共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparative efficacy of organic sources on cropping behavior, nutrient dynamics, physico-chemical and biological properties of soil and fruit quality under rain-fed agroecosystem on “Silver King” nectarines was investigated. Bio-organic nutrients, namely vermi-compost (VC), biofertilizer (BF), farmyard manure (FYM), compost (comp), vermiwash (VW) and cow urine (CU) were evaluated in 11 different treatment combinations. The treatment application of VC at 25 kg tree?1, BF at 40 g tree?1, FYM at 30 kg tree?1, comp at 15 kg tree?1, VW1:10 and CU1:10 significantly improved plant growth and fruit quality characteristics of nectarine trees. This superior combination also enhanced physico-chemical and biological properties of the rhizosphere soil when compared to control as conventional chemical fertilizer application nitrogen, phosphorus and potassium (NPK) fertilizers. Different treatments of bio-organic sources changed pH of the soil to neutral. Available macronutrient contents of soil (viz. N, P, and K) increased by 57.8%, 27.7%, and 16.4%, respectively. Microbial biomass of soil fungi, total bacteria, actinobacteria, and arbuscular mycorrhizal fungi improved 66.0%, 73.8%, 133.3% and 350.0%, respectively, over control. Considerably, a higher amount of leaf macronutrients, N (3.53%), P (0.23%), and K (3.2%), was also recorded over control. 相似文献
2.
Khosro Mohammadi Yousef Sohrabi Ali Mokhtassi-Bidgoli Mohammad Tahsin Karimi Nezhad 《Archives of Agronomy and Soil Science》2013,59(6):793-798
This experiment was conducted in split plots based on randomized complete block design with three replications. Three crop sequences: (R1): chickpea, sunflower, wheat, and canola; (R2): green manure, chickpea, green manure, wheat, green manure, and canola; (R3): canola, wheat, and canola were used as main plots. Sub plots consisted of six methods of fertilization: (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers; and (N6): control. Results showed that the enzyme activities were higher in the N4 treatment. The highest amount of acid phosphatase, protease, dehydrogenase activity, and grain yield was observed in R2 sequence. The highest urease activity (58.6 µg g?1 h?1) was obtained in R2N4 treatment. In R2N4 treatment using in-farm inputs, a non chemical fertilizer system can be carried out to improve soil biological activity. 相似文献
3.
Organic amendments considerably affect nutrient balance and interfraction mobility of nutrients by influencing the chemical, physical, and biological environment in soils. In this study, the effects of five amendments including: two composts, farmyard manure, packaging‐industry by‐product, and olive‐mill waste on time‐dependent interfraction mobility of P among mineral P fractions in two semiarid‐region soils differing in carbonate content and texture were investigated. Organic materials were applied at the rate of 0, 25, 50, and 100 g (kg soil)–1 soil thoroughly mixed and incubated at 27°C ± 2°C for 110 d. Phosphorus fractions were sequentially extracted by 0.1 M NaOH + 1 M NaCl (NaOH‐P), citrate‐bicarbonate‐dithionite (CBD‐P), and 0.5 M HCl (Ca‐P). Results showed that organic amendments especially farmyard manure significantly influenced NaOH‐P, CBD‐P, and Ca‐P. In addition, higher application rates of organic residues increased NaOH‐P fraction. NaOH‐P and CBD‐P fractions were increased after addition of organic residues and then converted to Ca‐P fraction within the end of incubation period. Increasing application rate of organic residues allowed P to be retained in more labile fractions for a longer period. The amount of Ca‐P was found to be related with carbonate content of soils. It can be concluded that organic residues applied to calcareous soils may enhance P nutrition of agricultural plants. 相似文献
4.
