首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving technologies and the challenge of producing more bio-products while reducing the environmental footprint of humans are shifting paradigms in agricultural research. Harnessing the microbial resources of arable soils is a new avenue to improve the efficiency of nutrient use in agriculture. The objective of this study was to define how crop management influences the contribution of resident AM fungi to nutrient efficiency and crop productivity. The AM fungal communities of 72 organically and 78 conventionally managed wheat fields of the Canadian prairie were described by 454 pyrosequencing and related to crop productivity and N and P use efficiency. Conventional management reduces soil pH and increases the fluxes of all soil nutrients except S, B, and K. Organic management increased the abundance of Claroideoglomus reads. The efficiency of N and P uptake from soil by organic wheat was 2.3 and 1.8 times higher than that of conventional systems. This high N and P uptake efficiency in organic wheat crops was mainly attributable to the low soil fertility of organic fields, as wheat biomass production was 1.44 times greater in conventional than organic systems. Overall, the amounts of N and P taken up by conventional and organic wheat crops were similar. Plant nutrient balance and the abundance of Paraglomus drove conventional wheat production, whereas organic production depended mainly on soil moisture, plant nutrient balance, and abundance of Glomus, which was associated with reduced and nutrient-inefficient wheat production. The high nutrient concentrations at maturity and the low productivity of organic wheat fit a model of limiting CO2-assimilation. The trade-off between nutrient use efficiency and productivity in low input wheat production could be relieved by reducing the abundance of Glomus species, increasing soil moisture and early N availability, or by improving the inherent CO2 assimilation capacity of wheat.  相似文献   

2.
Tef (Eragrostis tef (Zucc.) Trotter) is the ancient and most important cereal food crop of Ethiopia. A set of 20 tef genotypes was investigated in field experiments at three environments in Ethiopia to estimate genetic variation in nitrogen (N)‐use efficiency and in characters related to N accumulation as well as their relationships to grain yield. In each environment, genotypes representing both widely grown landraces and recently released cultivars were grown under three N‐fertilizer rates (0, 4, and 8 g m–2 N). In grain yield, modern cultivars were superior to landraces, whereas in other characters, differences were less clear. The variation in grain yield was significantly related to the variation in total grain N and total plant N. Grain yield weakly correlated with N‐utilization efficiency and N harvest index. Broad sense heritability was higher for grain yield, total grain N, total plant N, and N harvest index than for N‐use, N‐uptake, and N‐utilization efficiencies. The contribution of uptake efficiency to the variation in N‐use efficiency decreased from 75% to 55% and that of utilization efficiency increased from 22% to 43% at the 4 to 8 g m–2 N‐supply rate change. This study clearly suggests that tef N‐use efficiency would be increased by selecting genotypes with greater uptake efficiency at low N‐supply levels.  相似文献   

3.
4.
接种丛枝菌根真菌(AMF)能显著促进大豆生长和对磷的吸收,但不同磷效率基因型大豆对AMF接种的响应还少有报道。为探究接种AMF对不同磷效率基因型大豆生长和磷转运基因表达的影响,以磷高效大豆BX10和磷低效大豆BD2为试验材料进行盆栽试验,设置接菌和不接菌处理,对大豆干重、菌根侵染性状、氮磷养分含量、根系性状,以及菌根诱导的磷转运基因表达进行了分析。结果表明, AMF接种显著促进了大豆的磷吸收,并且接菌效果存在显著的基因型差异,接种AMF显著增加了BD2的地上部干重、磷含量以及植株总磷吸收量,但只增加了BX10的地上部磷含量和总磷吸收量,对植株地上部干重没有显著影响。无论接种与否,BD2的地上部磷含量均显著高于BX10,表明磷低效的BD2具有较高的植株体内磷转运能力。不接菌条件下,两个大豆基因型根系性状无显著差异;接种AMF后BX10的根系体积和根系平均直径均显著高于BD2。BD2的菌根生长反应(MGR)和菌根磷反应(MPR)均显著高于BX10,对菌根依赖性更高。此外,在接菌处理的BD2根系,代表菌根途径磷吸收的磷转运基因GmPT8、GmPT9和GmPT10表达均显著高于BX10;相应地,BD2的总磷吸收量也显著高于BX10。以上结果表明,接种AMF对促进磷低效大豆BD2生长和磷吸收的作用更大,这可能主要是由于BD2菌根途径的磷吸收量较高,体内磷转运效率较高。以上结果将为研究AMF接种对磷吸收的贡献提供理论依据。  相似文献   

