首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A trial was carried out with compost and compost/peat mixtures to test several extraction methods for the estimation of availability of phosphorus (P). The test plant was Dendranthema grandiflorum All composts had a high pH and salt content. Amounts of P extracted by different extraction methods decreased in the order: Formate < CAL < NH4‐acetate < CaCl2/DTPA < CaCl2. Dilution of compost with peat decreased pH and increased availability of P. The better availability of P caused by dilution with peat was not reflected by the Formate‐, CAL‐, and NH4‐acetate method. These acid and well‐buffered extraction solutions overestimate P, and are therefore not suited to estimate availability of P in composts and compost/peat mixtures. Weak extraction solutions, like CaCl2 and CaCl2/DTPA, gave results which showed a good correlation with P content of plants and P uptake. The advantage of the latter method compared with CaCl2 is the extraction of amounts of P comparable to amounts taken up by the plants. Therefore of all the extraction methods tested, the CaCl2/DTPA method showed the best suitability to estimate the availability of P in composts and compost/peat mixtures.  相似文献   

2.
An incubation experiment was carried out to test the effects of biogenic municipal waste (compost I) and shrub/grass (compost II) composts in comparison to peat on respiration and microbial biomass in soil. The amounts of these three substrates added were linearly increased in the range of field application rates (0.5%, 1.0%, 1.5%, 2.0%). The sum of CO2 evolved during the incubation was markedly raised by the three substrates and increased with the rate of substrate concentration. However, the percentage of substrate mineralized to CO2 decreased with the addition rate from 103 to 56% for compost I, from 81 to 56% for compost II, and from 21 to 8% for peat. During the first 25 days of incubation, compost I enlarged the biomass C content, which remained constant until the end. In contrast, compost II did not raise biomass C initially. But at the end of the incubation, the biomass C content of all 4 compost II treatments almost reached the level of the respective compost I treatment. The increase was significantly larger the more of the two composts was added. In contrast to the two composts, the addition of peat did not have any significant effect on microbial biomass C. The average qCO2 values at day 25 declined in the order compost I > compost II > peat, at day 92 the order was changed to compost II > peat > compost 1. This change in the order was caused by a significant decrease in qCO2 values of the compost I treatments, a significant increase in qCO2 values of the peat treatments and constant qCO2 values in the compost II treatments.  相似文献   

3.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

4.
Two composts produced at different times of the year from garden waste, sewage sludge and wood ash were evaluated for use as ornamental plant substrates. The maturity and lack of phytotoxicity of both composts, as well as the absence of E. coli, were first confirmed by use of laboratory procedures and rapid test kits. A greenhouse experiment was then carried out with two ornamental species, Petunia sp. and Tagetes sp., to evaluate the suitability of the composts as plant substrates. The performance of the composts as well as mixtures of each with 25, 50 and 75% acid peat moss was compared with that of a commercial universal substrate. Addition of the peat to the composts improved some of the physical and chemical properties. However, the results of the pot experiments indicated that under the experimental conditions used, the compost produced from green waste was suitable for use as a plant substrate, without the need for addition of other components; this appears to be an effective way of utilizing the type of urban waste considered in the study.  相似文献   

5.
Two municipal solid waste composts were added to three agricultural soils developed over different parent material (schist, gabbro and granite) and incubated in two laboratory studies, in order to assess the effect of compost addition in the dynamics of soil Ca, Mg, K and P. Soils and mixtures of soil and compost (2.5% dry weight, roughly equivalent to 60 t ha?1) were incubated at 25°C for three months in a first experiment, and for five months in a second experiment. The concentrations of available Ca, Mg, K and P were determined throughout both experiments. The soils amended with compost always had higher available Ca, Mg and K concentrations than the soils without amendment. The increases were approximately 800 mg kg?1 for Ca, 30 mg kg?1 for Mg, and 150 mg kg?1 for K. Nevertheless, the concentrations of these elements did not increase with time. The available P concentrations were not increased by the addition of compost, an effect which is attributed both to microbial immobilization and to the P-fixation capacity of the soils. Therefore, the expected release of these elements in parallel to compost mineralization was not observed during the experiments, and the only fertilizing effect of the compost was that of their initial input in available forms.  相似文献   

