首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of natural or anthropogenic soil acidification and alkalization on chemical or biological properties have been studied extensively while little is known about changes in physicochemical characteristics, such as surface area or adsorption energy. To investigate this, samples of six Polish soils (Inceptisols, Mollisols) and three Korean soils (Alfisols, Ultisols) of different origin and mineral composition were acidified and alkalized with elevated concentrations of hydrochloric acid and sodium hydroxide ranging from 0.001 to 1 mol dm—3. Surface properties of these soils were studied. The surface area and average adsorption energy decreased in general in both treatments. The treatments induced the decrease in amount of high and medium energy centers, however the fraction of low energy centers increased. The behavior of surface properties differed from the above at treatments at highest reagent concentrations, especially for Korean soils, rich in clay and iron oxides. The general pattern of the adsorption energy decrease observed in most of the soils indicates that the overall water binding forces become lower after treatments. In this case the soil water may be more available for plants, despite its amount decreases.  相似文献   

2.
The original light‐brown sandy seam filling of pavements in urban areas turns dark and changes its properties by the time due to various inputs of urban dust. Deposited Corg inputs do mostly not have natural characteristics but are man‐made, e.g., diesel dust. Thus, properties of the seam material are not predictable from experiences with forest or agricultural soils. Semiperviously sealed urban areas are sites of contaminant deposition as well as groundwater recharge. For an assessment of the resulting groundwater‐contamination risk in these areas, the properties of the seam material, which influences transport processes, must be known. The aim of this study was to investigate the pore‐system build‐up, which includes size distribution and fractal character in the seam material of urban sites. The investigated samples were taken from pavements adjacent to roads in Berlin and Warsaw. The micropore parameters (nanometer range) were characterized using water‐vapor desorption isotherms, mesopore parameters (micrometer range) were estimated from mercury‐intrusion porosimetry and macropore parameters (millimeter range) from water‐retention curves. Particle density, dry bulk density, and particle‐size distribution were measured using standard methods. Volumes of micro‐ and mesopores as well as particle densities and dry bulk densities correlated with Ctot contents. However, no such relation was found for macropore volumes. Compared to the original sandy seam filling, the altered seam material shows significantly higher Corg contents and higher amounts of micro‐ and mesopores. Therefore, the available water capacity increases by 0.05–0.11 m3 m–3, as compared to the original sandy seam filling. Compared to natural sandy soils having similar Corg contents, the seam material shows similar macropore volumes, but the volume of mesopores and micropores is a few times smaller. That is mainly because of the particulate character of the organic matter.  相似文献   

3.
Sugar beet (Beta vulgaris L.) was grown in two different long‐term P fertilization experiments on a sandy and a loamy soil. The P supply levels of the soils were ”︁low”, ”︁sufficient”, and ”︁high”, according to the German recommendation scheme. The low P level decreased shoot and storage root yield only on the loam soil, where the recovery of the P‐deficient plants after a drought period was slower than at a sufficient P supply. The size of the living root system, as determined by a conventional auger sampling method, peaked at early July and decreased until harvest on the sandy soil without any influence of the P level. On loam, the living root systems were more constant and larger at P shortage. Total root production, as determined by the ingrowth core method, was about 120 km m—2 in the well P supplied loam treatments and 200 km m—2 at P deficiency, which was 3—4 times and 5 times higher than the average size of the living root systems, respectively. Hence, a rapid root renewal took place. On sand, where no P deficiency occurred, total root production was not different between the P supply levels but higher than in the well‐supplied loam treatments. Modelling P uptake revealed that this root turnover and the concomitant better exploitation of the soil facilitates P uptake at a low P level in soil, but is of no advantage at a sufficient P supply. The increase of root production at P shortage increased calculated P uptake by 25% compared to a calculation with the ”︁usual” root production at a sufficient supply.  相似文献   