S. Ghosh P. Lockwood H. Daniel N. Hulugalle K. King P. Kristiansen 《Soil Use and Management》2011,27(2):195-204
There is considerable global interest in using recycled organic materials because of perceived benefits to soil health and environment. However, information on the effects of organic waste products and their optimal application rates on the quality of heavy clay soils such as Vertisols is sparse. An incubation experiment was therefore conducted using five organic amendments at various rates to identify their optimal application rates, which could improve the quality of the Vertisol. Cotton gin trash, cattle manure, biosolids (dry weight basis 7.5–120 t/ha), chicken manure (dry weight basis 2.25–36 t/ha) and a liquefied vermicast (60–960 L/ha, volumetric basis) changed the soil chemical, physical and microbiological properties compared with a control where no amendments were applied, viz. higher light fraction of organic matter, nutrient content (N and P) and soil microbial activity. Higher application of chicken manure resulted in an increase in dry‐sieved mean weight diameter. Increasing rates of cattle manure increased exchangeable Na concentration and ESP. Although vermicast itself did not contribute a significant amount of N into the soil, when applied at higher rates (60–960 L/ha), its application resulted in increased concentration of NO3‐N in soil by amounts ranging from 43 to 429%. Optimal application rates for cattle manure and cotton gin trash were 30 t/ha, whereas for biosolids and chicken manure, the optimum rate was 60–18 t/ha, respectively. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(21):2653-2663
ABSTRACTThe Diagnosis and Recommendation Integrated System (DRIS) was used as a tool to assess the limiting nutrients for wheat growth. To this effect, two separate greenhouse experiments were conducted to assess the limiting nutrients for wheat growth using soil samples collected from Wolmera district, Ethiopia. The experiments consisted of eight fertilizer treatments, optimum (Opt.), optimum-N (Opt-N), optimum-P (Opt-P), optimum-K (Opt-K), optimum-S (Opt-S), optimum-B (Opt-B), optimum-Zn (Opt-Zn) and control on Nitisols and six fertilizer treatments (Opt, Opt-N, Opt-P, Opt-S, Opt-B, and control) on Vertisols. In Nitisols, dry shoot weight yields were reduced by 93%, 70%, and 50% in the control, Opt-N, and Opt-P treatments, respectively. Whereas the corresponding reductions were 85%, 78%, and 42%, respectively, in Vertisols as compared to the optimum treatment. DRIS results indicated that N is the most limiting nutrient, followed by S, B, and P, while Zn was the least limiting nutrient for wheat production in the two study soils. 相似文献
6.
Khosro Mohammadi Gholamreza Heidari Mohsen Javaheri Mohammad Tahsin Karimi Nezhad 《Archives of Agronomy and Soil Science》2013,59(7):899-910
Tillage systems and fertilization have important effects on soil microorganism activity. Information regarding the simultaneous evaluation of long-term tillage and fertilization on soil microbial traits in sunflower fields is not available. Therefore, this study was conducted to determine the best tillage and fertilization system for soil microbial parameters. The experimental design was a split plot based on a randomized complete block design with three replications. Main plots consisted of the long-term tillage systems (1999–2011) including: no tillage (NT), minimum tillage (MT) and conventional tillage (CT). Six methods of fertilization, including farmyard manure (N1), compost (N2), chemical fertilizers (N3), farmyard manure + compost (N4); farmyard manure + compost + chemical fertilizers (N5), and control (N6) were arranged in subplots. Results showed that the highest amount of microbial biomass was observed in treatment NTN4. The highest and lowest values of enzyme activities (acid, alkaline phosphatase, urease, dehydrogenase and protease) were found in organic fertilizers + NT and chemical fertilizers + CT plots, respectively. Highest basal and induced respiration values were found for NTN4 treatment. Correlation coefficients between enzyme activity, respiration and microbial biomass carbon were significant. 相似文献
7.