6.
Revegetation of mine tailings sites can require significant amounts of topsoil, the sourcing of which can be costly and have detrimental impacts. To address this problem at an Irish mine tailings site, engineered soils were created by mixing varying rates of glacial till with stockpiled peat and compost. Soil status was assessed using a range of soil parameters and vegetation growth characteristics and compared with locally sourced topsoil. Hordeum vulgare (Barley) germination and growth trials were assessed on engineered soils: compost with glacial till, peat with glacial till, compost/ peat with glacial till and topsoil. A range of soil quality parameters were examined including: nutrient status, dehydrogenase activity, metals availability and physical characteristics (bulk/particle density and porosity). Results demonstrate that compost derived soils yielded superior plant biomass and nutrient content, whilst peat derived treatments exhibited nutrient deficiency. Whilst the engineered soils offer potential as an alternative to sourcing topsoil for covering mine tailings, the phosphorus and metal content of composts should be assessed prior to inclusion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Several composts were tested for their capacity to moderate the effect of Verticillium dahliae Kleb. (VCG B4, VD) on eggplant (Solanum melongena) under greenhouse conditions. Eggplants plantlets were inoculated by immersing their roots in conidial suspension and then planted in pots filled with mixtures of compost or peat moss, mixed with perlite. Six composts and peat moss mixtures were tested, of which tomato waste compost suppressed V. dahliae, and turkey litter compost partially suppressed it. Reduced levels of symptoms and lower fungal colonization were detected in the xylem of eggplants planted in tomato waste compost, and these plants accumulated more dry matter and had higher chlorophyll content compared to other media. However, survival of conidia in tomato waste compost showed only a moderate decrease compared with a sharp decrease in other media, suggesting that conidial eradication cannot be proposed as the suppressiveness mechanism. γ irradiation of tomato waste compost and peat at 2.5 Mrad reduced microorganism density by four orders of magnitude, but irradiation of tomato waste compost did not reduce its suppressiveness of V. dahliae. Composts properties affected progress rate of VD in the xylem tissue of eggplant seedling. These properties could indicate both biotic and abiotic factors affecting the process.  相似文献   

8.
Four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super were screened to determine whether they meet the standards. All composts showed normal physical properties, except for the bad smell from sulfur reducing bacteria in Almukhasib compost, and light brown color Plantex. The germination indexes of the composts comparable to the standard (90%) were 98% for Plantex followed by Growers (77%), and 5% for both Super and Almukhasib. The chemical and physical properties vary considerably as follows: pH 3-10.5 (standard 5-8), electrical conductivity (EC) 0.4-10.2 mScm?1 (standard 0.04.0 mScm?1), moisture content (MC) 29-43.7% (standard 35-60%) and water holding capacity (WHC) 92-200%. Wide ranges in the chemical properties were expressed as total nitrogen concentration 5705-16401 mgkg?1 (standard <500 mgkg?1), organic matter 17-67.6% (standard 35%). Although, there are significant variations in the concentration of the heavy metals among the tested composts, the concentrations of these metals (Zn, Ni, Pb, Hg, As, Cd, and Cr) were lower than the recommended levels. The average of the bacterial colony forming unit per gram dry weight ranged between 464-2292 cfu/g, whereas the fungal cfu were 14-4308 cfu/g (standard < 1000 cfu/g). The most probable number (MPN) for coliform bacteria was 64-1549 cfu/g dry weight. Aspergillus niger was the predominant fungus recovered from all compost samples (100%) followed by A. fumigatus (50%), A. sparsus (50%), yeasts (50%), A. flavus (37.5%), and the remaining A. restrictus, A. ochraceous, Cladosporium spp., and Penicillium spp. is 25% each. The results showed that the physicochemical properties and microbial contamination of the screened composts were considerably varied and did not meet many of the acceptable limits in Oman, which render them unsafe for handling or unsuitable as direct fertilizer for plant growth or for soil bioremediation, which suggests mixing the composts with vermiculite and soil in order to improve their general characteristics. Therefore, there is evident need for urgent development of proper composting techniques, standard laboratory testing methods for high quality control measures, and adopting strong legislation. The use of certified and high grade mature green waste compost is a priority.  相似文献   

9.
三种堆肥对番茄生长及青枯病防治效果的影响   总被引:1,自引:1,他引:0  
合理施用堆肥能够有效地改善植物的生长条件和土壤的生态环境,从而提高植物对病害的抗性。通过盆栽试验,研究了药渣、 污泥和猪粪三种堆肥以不同比例与泥炭混合对番茄植株生长和番茄青枯病防治的影响。结果表明: 三种不同堆肥均能促进番茄植株生长,其中猪粪堆肥对番茄生长的促进效果最显著,当泥炭与猪粪的混合比例为3∶1时效果最好,当收获番茄植株时,其鲜重和干重较泥炭基础基质处理分别提高了29.8%和41.2%,污泥堆肥次之,药渣堆肥最差; 三种不同堆肥都能抑制青枯病的发生,药渣堆肥对番茄青枯病的抑制效果最明显,当泥炭与药渣的混合比例为4∶1时效果最好,在番茄植株移栽33d 时,其病情指数较泥炭基础基质降低了66.7%,污泥堆肥次之,猪粪堆肥最差。添加不同堆肥使得盆栽基质的理化性质、 酶活性和可培养微生物的数量发生了不同的变化,推测可能是上述因素的变化使其对番茄的生长和青枯病的防治效果产生了明显的差异。  相似文献   