4.
Effects of 6 years no-tillage (NT), ploughing, disking and the two last treatments combined with loosening on surface area, water vapor adsorption energy, variable charge and fine pore properties of a brown forest soils were studied using water vapor adsorption–desorption, back-titration and mercury intrusion measurements. The studied soil properties altered markedly under mechanical tillage treatment as compared to NT soil. The radii and the volumes of cryptopores (sizes from 1 to a few tens of nanometers) decreased and the opposite was found for ultramicropores (sizes from a few tens of nanometers to around 10 μm). However, fractal dimension of cryptopores and ultramicropores had changed very slightly, indicating that general geometrical structure of the fine pore system in the studied range (ca 1 nm–10 μm) remained unaltered despite pore size-shift. Surface areas and the amount of variable surface charge were markedly lower in mechanically tilled soil. A decrease of organic matter content was observed as well. Decrease of water vapor adsorption energy and increase of the fraction of strongly acidic surface functional groups accompanied mechanical tillage treatments.  相似文献   

5.
Transport phenomena in porous media depend strongly on three‐dimensional pore structures. Macropore networks enable water and solute to move preferentially through the vadose zone. A complete representation of their geometry is important for understanding soil behaviour such as preferential flow. Once we know the geometrical, topological and scaling attributes of preferential flow paths, we can begin computer simulations of water movement in the soil. The box‐counting method is used in three dimensions (i.e. cube‐counting algorithm) to characterize the mass fractal dimension of macropore networks using X‐ray computed tomography (CT) matrices. We developed an algorithm to investigate the mass fractal dimension in three dimensions and to see how it compares with the co‐dimensions obtained using the box‐counting technique in two dimensions. For that purpose, macropore networks in four large undisturbed soil columns (850 mm × 77 mm diameter) were quantified and visualized, in both two and three dimensions, using X‐ray CT. We observed an increasing trend between the fractal dimension and macroporosity for the four columns. Moreover, similar natural logarithm functions were obtained for the four cores by a least squares fit through plots of mass fractal dimension against macroporosity.  相似文献   

6.
In this paper, we tried to find interrelations between water retention properties, surface characteristics, and structural features of sandy soils rich in organic matter. Raw humic, epihumic, and endohumic horizons of four acidic sandy forest soils were selected for this study. Specific areas and water adsorption energies were estimated from water vapor adsorption isotherms, micropore (nanometer range) parameters from desorption isotherms, mesopore (micrometer range) parameters from mercury intrusion porosimetry, and macropore (millimeter range) parameters from water retention curves measured using combined suction plate and pressure chamber methods. In the studied soils, pore volumes in all pore ranges were proportional to soil organic matter content. Thin column wicking technique was used to determine migration velocity vs. time dependence in the samples beds for a range of liquids of various surface tensions. From these dependencies the surface free energy and its components were estimated that were used for calculation of water contact angles and forces of interparticle interaction via a water meniscus. The dominant interactions in the studied soils were dispersive Lifshitz‐Van der Waals forces. In the two upper horizons polar acid‐base interactions were absent, however in the deepest horizons, high input of polar interactions occurred, due practically to electron‐donor component of the surface free energy. The electron‐acceptor contribution was low. The wettability of the soils was low in upper horizons as indicated by high water contact angles.  相似文献   

7.
The behavior of the herbicide glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) was investigated in soils and water in a well-defined catchment of the reservoir Radeburg II near Dresden (Saxony/Germany). The half-life of glyphosate in soil ranged from 11 to 17 days. Glyphosate and AMPA completely disappeared from soil after about 5 months following application of the products ”︁Roundup Ultra” and ”︁Touchdown”. The aquatic system in the test areas (surface water, soil solution, and groundwater) was not significantly affected by direct application of the compound. In general, there was a clear indication of strong sorption of the two substances by soil particles. Settlement areas were recognized as possible sources of glyphosate and AMPA intake in aquatic systems.  相似文献   

8.
The increasing eutrophication of tidal flat soils on the North Sea coast and the appearance of ”︁black spots” gave rise to this study. The aim was to find pedobiochemical indicators for the development of ”︁black spots”. Artificially eutrophicated soils were compared with untreated soils in the field and laboratory. The pH values of the artificially eutrophicated and natural soils often differed by nearly one unit. The treated soils mostly showed lower redox potentials (˜ —300 mV) than the untreated samples (˜ —250 mV). The mean sulfate concentrations were 2.2 mM in the eutrophicated laboratory soils and 13.1 mM in the eutrophicated field soils, compared with 12.5 mM and 20.2 mM in the untreated ones. Consequently, the SO42—:Cl ratios and SO42— differences were lower in the treated soils. Non‐eutrophicated soils showed methane concentrations of < 5 nmol cm—3, whereas the eutrophicated soils showed up to 217.0 nmol cm—3 in the field and 479.1 nmol cm—3 in the laboratory. Differences between field and laboratory data were mainly due to a continuous sulfate supply and reoxidation process only possible in the field. Although all parameters showed differences between the eutrophicated and untreated soils, only the methane data did not overlap with their interquartile ranges. Those of the untreated soils were 2—7 nmol cm—3 and those of the treated were 12—360 nmol cm—3. Thus, threshold values can be defined. Methane concentrations of approximately > 10 nmol cm—3 refer to the beginning eutrophication process and those in the range of > 100 nmol cm—3 to advanced processes, phenologically forming ”︁black spots”.  相似文献   