Siddhartha Sankar Biswas Avijit Ghosh Sunil Kumar Singhal Trisha Roy Abhijit Sarkar 《Communications in Soil Science and Plant Analysis》2019,50(9):1178-1191
Although nitrogen (N) has the highest requirement for plant growth, N use efficiency (NUE) seldom exceeds 40%. NUE may be improved by integrated application of fertilizer N and enriched organic amendments. The present experiment aimed to test the extent of increase in NUE by integrated application of fertilizer N farmyard manure (FYM) and rock phosphate enriched compost (RPEC). Mineralization kinetics and N release from FYM and RPEC were studied by an incubation experiment. Results revealed that maximum potentially mineralizable N as well as N release (283.9, 186.7 mg kg?1 soil, respectively) were from RPEC + fertilizer N treated soils, followed by FYM + fertilizer N. Maximum yield, N uptake, and N recovery were obtained from RPEC + fertilizer N treated soils followed by FYM + fertilizer N. Soils treated with RPEC had shown significantly higher dehydrogenase activity than FYM treated soils. Thus, RPEC might increase yield as well as NUE over FYM. N uptake by plant at maximum tillering stage and flowering stage of wheat correlated positively (R2 > 0.85) with the decay rate (k and kN0) parameter of incubation experiment suggesting their relevance as indicators of plant available N. 相似文献
8.
《Communications in Soil Science and Plant Analysis》2012,43(11):1315-1326
Transformations of nitrogen (N) from poultry litter (PL), dairy manure compost (DMC), anaerobically digested fiber (ADF), Perfect Blend 7–2–2 (PB), a compost/litter mixture (C/L), dried distillers grains from ethanol production (DG), and mustard meal from biodiesel production (MM) applied to a Quincy fine sand were investigated in an incubation experiment over 210 days. The cumulative release totals of available N after 210 days were 61, 61, 56, 44, 29, 2, and –2% for the total N in MM, PB, DG, PL, C/L, DMC, and ADF, respectively. With application of MM and DG, ammonium (NH4-N) accumulated initially in the soil with very little nitrification, possibly because of inhibition of nitrification related to chemical compounds in the amendments. Mineralization of organic N to NH4-N and nitrate (NO3-N) was relatively slow from MM- and DG-amended soils, indicating the potential for using biofuel by-products as slow-release N sources for plants. 相似文献
9.
10.
为评价沼液作为堆肥含氮添加剂的应用效果,开发沼液的处理应用技术,以牛粪树叶堆肥为对照,将沼液和树叶混合堆制发酵,探讨其发酵特性与腐熟进程。研究结果表明,环境温度一直在10℃以下,沼液堆肥化和牛粪堆肥化均能经历35d以上的堆温超过50℃的高温发酵;而沼液堆肥化超过50℃的高温期持续时间比牛粪堆肥化少8d;经60d的发酵沼液堆肥化的半纤维素含量从发酵初期的12.14%下降到6.53%,纤维素含量由20.5%下降到9.8%;而牛粪堆肥化的半纤维素含量从12.8%下降到9.56%,纤维素含量由21.5%下降到15.9%。可见沼液堆肥化的分解更彻底。从C/N、温度、可溶性糖含量、含水量、种子发芽指数综合评价两种堆肥的腐熟度,沼液堆肥化进入腐熟状态约经30d,而牛粪堆肥化进入腐熟约需45d。 相似文献
11.
Present investigation evaluates the effect of organic fertilization (OF), integrated nutrient management (INM) practice, and recommended dose of chemical fertilization (CF) on changes in soil organic phosphorus (P) and its fractions under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. The 4-year experiment (2009–2013), under split-plot design, showed that OF did not increase the total P or total organic P content of soil under either of the test crops. However, OF maintained the higher level of labile organic P and moderately labile organic P in soil under wheat the moderately stable organic P and highly stable organic P was highest in paddy soil under CF practices (11.34 and 7.77 μg g?1, respectively) followed by wheat. The P concentration in organically grown rice or wheat grain was increased significantly compared with their CF counterparts. The productivity economics for rice and wheat crops showed INM fertilization to be more economical than OF. 相似文献
12.