5.
Phytase (myo-inositol hexakisphosphate phosphohydrolase; EC 3.1.3.8) was purified from roots of tomato plants grown under phosphorus-deficient conditions using five purification schemes. The phytase was successfully separated from the major acid phosphatase to an electrophoretic homogeneity. The native molecular weight of this enzyme was estimated to be about 164 kD by Bio-Gel P-200 gel filtration. The molecular weight of the subunit on SDS-PAGE was approximately 82 kD, indicating that the native form of the enzyme was a homodimer. The isoelectric point of tomato phytase was about 5.5. The enzyme exhibited a high affinity for phytic acid (K m = 38 μM), and was strongly inhibited by phosphate, molybdate and fluoride. Among other characteristics of tomato phytase, the pH and temperature optima were 4.3 and 45°C, respectively. Tomato phytase contained a fairly high concentration of aspartic, glutamic acid and glycine residues.  相似文献   

6.
The bioavailability and stability of organic phosphorus (P) in the soil may be affected by exogenous phytase (EPase) activity and distribution, but remain poorly understood. The distribution of EPase activity and hydrolysis ability of EPase on organic P in soil solid‐liquid phases was investigated. The EPase addition to soil suspension (1:20, w/v) from three soil types (red soil, brown soil, and cinnamon soil) under three treatments (untreated soil, removing clay from soil, and removing organic matter from soil) with different characters in the solution and solid phases was assayed. The results showed that the disappearance pattern of EPase activity from solution was similar for all soils, whereas the enzyme activity on the solid phase was dependent on soil types and treatments with the greatest in red soil and untreated soil. When EPase was added to soils, the adsorption ratio of organic matter and clay was 10 to 25% and 3 to 7%, respectively, with sorption capacity of organic matter being significantly (p < 0.05) stronger than that of clay. Additionally, soil dehydrogenase activity, which is the indicator of overall soil microbial activities, increased after EPase addition and the two enzymes showed significant negative relation in the soil suspension and solution. At the same time, the organic P decreased significantly (p < 0.05) after the addition of EPase in the soil solid, which had a varied rate under –40% after incubating 192 h, whereas organic P in the solution phase increased significantly (p < 0.05). This study demonstrated that organic matter had a strong protective and adsorptive effect on EPase effectiveness and microbes mightbe directly affect EPase longevity and decay. This finding suggests that EPase activity in the solid phase played a more important role in organic P hydrolysis.  相似文献   

7.
Phosphorus (P) deficiency at early seedling stages is a critical determinant for survival and final yield of pearl millet in multi‐stress Sahelian environments. Longer roots and colonization with arbuscular mycorrhizal fungi (AMF) enhance P uptake and crop performance of millet. Assessing the genotypic variation of early mycorrhization and its effect on plant growth is necessary to better understand mechanisms of resistance to low soil P and to use them in breeding strategies for low P. Therefore, in this study, eight pearl millet varieties contrasting in low‐P resistance were grown in pots under low P (no additional P supply) and high P (+ 0.4 g P pot?1) conditions, and harvested 2, 4, 6, and 8 weeks after sowing (WAS). Root length was calculated 2 WAS by scanning of dissected roots and evaluation with WinRhizo software. AM infection (%) and P uptake (shoot P concentration multiplied per shoot dry matter) were measured at each harvest. Across harvests under low P (3.3 mg Bray P kg?1), resistant genotypes had greater total root length infected with AMF (837 m), higher percentage of AMF colonization (11.6%), and increased P uptake (69.4 mg P plant?1) than sensitive genotypes (177 m, 7.1% colonization and 46.4 mg P plant?1, respectively). Two WAS, resistant genotypes were infected almost twice as much as sensitive ones (4.1% and 2.1%) and the individual resistant genotypes differed in the percentage of AMF infection. AMF colonization was positively related to final dry matter production in pots, which corresponded to field performance. Early mycorrhization enhanced P uptake in pearl millet grown under P‐deficient conditions, with the genotypic variation for this parameter allowing selection for better performance under field conditions.  相似文献   

