支情况进行系统研究,比较分析不同放养季节、虾苗品系以及是否进行分段养殖引起养殖效果的差异。结果显示,饲料是最主要的N和P输入源,分别占池塘N和P总输入的91.76%~93.68%和94.55%~96.97%。收获对虾输出N和P分别占总输入的29.46%~40.46%和12.64%~17.41%,随养殖废水排出的N和P分别占24.63%~54.52%和23.03%~59.02%,沉积在池塘底部的N和P分别占14.10%~44.59%和27.59%~62.25%。放养季节和虾苗品系对养殖效果有显著影响。夏季组(ZS)对虾平均生长速度达到0.175g.d-1,分别比秋季组(ZF)和冬季普通组(ZW)高73.0%和139.3%。ZW成活率77.70%~87.75%,显著高于ZS和ZF。与相同养殖季节放养一代苗的ZW相比,放养本地苗的冬季组(BW)养殖成活率62.10%~72.30%,单位面积产量8821~9878kg.hm-2,均显著较低。采用分段养殖的冬季标粗组(ZWb)养成池塘单造使用周期缩短56.13%。  相似文献   

13.
Two commercial shrimp farms in south Texas were evaluated for influent and effluent water quality from June to October 1994. The intensive farm, Taiwan Shrimp Village Association (TSV) had an average annual yield of 4630 kg ha?1 while the semi‐intensive farm, Harlingen Shrimp Farm (HSF), had a yield of 1777 kg ha?1. The study had three objectives: (1) to compare influent and effluent water from the intensive and semi‐intensive shrimp farms, (2) to show which effluent water‐quality indicators exceeded allowable limits, (3) to indicate inherent problems in farms operated with water exchange and summarize how findings from this study led to changes in farms' management that limited potential negative impact on receiving streams. Water samples were collected and analysed twice a week for the TSV farm and once a week for the HSF farm. Samples were analysed for dissolved oxygen (DO), salinity, pH, ammonia‐nitrogen (NH3‐N), nitrite‐nitrogen (NO2‐N), nitrate‐nitrogen (NO3‐N), total phosphorus (TP), total reactive phosphorus (TRP), five‐day carbonaceous biochemical oxygen demand (cBOD5), total suspended solids (TSS) and settleable solids (SettSols). Most of the effluent constituents showed fluctuations throughout the sampling period often related to harvest activity. Effluent pH at TSV was lower than influent values but within the regulatory requirements set by Texas Commission of Environmental Quality (TCEQ), formerly known as Texas Natural Resource Conservation Commission (TNRCC). HSF effluent pH values were higher than its influent, but still within TCEQ limits. Effluent DO mean levels were generally below the regulatory daily mean requirement, with values at TSV often below those for influent. Effluent nutrient concentrations and net loads were generally higher at the intensive shrimp farm, with NH3‐N mean concentrations above the daily mean set by the TCEQ on several occasions. Effluent TSS concentrations were higher than influent for both farms, with daily mean values above the TCEQ limit. The two farms presented similar TSS concentrations despite their different stocking densities. However, TSS total net load and net load per hectare were higher at the intensive farm. The semi‐intensive farm presented higher cBOD5 concentrations and net loads despite its lower stocking density, with daily mean values above the TCEQ limit. The cBOD5 net load at TSV presented negative values indicating higher load at the influent than at the effluent. Analyses showed no evidence of self‐pollution between influent and effluent at the two farms. The high feed conversion ratio (FCR) values (2.3 and 2.7 for the intensive and the semi‐intensive farm respectively) suggest that better feed management is needed to reduce nutrient and solid net loads release from the two farms. The data obtained from this study resulted in several modifications in design and management of the two farms that reduced the potential negative impact on receiving streams. A brief summary of the improvement in selected effluent water‐quality indicators at the intensive shrimp farm is provided.  相似文献   