9.
Migration of different mineral particles within columns of soil‐sand mixtures containing 10 or 20 mass % of soil was investigated by establishing differences in the mineral suite between the ”︁bulk clay” and the ”︁mobile fine material” fractions. The ”︁bulk clay” fractions of all soils contained smectite, palygorskite, kaolinite, quartz, feldspar, and calcite. The soils were saturated with sodium by leaching with NaCl solution, and then leached with distilled water. Clay dispersion and particle migration occurred in the columns. Values of SAR (sodium adsorption ratio) of the effluent decreased with time due to carbonate dissolution. At a certain SAR value, the clays apparently formed aggregates, and as a consequence particle migration stopped in the column. In addition to clay‐sized particles (< 2 μm), very‐fine‐silt‐sized particles (2— 5 μm) were able to migrate in the soil‐sand mixtures, too, and to some extent fine‐silt‐sized particles (5—10 μm) as well. Average size of mobile particles decreases with increase of soil content in the soil‐sand mixtures. The mineralogical composition of the ”︁mobile fine material” changed during the experiment. At the beginning of the experiment, the ”︁mobile fine material” was enriched in the non‐phyllosilicates (especially in calcite, and in some cases in quartz, feldspar and dolomite) and contained low concentrations of phyllosilicates (smectite, palygorskite and kaolinite). At the end of the experiment, the proportion of non‐phyllosilicates decreased, and as a consequence, the proportion of phyllosilicates increased. Among the non‐phyllosilicates, calcite was the most mobile mineral. Among the phyllosilicates, palygorskite was preferentially mobilized in topsoil horizons. In subsoil horizons, on the other hand, kaolinite was preferentially mobilized. This difference was explained by the different nature of carbonates in the topsoil and subsoil horizons. Palygorskite is preferentially occluded within the soil carbonates of lacustrine origin over smectite and kaolinite. These carbonates are present mainly in the subsoil horizons. As a consequence, the presence of these carbonates in the subsoil horizons decreases the migration of mainly palygorskite.  相似文献   

10.
半湿润区长期施肥对土壤结构体分形特征的影响   总被引:7,自引:0,他引:7  
利用黄土高原南部半湿润地区长达25年田间肥料定位试验020.cm土层土样,研究了长期不同施肥模式与土壤结构体大小、结构体分形特征与土壤肥力的相互关系。结果表明,长期不同施肥模式下土垫旱耕人为土结构体分形特征存在一定差异:7种施肥处理土壤结构体分形维数分布在2.4388~2.6363之间,其中以化肥+厩肥处理土壤结构体分形维数最大,不施肥土壤结构体分形维数最低,说明化肥与有机肥长期配施对土壤团聚体结构分布影响较大。相关分析发现,土壤结构体分形维数与5~2mm团聚体间具有极显著的正相关关系(r=0.994,P0.01);与土壤有机碳、全氮、硝态氮、有效磷含量均具显著正相关关系,与土壤碳氮比(C/N)呈显著负相关关系。在长期不同施肥模式下,分形维数对土壤性质变化的边际量亦有明显差异:土壤结构体分形维数每增加一个单位值,土壤有机碳、全氮、C/N、硝态氮和有效磷的变化依次为31.628%、2.404%、-6.014%、90.370%和172.760%。由边际分析可知,长期施肥条件下土壤结构体分形维数的变化对土壤有效磷、硝态氮的影响最大。  相似文献   