8.
外源植酸酶对土壤磷酸酶活性和有效磷含量的影响   总被引:1,自引:1,他引:0  
采用室内培养的方法,研究了不同用量外源植酸酶在不同培养时期对土壤磷酸酶活性和有效磷含量的影响.结果表明,添加外源植酸酶各处理的土壤酸性、中性磷酸酶活性和有效磷含量均高于对照,各处理间呈高量>中量>低量>对照,其中土壤酸性、中性磷酸酶活性与对照相比增加的幅度分别为9.3%~70.2%、4.3%~73.1%,差异达显著水平;从培养时间来看,土壤磷酸酶活性和有效磷含量均随培养时间的延长呈先升高后略有回落的趋势,其中酸性磷酸酶活性至培养第10 d达最高值,此时各处理与对照相比提高了33.9%~70.2%,差异达极显著水平,而中性磷酸酶活性和有效磷含量至培养的第20 d达到最高值,此时与对照相比分别提高了49.9%~73.1%和26.6%~122.5%.  相似文献   

9.
Enhancing crop water‐use efficiency (WUE) is a major research objective in water‐scarce agroecosystems. Potassium (K) enhances WUE and plays a crucial role in mitigating plant stress. Here, effects of K supply and PEG‐induced water deficit on WUE of spring wheat (Triticum aestivum L. var. Sonett), grown in nutrient solution, were studied. Plants were treated with three levels of K supply (0.1, 1, 4 mM K+) and two levels of PEG (0, 25%). WUE was determined at leaf level (WUEL), at whole‐plant level (WUEP), and via carbon isotope ratio (δ13C). Effects of assimilation and stomatal conductance on WUEL were evaluated and compared with effects of biomass production and whole‐plant transpiration (EP) on WUEP. Adequate K supply enhanced WUEP up to 30% and by additional 20% under PEG stress, but had no effect on WUEL. EP was lower with adequate K supply, but this effect may be attributed to canopy microclimate. Shoot δ13C responded linearly to time‐integrated WUEL in adequately supplied plants, but not in K‐deficient plants, indicating negative effects of K deficiency on mesophyll CO2 diffusion. It is concluded that leaf‐scale evaluations of WUE are not reliable in predicting whole‐plant WUE of crops such as spring wheat suffering K deficiency.  相似文献   

10.
为了提高多种金属离子共存的含盐废水脱氮除磷效率和生物絮凝性,考察Fe3+和Na+共存对A2O工艺缺氧区污染物去除率的影响,研究缺氧区胞内聚合物(Intracellular Polymeric Substances,IPS)和胞外聚合物(Extracellular Polymeric Substances,EPS)的变化,采用气相色谱法与蒽酮比色法分析IPS中聚-β-羟丁酸(Poly-β-hydroxybutyrate,PHB)和糖原含量的变化,结合三维荧光光谱(Three-dimensional Excitation Emission Matrix Fluorescence Spectroscopy,3D-EEM)与傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)探索EPS组成结构的变化,以期揭示共存的Fe3+和Na+、IPS及EPS与污泥絮凝性的关系。结果表明:1)单一Fe3+的加入有助于提高COD、TN和TP的去除率,增加碱性磷酸酶与酸性磷酸酶活性,IPS和EPS总量增多。2)在Fe3+和Na+共存的条件下,当Fe3+ 浓度为10 mg/L、Na+浓度为0.5 g/L时,低浓度的Na+提高了COD、TN和TP去除率,增强了碱性磷酸酶与酸性磷酸酶活性,增加了IPS总量,但是抑制了微生物EPS的分泌,EPS总量下降;当Fe3+为10 mg/L,Na+浓度(>1 g/L)继续升高时,高浓度的Na+导致COD、TN和TP去除率下降,IPS总量降低,但是促进了微生物EPS的分泌,EPS总量增加。3)由FTIR分析可知,Fe3+和Na+浓度的变化并未导致松散结合型胞外聚合物(Loosely Bound Extracellular Polymeric Substances,LB-EPS)和紧密结合型胞外聚合物(Tightly Bound Extracellular Polymeric Substances,TB-EPS)的官能团发生明显变化,主要成分始终为蛋白质(Protein,PN)和多糖(Polysaccharide,PS);由3D-EEM分析可知,Fe3+的加入使三维荧光光谱中出现了可见区类色氨酸峰,Na+的加入使色氨酸、腐殖酸类物质降解,EPS的成分改变。4)IPS和EPS之间存在竞争生长,IPS/EPS比值较高时,IPS占主导作用,污泥絮凝性能好。  相似文献   