14.
A participatory on-farm study was conducted to explore the effects of food input patterns on water quality and sediment nutrient accumulation in ponds, and to identify different types of integrated pond systems. Ten integrated agriculture-aquaculture (IAA) farms, in which ponds associate with fruit orchards, livestock and rice fields were monitored in the Mekong delta of Vietnam. Pond mass balances for nitrogen (N), organic carbon (OC) and phosphorus (P) were determined, and pond water quality and sediment nutrient accumulation were monitored. Data were analyzed using multivariate canonical correlation analysis, cluster analysis and discriminant analysis. The main variability in pond water quality and sediment nutrients was related with food inputs and water exchange rates. Water exchange rate, agro-ecological factors, pond physical properties and human waste input were major variables used to classify ponds. Classification was into: (1) low water exchange rate ponds in the fruit-dominated area, (2) low water exchange rate ponds in the rice-dominated area receiving homemade feed, and (3) high water exchange rate ponds in the rice-dominated areas receiving wastes. Pond water exchange rate was human-controlled and a function of food input patterns, which were determined by livelihood strategies of IAA-households. In the rice-dominated area with deep ponds, higher livestock and human wastes were found together with high water exchange rates. In these ponds, large organic matter loads reduced dissolved oxygen and increased total phosphorus concentrations in the water and increased nutrient (N, OC and P) accumulation in the sediments. In the rice-dominated area with wide ponds, higher homemade feed amounts were added to the ponds with low water exchange rate. This resulted in high phytoplankton biomass and high primary productivity. The contrary occurred in the fruit-dominated area, where fish were grown in shallow and narrow ponds, receiving more plant residue which resulted in lower phytoplankton biomass and lower sediment nutrient accumulation.  相似文献   

15.
Aquaculture production is predicted to increase sharply. In this regard, live feed plays a crucial role in the larval phase of many aquaculture organisms. Hence, a persistent concern in aquaculture is to find low‐cost and eco‐friendly feed sources to culture live feed organisms. Branchinecta orientalis (G. O. Sars 1901), a fresh/brackish water fairy shrimp, was reared using effluent from rainbow trout Oncorhynchus mykiss (Walbaum 1792) ponds, either fresh but supplemented with two species of microalgae, Scenedesmus sp. and Haematococcus sp., or non‐supplemented but after “ageing” of the culture medium. The feeding experiment was designed at a density of 100 individuals L?1 in 2‐L vessels. The results indicated that differences between final length, survival and most reproductive parameters of the treatment with aged medium and the treatment using fresh medium supplemented with Scenedesmus sp. were non‐significant (p > .05). Better results were obtained for a number of reproductive parameters in the treatment supplemented with Haematococcus sp. Thus, for intensive resting egg production of B. orientalis, microalgae can be replaced by aged non‐supplemented effluent from trout ponds as a nutrient‐rich feed source. This consequently can reduce drainage of nutrients into the environment and thus decrease aquatic pollution.  相似文献   

16.
虾塘养殖水环境中氮磷营养盐的存在特征与行为   总被引:23,自引:0,他引:23  
孙耀 《水产学报》1998,22(2):117-123
根据现场调查结果,讨论了虾塘养殖水环境中氮磷营养盐的存在特征与行为,在该水环境中,IP的季节变化相对平稳,而IN则在养殖中后期变化幅度较大,IN和IP的垂直分布均匀;IN的形态分布有显著的季节变化,且与开阔浅海不同,NO2N也成为IN的主要存在形态,IN与IP比值始终较低,且IN在虾养殖期间的大部分时间内都处于贫瘠水平,从而构成该养殖水环境中初级生产的限制因素,而相对较高密度的浮游植物,则是缩短该  相似文献   

17.
Increasing feeding rates may provide an increase in production, thus nutrients such as nitrogen, phosphorus and organic matter will also increase. These nutrients promote a greater oxygen demand and concentrations of toxic metabolites which can lead to frequent problems with low dissolved oxygen and an abundance of blue‐green algae. Four feed management practices were evaluated among sixteen 0.1 ha ponds culturing Pacific white shrimp (Litopenaeus vannamei). Feeding treatments included hand feeding using the Standard Feeding Protocol (SFP), SFP plus 15% from 8 to 16 weeks, an automatic‐solar timer which fed SFP+15%, and an AQ1 acoustic demand feeder allowing up to 12 kg/day·pond based on shrimps feeding response. Samples were analysed at weeks 0, 4 and 8–16 for the following parameters: chlorophyll a, total ammonia nitrogen, nitrite–nitrogen, nitrate–nitrogen, total nitrogen, total phosphorus, soluble reactive phosphorus, total suspended solids, total suspended volatile solids, turbidity, conductivity, salinity and biological oxygen demand. Samples were collected and shipped overnight to Auburn, Alabama for off‐site analysis. On‐site water quality was also obtained at the farm. The AQ1 acoustic demand feeder produced the most shrimp with a yield of 4,568 kg/ha; however, the AQ1 also had the highest total ammonia nitrogen and nitrite–nitrogen levels late in the growing season. The AQ1 feeder may be a viable, reduced labour and cost alternative for the shrimp commercial industry; however, such technologies must also be matched to the ability of the production system to process nutrients.  相似文献   