This experiment tested whether it was possible to incorporate broiler litter (BL) or cattle farmyard manure (FYM) into a 7‐yr arable rotation on a sandy soil without causing an increase in nitrate‐nitrogen (NO3‐N) leaching. Four manure treatments (with adjusted fertilizer inputs), varying in frequency and timing of application, were imposed on the rotation and compared with a control that received inorganic fertilizer according to recommended rates. Over seven winters, the annual average NO3‐N leached from the inorganic fertilizer treatment (control) was 39 kg/ha in 183 mm drainage. Total manure N loadings over the period of the experiment ranged between 557 and 1719 kg/ha (80–246 kg/ha/yr) for the four treatments. Three of the four manure treatments significantly increased NO3‐N leaching over the rotation (P < 0.001). Annual applications of FYM (1719 kg/ha manure N or 246 kg/ha/yr) increased NO3‐N leaching by 39%. We hypothesize that this was due to increased mineralization of the organic N accumulating from repeated FYM applications. BL applied each year (1526 kg/ha manure N or 218 kg N/ha/yr) increased NO3‐N leaching by 52% above the control; BL applied 5 of 7 yr (972 kg/ha manure N or 139 kg N/ha/yr on average) and including inadvisable autumn applications increased leaching by 50%. BL applied in late winter or early spring every 2–3 yr (557 kg/ha manure N or 80 kg N/ha/yr on average) resulted in NO3‐N leaching similar to the control. This suggests that to avoid additional NO3‐N leaching from manure use in an arable rotation, manure should not be applied every year and autumn applications should be avoided; there are real challenges where manure is used on an annual basis. 相似文献
13.
This study investigates the effect of conjoint use of bio-organics (biofertilizers + crop residues + FYM) and chemical fertilizers on yield, physical–chemical and microbial properties of soil in a ‘French bean–cauliflower’-based cropping system of mid hills of the north-western Himalayan Region (NWHR) of India. Conjoint bio-organics at varied levels of NPK chemical fertilizers increased yield of ‘cauliflower’ over corresponding single application. Incorporation of crop residues with 75% of the recommended NPK application resulted in the highest yield (19 t ha?1). Conjoint use of bio-organics produced a yield (15.65 t ha?1), which was statistically on a par with 75% of the recommended NPK application alone. This indicated a saving of 75% NPK chemical fertilizers. In the case of ‘French bean’, the effect was non-significant. The results also showed significant higher soil available N (351.3 kg ha?1) under 75% NPK + biofertilizers, whereas the highest soil available K (268.3 kg ha?1) was recorded under 75% NPK + crop residues. Lowest bulk density (1.03 Mg m?3), highest water holding capacity (36.5%), soil organic matter (10.6 g kg?1), bacterial (4.13 × 107 cfu g?1) and fungal (6.3 × 107 cfu g?1) counts were recorded under sole application of bio-organics. According to our study, we concluded that the combination of NPK fertilizers and bio-organics increased yield except French bean, soil available N, K and saved chemical fertilizers under ‘French bean–cauliflower’-based cropping system. 相似文献
14.
Hisatomi Harada Koichi Amaha Yoshiyuki Abe Youichiro Kojima Yoshihito Sunaga Tahei Kawachi 《Soil Science and Plant Nutrition》2013,59(6):782-789
AbstractRadioactive cesium (Cs) deposited after the Fukushima Daiichi Nuclear Power Station accident contaminated farmyard manure (FYM) in the wide area surrounding the plant. We conducted a field trial to determine the transfer factor of radioactive Cs to forage corn (Zea mays L.) from soil to which the contaminated FYM had been applied. The main purpose of this experiment was to examine the behavior of the radioactive Cs from contaminated FYM that was incorporated in agricultural fields. Application of FYM containing 3900 Bq kg?1 dry matter (DM) of cesium-137 (137Cs) at a rate of 4.3 kg m?2 increased the 137Cs concentration in the soil by 64 Bq kg?1 dry soil, and in the forage corn by 9.2 Bq kg?1 DM. Therefore, we calculated the transfer factor to corn plants from the soil after application of contaminated FYM to be 0.14. This value is lower than that observed for soil to which uncontaminated FYM had been applied as a control, and it is within the range of reported soil-to-plant transfer factors of 0.003–0.49 listed in the recent parameter handbook by International Atomic Energy Agency. The increase in the radioactive Cs concentration in the corn plants, expressed as the sum of 137Cs and cesium-134 (134Cs), was only 3% of the 2012 provisional tolerance level for cattle roughage in Japan. Even though the application of contaminated FYM did not cause a large change in the radioactive Cs concentration in the corn plants in this trial, such application should be carefully controlled because it increased radioactive Cs concentrations in both soil and forage corn. 相似文献
15.