11.
The increase in microbial C content, cumulative respiration and changes in ”︁available” C were determined after adding glucose (2 mg glucose-C (g soil)—1, ”︁C”), glucose + nitrogen (”︁C+N”) or glucose + nitrogen + phosphorus (”︁C+N+P”) to four soils. In two sandy soils, one agricultural and the other from a beech forest in Germany, available C was still present approximately 7 days after C addition. The supplement N and N+P decreased the content of available C and stimulated respiration rate and microbial growth. In two loamy forest soils from Italy, which had a high native content of microbial C, available C was present in the beech soil but not in a silver fir soil treated with C+N. In the Italian beech and fir soil, microbial growth was highest with C+N+P and C+N addition respectively. Available C remaining in the soil was related to some extent to the native microbial C content. However, microbial growth and respiration response varied between soil and treatment. The respiratory coefficient, that is the ratio of assimilated to respired C, varied between 0.0 and 1.45 μg Cmic (μg CO2-C)—1 and was generally higher when a large amount of native biomass was present. The eco-physiological strategy of the soil microbiota in using C seemed to shift according to the biomass content, the added concentration and composition of available substrates, and emergent system properties.  相似文献   

12.
采用速生树种修复重金属污染土壤的方法近年来受到越来越多关注,但已有结果存在很大不确定性。为了解杨树在不同Pb胁迫条件下生长响应和Pb富集效果,以长江上游两种典型土壤(酸性紫色土和钙质紫色土)为栽培介质,采用盆栽试验方法,研究了不同Ph浓度处理下(CK:0mg·kg^-1;T1:200mg·kg^-1;T2:450mg·kg^-1;T3:2000mg·kg^-1)欧美杂交杨(Populusdeltoides×Populusnigra)生物量生产与分配格局以及Pb吸收、富集特性。两种土壤条件下杨树各器官生物量及总生物量均表现出随Pb胁迫程度的增加而降低的趋势,Pb胁迫条件下杨树生物量分配格局在钙质紫色土中表现为茎〉粗根〉叶〉细根。相同浓度Pb处理条件下,单株杨树总生物量均表现为钙质紫色土大于酸性紫色土。随着Pb处理浓度的增大,杨树各器官Ph含量及积累量显著增加。Pb胁迫使杨树对Ph的富集系数逐渐增大而耐性系数逐渐减小。们处理条件下杨树对Pb的富集系数在酸性紫色土中较大,且各处理条件下杨树对Pb的耐性系数均为酸性紫色土中较大。这些结果表明,高浓度Pb胁迫条件下酸性紫色土中的欧美杂交杨表现出较好的吸收和富集Pb的特性,这为Pb污染土壤的生物修复提供了一定的科学依据。  相似文献   

13.
The values of the surface fractal dimensions were determined for several samples of Cambisols and Luvisols from analysis of nitrogen and water vapor adsorption isotherms and from mercury intrusion data. Moreover, the values of fractal dimension characterizing the particle size distributions of soil samples were calculated by using a number‐based method. For almost all investigated soils the values of the surface fractal dimension, obtained from water vapor isotherms were lower than those obtained from nitrogen isotherms. Largest were the surface fractal dimensions evaluated form mercury intrusion data. No significant correlations between different kinds of surface fractal dimensions were found, and the reasons of this finding are discussed. However, the values of the surface fractal dimensions calculated from mercury intrusion data correlate with those characterizing the texture of soils. The paper also reports on correlations between of the values of surface area, fractal dimensions and some selected physico‐chemical characteristics of soils.  相似文献   

14.
Structural deformation of artificial macropores under varying load and soil moisture In the present study, the stability and deformation behavior of artificial macropores under varying load and soil moisture levels was investigated by means of X‐ray computed tomography (CT). The results should be a reference for similar studies on soil samples from field trials. The soil tested was a well structured humic silt loam with a bulk density of 1 g cm—3. Round‐shaped pores of vertical and 45 degree angle orientation were drilled into the samples with a plastic needle (∅︁ 5 mm). These samples were compacted in an uniaxial compression device at four different moisture levels and four pressure stages each. Stepwise CT imaging and its 3‐dimensional reconstruction enabled us to study systematically the mode and intensity of pore deformation. As a result four different deformation stages could be identified in dependence from load, soil moisture, and pore orientation. The deformation stage ”︁stable” was characterized by mostly unaffected pore dimensions and shapes. Increasing load and/or moisture content led to prominent bottle necks within the pores which was named ”︁structure deformation”. Due to the shape and size of these bottle necks it seems to be most likely that still intact aggregates were moved into the inner pore space, reducing the mean cross sectional areas. The deformation stage ”︁total deformation” appeared with further increase of load and/or moisture. The aggregated structure disappeared while the inner roughness of the pores became smoother again. This represents a viscoplastic deformation. Cross sectional areas, pore lengths, and volumes significantly decreased. The stage ”︁extinction” was finally reached at water contents around the liquid limit, where the pore structure was completely lost, at least on CT resolution level. The deformation stages could be attributed to load stages depending from pore orientation. Unexpectedly, all pores kept their originally round shape over all stages until extinction.  相似文献   