11.
In acidified forest soils, the coarse‐soil fraction is a potential nutrient source. Plant nutrient uptake from the coarse‐soil fraction is aided by ectomycorrhiza. Similarly, (recalcitrant) organic matter (OM) is an important nutrient source largely made plant‐available through (symbiotic) microorganisms, especially in the topsoil. We hypothesized that in a podzol profile, fungal hyphae would concentrate in nutrient hotspots, either OM or the coarse‐soil fraction. Absolute hyphal length, base saturation, and organic‐C content of a Podzol profile were determined in the fine‐earth and coarse‐soil fractions. In the fine‐earth fraction, hyphae were attracted by the organic‐C content and relative high base saturation. In the coarse‐soil fraction of the BhBs horizon, the absolute hyphal length exceeded the hyphal length in the fine earth by factor 3, yet C content and base saturation were lowest. We could not determine to what fungi the hyphae belonged. Most likely ectomycorrhiza, ericoid mycorrhiza and saprotrophic fungi dominate the upper soil layers of this profile and all utilize OM for nutrition. In the deeper mineral horizons and especially in the coarse‐soil fraction, ectomycorrhiza are better adapted than other fungi to harvest nutrients from inorganic sources. Additionally, favorable physical properties may explain the high amount of fungal hyphae in the coarse‐soil fraction of the BhBs horizon. Both the coarse‐soil fraction and deeper mineral soil horizons may play a more active role in microbial nutrient cycling than previously assumed.  相似文献   

12.
选用体重2 0 kg左右的杜×长×大三元杂去势公猪,随机分为4组,进行消化代谢试验,测定玉米豆粕型基础饲粮(Ⅰ组)和以植酸酶250 U/kg(Ⅱ组)、500 U/kg(Ⅲ组)、750 U/kg(Ⅳ组)取代基础饲粮中40%、60%、80%的磷酸氢钙的试验饲粮中的粗蛋白质等养分的消化利用率。采用全收粪法进行两期消化代谢试验。结果表明:与对照组(Ⅰ组)相比,Ⅱ、Ⅲ、Ⅳ组的蛋白质表观消化率分别提高了3.50%、2.45%、2.32%,组间差异不显著(P>0.05);蛋白质生物学价值分别提高了5.75%、6.29%、6.62%,组间差异不显著(P>0.05);粗纤维表观消化率分别提高30.09%、54.10%(P<0.05)、13.07%;钙的表观消化率分别提高了4.02%、13.82%(P<0.05)、2.20%;磷的表观消化率分别提高了8.20%、47.36%(P<0.05)、13.39%;饲粮可消化能分别提高了1.89%、7.69%(P<0.05)、4.83%。  相似文献   

13.
Phosphorus (P) fertilizers and mycorrhiza formation can both significantly improve the P supply of plants, but P fertilizers might inhibit mycorrhiza formation and change the microbial P cycling. To test the dimension and consequences of P fertilizer impacts under maize (Zea mays L.), three fertilizer treatments (1) triple superphosphate (TSP, 21–30 kg P ha?1 annually), biowaste compost (ORG, 30 Mg ha?1 wet weight every third year) and a combination of both (OMI) were compared to a non‐P‐fertilized control (C) in 2015 and 2016. The test site was a long‐term field experiment on a Stagnic Cambisol in Rostock (NE Germany). Soil microbial biomass P (Pmic) and soil enzyme activities involved in P mobilization (phosphatases and ß‐glucosidase), plant‐available P content (double lactate‐extract; PDL), mycorrhizal colonization, shoot biomass, and shoot P concentrations were determined. P deficiency led to decreased P immobilization in microbial biomass, but the maize growth was not affected. TSP application alone promoted the P uptake by the microbial biomass but reduced the mycorrhizal colonization of maize compared to the control by more than one third. Biowaste compost increased soil enzyme activities in the P cycling, increased Pmic and slightly decreased the mycorrhizal colonization of maize. Addition of TSP to biowaste compost increased the content of PDL in soil to the level of optimal plant supply. Single TSP supply decreased the ratio of PDL:Pmic to 1:1 from about 4:1 in the control. Decreased plant‐benefits from mycorrhizal symbiosis were assumed from decreased mycorrhizal colonization of maize with TSP supply. The undesirable side effects of TSP supply on the microbial P cycling can be alleviated by the use of compost. Thus, it can be concluded that the plant‐availability of P from soil amendments is controlled by the amendment‐specific microbial P cycling and, likely, P transfer to plants.  相似文献   