Sajid Masood Tayyaba Naz M. Tariq Javed Ijaz Ahmed Habib Ullah Muhammad Iqbal 《Archives of Agronomy and Soil Science》2013,59(3):337-347
Farmyard manure (FYM) improves various soil parameters and to a large extent, the availability of water and nutrient to crops when it is applied to the soil. This study aims to further investigate the short-term effects of different levels of FYM on maize plants and soil parameters. Maize plants grown in pot culture were treated with no FYM (control), recommended NPK (inorganic fertilizers), and FYM at 2, 4, 6, 8, and 10 t ha?1 along with recommended NPK, and the cultures were analyzed 8 weeks after germination. Soil bulk density and soil pH decreased with the increasing levels of FYM, whereas soil porosity, soil organic matter (SOM), soil water content, plant height, root and shoot yield, and NPK uptake of maize were increased compared with the control or recommended NPK, respectively. The present results indicate that short-term application of higher FYM levels improves soil properties. Furthermore, the application of FYM at only higher rates significantly increases the nutrient uptake of maize plants due to improved soil properties. The supply of different amounts of nutrients increases biomass and nutrient uptake in plants. 相似文献
16.
Asiatic cotton (Gossypium arboreum) is mostly grown in the rainfed regions of India. However, little is known about the effects of nutrient‐management practices on plant growth and fruiting pattern of Asiatic cotton. Therefore, plant growth and fruiting pattern under four nutrient‐management treatments, N, NPK, FYM (10 Mg ha–1), and INM (integrated nutrient management: a combination of NPK and FYM) were quantified during 2000–01 to 2002–03 (years 16 to 18 of a long‐term field experiment). Plants of the INM and FYM treatments were taller (68.4–149.5 cm) and had more main stem nodes per plant (30.5–44.5) as compared to N and NPK treatments. In treatment N, the shortest plants (50.9–83.6 cm) and the least number of fruiting structures were produced. Plants of the INM and FYM treatments accumulated more squares and bolls. Maximum boll production was 10–19 days earlier with the manure‐amended than the N and NPK treatments. Treatment N had the lowest seed cotton yield (639–790 kg ha–1), because of small boll size (1.48–1.73 g) and few open bolls. Seed cotton yield followed the trend: NPK (815–1278 kg ha–1) < INM (776–1551 kg ha–1) < FYM (902–1593 kg ha–1). Water stress and nutrient deficiencies (P and Zn in the N and Zn in the NPK treatments) as a consequence of nutrient depletion over the years may have decreased seed cotton yields in treatments that received mineral fertilizer alone in comparison with manure‐amended treatments. On a long‐term basis, FYM application should therefore form an integral part of nutrient recommendation. 相似文献
17.