15.
Aerobic soils are important sinks for atmospheric methane. CH4 oxidation, mediated mainly by methanotrophic bacteria, is the responsible process, which is strongly inhibited by ammonium accessible for nitrification. An inhibitory effect immediately after fertilization as well as a long-term effect exists, which results from repeated ammonium applications and which is independent from the actual concentration of NH4+-N in soil. This long-term effect could be caused by a shift in the microbial population of the soil. Thus, with soil samples from long-term fertilization treatments of the field experiment ”︁Ewiger Roggenbau” at Halle (Germany) incubation studies were conducted to investigate the interference between CH4 oxidation and nitrification and to determine the cell numbers of methanotrophic bacteria. Including the treatments PK, NPK, and farmyard manure, which were established in 1878, a close negative correlation between CH4 oxidation and net nitrification was found (r = —0.92). The CH4 oxidation rates, determined with an initial concentration of 10 μl CH4 l—1, varied between 6.7 and 1.1 μg C kg—1 d—1 in the PK and NPK treatment, respectively. After application of NH4Cl a strong inhibition of CH4 oxidation occurred, which was 91%, 88%, 81%, and 63% in the treatments PK, NPK, FYM, and U (unfertilized), respectively. After a lag-phase of 2 to 3 weeks an incubation with high CH4 concentrations (20 Vol.% CH4) could induce CH4 oxidizing activity in the NPK treatments under continuous rye or maize cropping. An increase of up to 40 times in comparison to the control under atmospheric CH4 (2 μl CH4 l—1) was observed. A negative correlation (r = —0.74) existed between the CH4 oxidation rates of the soils without recently applied NH4+ and the numbers of methanotrophic bacteria, determined with the ”︁most probable number” method (MPN). Thus, the MPN technique is not suitable to characterize the physiologically active population of methanotrophic bacteria in soils, which oxidize CH4 in the atmospheric concentration range. The results of this study suggest that in aerobic arable soils methanotrophic bacteria and not nitrifiers are responsible for CH4 oxidation.  相似文献   

16.
Some of the effects of land desertification on soil properties are manifested by the coarsening of the soil particlesize distribution (PSD) and the losses in organic C and nutrients. The changes and characteristics of PSD and selected chemical properties in soils at the 0-15 cm plough layer from different degrees of desertified croplands are analyzed in the semiarid Horqin Sandy Land, northern China. The fractal dimension of the PSD is emanated to characterize the patterns of PSD. The relationships between the fractal dimension of the PSD and selected soil properties are discussed. The results show that: (1) in the transformation from potential desertified cropland to extremely desertified cropland, the sand content at the 0-15 cm soil increased from 69% to 93%, organic C and total N contents decreased by 65% and 69%, respectively; (2) the fractal dimension of PSD ranged from 2.179 to 2.611, the more the contents of sand, the lower the fractal dimension and the higher the desertified degree of farmland. In the desertification process within the studied area, the mean fractal dimension decreased from 2.555 for the potential desertified soils to 2.298 for extremely desertified soils; (3) there existed considerable linear relationships between fractal dimension and soil properties. It was shown that fractal dimensions of PSD are useful parameters able to monitor soil degradation and to estimate the degree of soil desertification.  相似文献   