14.
Wheat cultivars differ widely in manganese (Mn) efficiency. To investigate the reasons for different Mn efficiencies, a pot experiment with soil, a solution‐culture experiment, and model calculations were carried out. The pot experiment was conducted with wheat (Triticum aestivum L. cvs. PBW 373, PBW 154, PBW 343, PBW 138, and Triticum durum L. cvs. PBW 34 and PDW 233) grown in a screen house in India. The soil was a loamy sand with pH 8.1, DTPA‐extractable Mn 1.62 mg (kg soil)–1, and initial soil solution Mn concentration (CLi) of 0.19 μM. When fertilized with 50 mg Mn (kg soil)–1, CLi increased to 0.32 μM. At CLi 0.19 μM, wheat cv. PBW 373 produced 74% of its maximum shoot dry weight (SDW) with 64% of its maximum root length (RL), while cv. PDW 233 produced only 25% of its maximum SDW with 11% of its maximum RL. The other wheat cultivars were between these extremes. Manganese deficiency caused a reduction in shoot growth, but more strongly reduced root growth. The low Mn efficiency of T. durum cv. PDW 233 was related to a strong depression of its root growth. Manganese influx was similar for all cultivars. In solution culture below 1 μM Mn, under controlled climate‐chamber conditions, Mn influx was linearly related to Mn concentration. Both the efficient cv. PBW 343 and the inefficient cv. PDW 233 had a similar influx. Uptake kinetic parameters from the solution experiment together with soil and plant parameters from the pot experiment were used in a mechanistic nutrient‐uptake model. Calculated values of Mn influx for wheat grown in soil were 55% to 74% of measured values. A sensitivity analysis showed that increasing CLi or the slope of the uptake isotherm by about 30% would be enough to reach the observed influx. The results of this research indicate that an increase of Mn solubility by microbial or chemical mobilization would increase Mn uptake. But on the other hand, no chemical mobilization would be required to increase Mn uptake if the plant improved its uptake kinetics. Low Mn efficiency of some wheat cultivars was related to their reduced root growth at low soil Mn supply.  相似文献   

15.
The worldwide increase of food demand and reduced sweet‐water availability in some important food‐producing regions raised interest in more efficient water use, which has become one of the central research topics in agriculture. Improved irrigation management and reduced bare‐soil evaporation have highest priority to increase agronomic water‐use efficiency (WUE). Compared to these technical (irrigation) and basic (crop production) management options, effects of nutrient management on WUE were less frequently considered. Twenty‐nine publications on nitrogen (N) effects on biomass WUE of container‐grown plants are considered in this review. Most of them indicate positive N effects on WUE, and relevance of N effects on intrinsic WUE and unproductive water and carbon loss is discussed. A plot of 90 published data of percent decreases of WUE and dry mass under variable N supply is presented. Extrapolation of biomass WUE from leaf measurements of intrinsic WUE is critically reviewed. The positive correlation between WUE and dry‐mass formation suggests that physiological rather than stomatal effects are more important in order to explain positive N effects on WUE.  相似文献   