10.
Abstract

Composts may be incorporated into container mixes for several purposes, including to supply nutrients, add organic matter, or suppress plant diseases. The objective of this research was to assess the nutritional benefits of two composts derived in common from composted chicken manure and used in formulation of container media for growth of tomato (Lycopersicon esculentum Mill.). The composts differed in extractable and total plant nutrients so that one of the composts was considered a nutrient‐rich material and the other a nutrient‐poor material. Media were formulated from soil or peat with the composts added in a progressive array of concentrations from a medium with no compost addition to a medium that was all compost. Half of the media were treated with a water‐soluble, complete fertilizer and half were left unfertilized. Optimum growth occurred in media in which compost did not exceed 25% of the volume. The beneficial effects of the composts on plant growth were associated with increased supply of nutrients for the plants. The suppressive effects were attributed to restricted accumulation of nutrients with the nutrient‐poor compost and to excessive potassium supply and accumulation with the nutrient‐rich compost. Fertilization was beneficial in increasing plant growth with the nutrient‐rich compost and was essential for plant growth with the nutrient‐poor compost. The research demonstrated that composts can be used in formulation of media for container growth of plants.  相似文献   

11.
The objective of this study was to investigate the effects of the long‐term addition of three compost types (vegetable, fruit and yard waste compost – VFYW, garden waste compost – GW and spent mushroom compost – SM) on the physical properties of a sandy soil and to quantify any such effects using indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico‐chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S‐index’, soil air capacity and matrix porosity gave mixed results showing that these indices perform poorly when applied to sandy soils. It is concluded that the long‐term application of compost does not significantly improve the physical properties of sandy soils, but the absence of adverse effects suggests that these soils are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils.  相似文献   

12.
High yield agricultural systems, such as high tunnel (HT) vegetable production, require a large supply of soil nutrients, especially nitrogen (N). Compost is a common amendment used by HT growers both to supply nutrients and to improve physical and biological soil properties. We examined commercially-available composts and their effects on soil N, plant N uptake, and tomato yield in HT cultivation. In addition, a laboratory study examined N and carbon (C) mineralization from the composts, and the usefulness of compost properties as predictors of compost N mineralization was assessed under field and laboratory conditions. The field study used a randomized complete block design with four replications to compare four compost treatments (all added at the rate of 300 kg total N ha?1) with unamended soil and an inorganic N treatment (110 kg N ha?1). Tomatoes were grown in Monmouth, Maine during the summers of 2013 and 2014. Compost NO3?-N and NH4+-N application rates were significantly correlated with soil NO3?-N and NH4+-N concentrations throughout the growing season. Marketable yield was positively correlated with compost total inorganic N and NO3?-N in both years, and with NH4+-N in 2014. There were no significant differences among composts in percentage of organic N mineralized and no correlations were observed with any measured compost property. In the laboratory study, all compost-amended soils had relatively high rates of CO2 release for the initial few days and then the rates declined. The compost-amended soils mineralized 4%–6% of the compost organic N. This study suggested compost inorganic N content controls N availability to plants in the first year after compost application.  相似文献   

13.
Crop growth in sandy soils is usually limited by plant‐available nutrients and water contents. This study was conducted to determine whether these limiting factors could be improved through applications of compost and biochar. For this purpose, a maize (Zea mays L.) field trial was established at 1 ha area of a Dystric Cambisol in Brandenburg, NE Germany. Five treatments (control, compost, and three biochar‐compost mixtures with constant compost amount (32.5 Mg ha–1) and increasing biochar amount, ranging from 5–20 Mg ha–1) were compared. Analyses comprised total organic C (TOC), total N (TN), plant‐available nutrients, and volumetric soil water content for 4 months under field conditions during the growing season 2009. In addition, soil water‐retention characteristics were analyzed on undisturbed soil columns in the laboratory. Total organic‐C content could be increased by a factor of 2.5 from 0.8 to 2% (p < 0.01) at the highest biochar‐compost level compared with control while TN content only slightly increased. Plant‐available Ca, K, P, and Na contents increased by a factor of 2.2, 2.5, 1.2, and 2.8, respectively. With compost addition, the soil pH value significantly increased by up to 0.6 (p < 0.05) and plant‐available soil water retention increased by a factor of 2. Our results clearly demonstrated a synergistic positive effect of compost and biochar mixtures on soil organic‐matter content, nutrients levels, and water‐storage capacity of a sandy soil under field conditions.  相似文献   