18.
In Brazil, studies and production of penaeid shrimp in a biofloc technology (BFT) system are recent, but the results point to a promising future. Research with feed restriction inducing compensatory growth in shrimps has been shown to be a technique that allows a saving of around 25% in the use of feed for shrimp production. It also allows the reduction of costs with salaries and adapts shrimp farming to the world demand for environmentally friendly production, with the reduction of nitrogen and phosphorus levels in its effluents, as well as lower water use in shrimp farming. In crustaceans, it has been shown that after a period of feed restriction, the animals show a pronounced compensatory growth when they return to a sufficient food source. Studies with the penaeid shrimp Litopenaeus vannamei reported the ability of the species to obtain a complete compensatory growth after short feeding periods (1 to 3 days) followed by feeding; These short periods of fasting presented a greater efficiency in the feed conversion besides the decrease in the concentration of phosphorus present in the aquatic environment, coming from the excreta. The adoption of a restriction program in the feeding using BFT may contribute to a reduction in operating costs, reduction of metabolic nutrients dissolved in water, and, consequently, an increase in the number of cycles in which the same water can be reused for production reducing production costs and improving productivity indices in shrimp farming.  相似文献   

19.
Bio-filters: The need for an new comprehensive approach   总被引:8,自引:0,他引:8  
The aquaculture industry struggles to profit in light of low product prices, increasing costs of inputs and constrains due to environmental, water and land limitations.

Intensive aquaculture systems are relevant to efficiently produce fish and shrimp. The two important limiting factors of intensive aquaculture systems are water quality and economy. An intrinsic problem of these systems is the rapid accumulation of feed residues, organic matter and toxic inorganic nitrogen species. This cannot be avoided, since fish assimilate only 20–30% of feed nutrients. The rest is excreted and typically accumulates in the water. Often, the culture water is recycled through a series of special devices (mostly biofilters of different types), investing energy and maintenance to degrade the residues. The result is that adding to the expenses of purchasing feed, significant additional expenses are devoted to degrade and remove 2/3 of it.

There is a vital need to change this vicious cycle. One example of an alternative approach is active suspension ponds (ASP), where the water treatment is based upon developing and controlling heterotrophic bacteria within the culture component. Feed nutrients are recycled, doubling the utilization of protein and raising feed utilization. Other alternatives, mostly based upon the operation of a water treatment/feed recycling component within the culture unit are discussed.

The present paper was presented in the biofilter workshop held in Honolulu, 8–11 November 2004. The main purpose of this paper was to raise new ideas and new options toward the planning and operation of intensive fish/shrimp ponds.  相似文献   


20.
Recovering nutrients in a fish effluent to be used as a supplemental feed for shrimp culture could ease constraints (e.g., environmental issues and high production cost) that have limited the US shrimp farming industry in the past. In this study under laboratory scale conditions, fish effluent was collected from a commercial tilapia farm and nutrients from the waste stream were offered as supplemental feed as either (1) untreated solids from tilapia effluent or (2) microbial flocs generated from the biological treatment of the effluent by reducing soluble chemical oxygen demand >80%. The first feeding trial demonstrated that microbial flocs contributed significantly (P < 0.05) to overall growth while untreated solids did not. Moreover, microbial flocs were larger and contained higher levels (P < 0.05) of protein. The second feeding trial investigated different feeding rates of commercial diets with and without microbial floc supplementation. Weekly measurements of mass and specific growth rates demonstrated that microbial flocs significantly (P < 0.05) contributed to shrimp performance. Weekly food conversion ratios were also reported. Water quality in shrimp systems during both studies was within safe levels, and no differences (P > 0.05) between treatments were observed for dissolved oxygen, nitrate‐nitrogen, nitrite‐nitrogen, pH, salinity, total ammonia nitrogen, and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号