16.
Most studies indicating positive effects of nitrogen (N) supply on biomass water‐use efficiency (WUE) used two contrasting levels of N supply and monitored some of the relevant traits being associated with WUE. In order to investigate N effects on WUE over a wider range of N‐supply levels, oriental tobacco was cultivated in pots under six (Exp. 1) and four (Exp. 2) N levels until flowering stage. Water‐use efficiency, intrinsic water‐use efficiency (A/g), carbon isotope discrimination (CID), average daily canopy transpiration rate (EC; from 12 to 7 d before harvest), and biomass‐partitioning parameters were determined. Water‐use efficiency increased from the lowest to the highest N level and was positively correlated with biomass. Intrinsic water‐use efficiency was positively correlated with leaf N and chlorophyll concentration. Whole‐plant CID was significantly less negative under high compared to low N supply. Biomass‐partitioning parameters were only slightly affected by N supply except for leaf‐area ratio, which significantly increased with N supply. The low planting density of Exp. 2 resulted in an increase of WUE and substantially less negative whole‐plant CID compared to Exp. 1. In both experiments, EC was lower under high compared to low N supply and was negatively correlated with WUE. It is concluded that plants under high N supply realized a higher WUE via increases of A/g and a reduction of EC.  相似文献   

17.
胞外DNA在土壤中的固定与转化   总被引:3,自引:0,他引:3  
DNA is the genetic material of various organisms. Extracellular DNA adsorbed or bound on surface-active particles in soils has been shown to persist for long periods against nucleases degradation and still retain the ability to transform competent cells. This paper reviews some recent advances on the binding and transformation of extracellular DNA in soils,which is fundamental to understanding the nature of the soil, regulating biodiversity, and assessing the risk of releasing genetically engineered microorganisms (GEMs) as well as being helpful for development of the genetic evolutional theory of bacteria. Several influencing factors, such as soil pH, ionic strength, soil surface properties, and characteristics of the DNA polymer, are discussed. To date, the understanding of the type of molecular binding sites and the conformation of adsorbed and bound DNA to soil particles is still in its infancy.  相似文献   

18.
Field‐based experiments were conducted to evaluate the promotion abilities of Bacillus subtilis NRRL B‐30408 for growth of lentil (Lens esculenta Moench) at a mountain location of Indian Himalaya in two consecutive years. Observations were recorded for plant growth, yield, nodulation, root colonization by arbuscular mycorrhizal and endophytic fungi, and other related parameters. A positive influence of bacterial inoculation on plant biomass and yield‐related parameters was recorded in both years. The significant increase in growth and nodule numbers as well as leghaemoglobin and protein concentrations of nodules indicated an enhancement in efficiency of the Rhizobium–legume symbiosis due to bacterial inoculation. An increase in protein concentration was also recorded for shoots, leaves, and seeds. Due to bacterial inoculation, there was an increase in colonization by endophytic fungi and a simultaneous decrease in colonization by arbuscular mycorrhizal fungi in roots. Based on the results of this field study, inoculation with suitable plant growth–promoting rhizobacteria instead of dual inoculation is suggested as a better option for improving the yield and related attributes of a primary dietary legume such as lentil.  相似文献   

19.
新型氮肥肥料效应与氮素利用率对比研究   总被引:1,自引:0,他引:1  
旱地和水田施用新型N肥试验结果表明,与普通尿素相比,施用腐殖酸尿素、木质素尿素和涂层尿素对水稻、小麦均具有明显增产效果,稻谷增产率为14%~16%,小麦籽实增产率为4%~17%,肥效为腐殖酸尿素≥木质素尿素>涂层尿素。水稻对肥料N素利用率提高7%,差异达显著水平,小麦对肥料N素利用率提高2.7%~17%。  相似文献   

20.
The rice–wheat cropping system (RWCS), producing about 5–10 Mg ha–1 y–1 of grain, is the backbone of food‐crop production in South‐East Asia. However, this system shows signs of fatigue as indicated by declining yields, negative nitrogen (N) balances, and reduced responses to applied fertilizer at some research centers. The return of rice and wheat residues can recycle up to 20%–30% of the N absorbed by the crops. However, their wide C : N ratio can temporarily immobilize native and applied N. To overcome this immobilization, wheat‐straw application was supplemented with the incorporation of Sesbania green manure and mungbean residues, and their effects on productivity, agronomic N efficiency, and system's apparent N balances were studied. Combining the application of wheat straw with Sesbania green manure or mungbean residues increased cereal grain yield and agronomic N efficiency and improved the generally negative apparent N balances. The combined use of wheat straw and mungbean produced an additional 0.5–0.6 t ha–1 protein‐rich grain and thus appears to be the most promising residue‐management option for rice–wheat cropping systems in South Asia, provided that the transition cropping season between wheat harvest and rice transplanting is long enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号