A. Sathish B. K. Ramachandrappa M. A. Shankar P. N. Srikanth Babu CH. Srinivasarao K. L. Sharma 《Soil Use and Management》2016,32(3):311-321
In a 20‐yr‐old long‐term experiment, the impact of continuous application of organic manures and inorganic fertilizers on soil quality and the sustainability of finger millet production was conducted on two cropping systems: finger millet and finger millet–groundnut on an Alfisol of semi‐arid southern India. The study was conducted from 1992 to 2011 at the All India Coordinated Research Project for Dryland Agriculture, UAS, Bangalore, using a randomized block design. The treatments comprised of T1: control [no fertilizer and no farmyard manure (FYM) applied], T2: FYM 10 t/ha, T3: FYM 10 t/ha + 50% of recommended NPK (50:50:25 kg/ha), T4: FYM 10 t/ha + 100% of recommended NPK and T5: 100% recommended NPK. Comparison of long‐term yield data between treatments was used to calculate a ‘sustainability yield index’ (SYI), which was greatest for T4 (FYM 10 t/ha + 100% of recommended NPK), in both rotational (0.68) and monocropping (0.63) situations. Soil quality indices were determined using principal component analysis linear scoring functions. The key indicators which contributed to the soil quality index (SQI) under rotation were organic C; potentially available N; extractable P, K and S; exchangeable Ca and Mg; dehydrogenase activity and microbial biomass C and N. The largest SQI (7.29) was observed in T4 (FYM 10 t/ha + 100% NPK), and the smallest (3.70) SQI was for the control. Application of 10 t/ha FYM together with NPK (50:50:25 kg/ha) sustained a mean yield of 3884 kg/ha. 相似文献
18.
19.
Ashok K. Indoria 《Archives of Agronomy and Soil Science》2013,59(6):667-677
Abstract Screenhouse experiments were conducted to study the phytoextractability of lead (Pb) by three oilseed crops (Brassica juncea, Brassica napus and Eruca sativa) from Pb enriched (i.e. 0, 200, 400, 600 and 800 mg Pb kg?1 soil) unamended, sewage sludge-amended (SS-amended) and farmyard manure-amended (FYM-amended) sandy loam soil. Chlorotic symptoms and stunted growth were observed at Pb600 and Pb800 treatments. Sewage sludge and FYM slightly decreased chlorosis. The biomass production for amendment treatments followed the order: FYM-amended > SS-amended > Unamended soil, and for species: Brassica juncea > Brassica napus > Eruca sativa. The Pb concentration followed the order: leaf > stem > seed, Brassica napus > Brassica juncea > Eruca sativa, and SS-amended > Unamended > FYM-amended soils. The Pb uptake followed the order: Brassica juncea > Brassica napus > Eruca sativa, and SS-amended > Unamended > FYM-amended soils. Exchangeable and Fe-Mn oxide bound fractions decreased and organic matter bound fraction increased with sewage sludge and FYM. The carbonate bound fraction considerably decreased with FYM. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(20):2473-2492
Field experiments were conducted at the fields of Crop Research and Seed Multiplication Farm of Burdwan University, Burdwan, West Bengal, India during the winter seasons of 2005–2006, 2006–2007, and 2007–2008 in old alluvial soil (pH-6-7) to evaluate the influence of integrated nutrient management on soil physicochemical and biological properties under mustard (Brassica campestris cv. ‘B9’) cropping system. In the first year (2005–2006), seven varieties of mustard were cultivated under recommended dose of chemical fertilizer (100:50:50). In the second year of the experiment (2006–2007), six different doses of biofertilizer and chemical fertilizer were applied. In the third year (2007–2008), six different level of compost along with a combined dose of biofertilizer and chemical fertilizer (T3-3/4 Chemical fertilizer: 1/4 biofertilizer) were applied. The results indicated significant improvement in the soil quality by increasing soil porosity and water holding capacity significantly, as well as gradual build-up of soil macronutrient status after harvesting of the crop. Applications of biofertilizers have contributed significantly toward higher soil organic matter, nitrogen (N), available phosphorus (P), and potassium (K). The use of biofertilizers and compost have mediated higher availability of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and boron (B) in soil. The use of biofertilizers and compost significantly improved soil bacterial and fungal population count in the soil, thereby increasing the soil health. 相似文献