14.
Abstract

Container technology can effectively control soil environment and nutrient status to obtain the optimal plant growth condition. Peat, green waste compost (GWC), soil and perlite were used as substrate materials to study the effects of different substrate ratios on growth and physiology of 1.5-year-old Sequoia sempervirens container seedlings. The optimal substrate ratio of S. sempervirens container seedlings was obtained by L9 (34) orthogonal design and was finally evaluated by principal component analysis. The volume ratio of peat: GWC: soil: perlite of 4: 1.5: 1: 2 was the best substrate ratio for S. sempervirens across all parameters, whose porosity, bulk density (BD) and gas-water ratio (GWR) were within the ideal ranges. The concentrations of total nitrogen (TN) of 1.40% and total phosphorus (TP) of 0.13% were the highest among the nine different substrates. The total potassium (TK) and electrical conductivity (EC) were 0.13% and 0.70?ms cm?1, respectively. In addition, the plant height and ground diameter growing in the substrate were increased by 28% and 39% compared to their respective initial values. The content of peat and GCW had significant effects on growth (p?<?0.01). The GWR in T2 (peat: GWC: soil: perlite = 6: 1: 0.5: 2) and T6 (peat: GWC: soil: perlite = 4: 0.5: 0.5: 1) are not suitable for S. sempervirens container seedlings. The PCA ranking of the 9 groups of substrates is: T8?>?T1?>?T4?>?T3?>?T2?>?T5?>?T7?>?T9?>?T6. The combination of peat, GWC, soil and perlite in an appropriate ratio could provide a good environment for S. sempervirens container seedlings.  相似文献   

15.
The use of compost with high salt concentration was evaluated, under commercial conditions, as a potential growing media constituent for vegetable transplant production. Two composts were prepared from sweet sorghum bagasse, pine bark, and either urea (compost A) or brewery sludge (compost B) as N source. Three vegetable species — broccoli (Brassica oleracea), tomato (Lycopersicum esculentum), and onion (Allium cepa) with different tolerance to salinity were used. Eleven substrates were formulated and tested: a control consisting of a moss peat-based commercial substrate; compost A; compost B; and, eight mixtures containing 33 or 67% by volume of each compost with either raw peat moss or commercial substrate as diluent. All the substrates prepared had suitable physical, physicochemical and chemical properties for use as growing media, except for the electrical conductivity (ranging from 3.20 to 13.21 dS m?1) which was above the reference levels for soilless cultivation. Broccoli was the least affected by substrate salinity whilst tomato was the most. Onion transplants had an intermediate response to saline conditions. Tomato seed germination was markedly reduced when compost A, with a higher salt concentration, was used at a rate higher than 67%. Media prepared with either of the composts, and mixed with either a commercial substrate or peat in a rate up to 67%, did not cause any detrimental effect on the growth and nutritional status of broccoli, tomato and onion transplants, despite the high initial salinity of the substrates. These composts appear to be acceptable substitutes for Sphagnum peat in seed sowing mixtures.  相似文献   

16.
Pinus radiata is a highly valued conifer because of its timber production and its value as a reforestation plant. To increase production, nurseries currently use a nutritional method based on mineral fertilizers high in macronutrients. This produces individual trees which are unbalanced in size and more likely to suffer infections from phytopathogenic fungi. In this paper, the effect on plant and soil of applying an aerated compost tea (ACT) is compared to a conventional fertilizer. Biometric measures of pines, their nutrient and pigment concentrations, soil physical‐chemical parameters and microbial composition of the rhizosphere along with its enzymatic activity were analyzed. The results reveal that the physical‐chemical parameters of the soil are suitable for plant growth in all the treatments (pH 8, maximum EC of 0.07 dS m?1 and +239 mV of Eh), and high phosphatase activity was detected in the peat fertilized with aerated compost tea. In addition, the microorganisms developed in peat with ACT showed greater Pseudomonas spp. and fungal diversity. Pines fertilized with compost tea showed greater radicular development, proportionate distribution, higher photosynthetic pigment and total potassium concentrations, a higher yield of PSII and a greater photosynthetic assimilation rate than conventionally fertilized and unfertilized pine plants. Therefore, ACT could be used in the production of forest plants without compromising their productivity.  相似文献   

17.
Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha?1 yr?1 (7.5 ton ha?1 yr?1). The soils were characterized for chemical and physical properties. Tomato was planted in a greenhouse using soil samples from the field and vegetative and yield parameters (plant height, stem diameter, leaf number, and fruit yield), water productivity, and harvest index were evaluated. All compost types significantly increased soil total carbon, total nitrogen, pH, electrical conductivity and significantly decreased bulk density, with no effect on plant available water compared to the control. Fresh and dry fruit weights were significantly increased after compost addition. Plant height, leaf number, stem diameter, and total biomass did not significantly improve after compost addition. Spent mushroom compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve as a safe end use option for these composts and potentially support crop growth.  相似文献   

18.
This study aimed at quantifying nitrogen (N) and potassium (K) released from winery solid waste (WSW) composts during laboratory incubation to address deficiency in two texturally distinct soils. Composts had 4, 10, 20, 30, 40% (w/w) of filter materials (FMs) mixed with grape marc and pruning canes. The composts were mixed with the soils at equivalent rate of 200 kg N ha?1 and incubated for 42 days. Quantitatively higher (p < 0.05) ammonium N content was recorded in sandy than sandy loam soil during the incubation duration while exchangeable K was increased in K-deficient sandy soil. Cumulative total mineralized N (TMN) measured during the incubation duration ranged from 59 mg kg?1 to 672 mg kg?1 depending on compost type and soil texture while a 10-fold increase in compost FMs content resulted in 144% and 139% increases in cumulative mineralized K in sandy and sandy loam textured soil, respectively. Percent N mineralized from the composts relative to the amount applied during the incubation duration was less than 54% reflecting the composts and soils inherent characteristics. The high ammonium N and K mineralized suggests that farmers must be cautious in utilizing these composts for field crops production due to the potential environmental risks.  相似文献   

19.
The main objective of the study was to test the benefits of compost and zeolite co‐addition on the fertility of organic‐rich Mediterranean soils. Previous pot study in greenhouse found that zeolites mixed with compost significantly improved potassium availability as well as exchangeable potassium capacity in the soils. To further test this finding, a field experiment was conducted using potato – Solanum tuberosum L., desiree cultivar in peat soils of the Hula Valley, Israel. Adhering to the protocol of the greenhouse experiments, the treatments included 5% compost addition with no zeolites, 2% zeolite addition without compost, co‐addition of 5% compost mixed with 2% zeolites and control. We found that compost addition increased significantly the potatoes yield and the number of large tubers; however, the zeolite addition had no impact on yield. Co‐addition of compost and zeolites did not improve total crop yield or number of large tubers compared with compost addition only. The results are consistent with nutrients availability (N, P, K) across the treatments. In a commercialized field using the experiment conditions, the 2% zeolite addition would amount to 18 ton of zeolites per hectare. Hence, we conclude that soil amendment with the tested zeolite might be beneficial to improve soil retention for cationic nutrients (e.g. K+) under high leaching systems such as plant culture in pots, but in the field with high loads of compost, its effect is minor.  相似文献   

20.
Given high mineralization rates of soil organic matter addition of organic fertilizers such as compost and manure is a particularly important component of soil fertility management under irrigated subtropical conditions as in Oman. However, such applications are often accompanied by high leaching and volatilization losses of N. Two experiments were therefore conducted to quantify the effects of additions of activated charcoal and tannin either to compost in the field or directly to the soil. In the compost experiment, activated charcoal and tannins were added to compost made from goat manure and plant material at a rate of either 0.5 t activated charcoal ha?1, 0.8 t tannin extract ha?1, or 0.6 t activated charcoal and tannin ha?1 in a mixed application. Subsequently, emissions of CO2, N2O, and NH3 volatilization were determined for 69 d of composting. The results were verified in a 20‐d soil incubation experiment in which C and N emissions from a soil amended with goat manure (equivalent to 135 kg N ha?1) and additional amendments of either 3 t activated charcoal ha?1, or 2 t tannin extract ha?1, or the sum of both additives were determined. While activated charcoal failed to affect the measured parameters, both experiments showed that peaks of gaseous CO2 and N emission were reduced and/or occurred at different times when tannin was applied to compost and soil. Application of tannins to compost reduced cumulative gaseous C emissions by 40% and of N by 36% compared with the non‐amended compost. Tannins applied directly to the soil reduced emission of N2O by 17% and volatilization of NH3 by 51% compared to the control. However, emissions of all gases increased in compost amended with activated charcoal, and the organic C concentration of the activated charcoal amended soil increased significantly compared to the control. Based on these results, tannins appear to be a promising amendment to reduce gaseous emissions from composts, particularly under subtropical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号