17.
不同有机物料对原生盐碱地水稳性团聚体特征的影响   总被引:6,自引:3,他引:6  
为了研究不同种类和形态的有机物料对原生盐碱地水稳性团聚体特征以及物理性质的影响,以吉林西部地区原生盐碱地为研究对象,通过大田试验,分析了颗粒玉米秸秆、正常玉米秸秆、牧草以及羊粪等有机物料对原生盐碱地的浸水容重、沉降系数、田间持水量和蒸发速率等物理指标的影响,以及对土壤水稳性大团聚体和微团聚体的数量、形态、平均质量直径(MWD)、破坏率(PAD)、水稳系数、平均质量比表面积和分形维数等指标的影响。结果表明:(1)各处理中水稳性团聚体组成以微团聚体占主要成分,其中以0.05~0.25mm粒径为主,不同有机物料处理对各粒级含量影响差异显著。(2)各有机物料处理的土壤水稳性团聚体的稳定性相对CK处理均有所提高,羊粪处理对MWD提高效果最好,提高了104%,而颗粒处理提高水稳系数和降低PAD效果最好。(3)不同有机物料处理对水稳性团聚体形态均有改善作用,颗粒处理改善效果最好,形态圆润表面粗糙,大小孔径分布适中。(4)颗粒处理与其他处理的土壤团聚体分形维数差异显著,其他处理之间差异不显著,颗粒处理分形维数最低,相比CK处理降低了2.62%。各有机物料处理的平均质量比表面积与CK差异显著,其中正常秸秆处理最好,相比CK提高了171.01%。(5)各有机物料处理与CK处理相比,对原生盐碱土物理性质均有改善作用,颗粒处理整体效果最好。浸水容重与PAD和分形维数具有显著正相关性,与水稳系数和平均重量直径呈显著负相关性。沉降系数相关性类似浸水容重,田间持水量相反,蒸发速率则未显示出显著相关性,各物理参数与平均质量比表面积未显示出显著相关性。综合得出,有机物料能够改善原生盐碱土壤结构,同种有机物料不同形态作用效果不同,本试验中经过粉碎高温高压处理的颗粒秸秆效果远好于其他处理,有效地缩短了改良时间。  相似文献   

18.
长期不同量秸秆炭化还田下水稻土孔隙结构特征   总被引:1,自引:0,他引:1  
  【目的】  生物炭被认为是一种能够提高土壤固碳能力、改善土壤结构和减缓全球气候变化的土壤改良剂。土壤孔隙结构直接影响土壤中水、气、热的运动,因此,研究长期施用生物炭对土壤孔隙结构特征的影响,以期为秸秆炭化还田提供理论依据。  【方法】  研究基于2013年建立的水稻秸秆炭化还田长期定位试验,选取在等氮磷钾条件下不施用生物炭 (C0)、施用低量生物炭 (1.5 t/hm2,C1.5)、高量生物炭 (3.0 t/hm2,C3.0)的 3个处理。利用X射线CT扫描和图像处理技术,分析了土壤孔隙结构参数,包括土壤孔隙度、土壤孔隙大小分布、孔隙连通性指数 (欧拉特征值)、各向异性、分形维数、最紧实层孔隙度和最紧实层平均孔隙直径等参数。  【结果】  C1.5和C3.0处理均能显著增加土壤有机碳含量和土壤总孔隙度,降低土壤容重,平均增加或降低比例分别为15.5%、10.5%和7.4%。C1.5与C3.0处理之间的总孔隙度没有显著差异,但孔隙大小分布存在差异。C1.5处理显著增加了大孔隙中当量孔径为100~500 μm和 > 500 μm的孔隙度,增幅分别为81.6%和275.3%,而C3.0处理显著降低了大孔隙中当量孔径100~500 μm的孔隙度,降幅为32.9%。C3.0处理当量孔径 < 25 μm的孔隙度显著大于C0处理和C1.5处理,增幅分别为13.8%和16.3%。C1.5处理的欧拉特征值最低,分形维数、最紧实层孔隙度和平均孔隙直径最大。各处理土壤孔隙的各向异性没有显著差异。  【结论】  长期施用水稻秸秆生物炭能够显著增加稻田土壤有机碳含量和总孔隙度,降低土壤容重。施用适量生物炭会增加土壤大孔隙度和土壤孔隙的连通性,但是过量施用生物炭可能会降低土壤大孔隙度和土壤孔隙的通气导水能力。炭化秸秆还田量与孔隙结构之间的定量关系还需深入研究。  相似文献   

19.
土壤水分特征曲线的分形模拟   总被引:17,自引:0,他引:17  
Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scaling behavior of soil; relationships were established among the fractal dimension of SWRC, the fractal dimension of soil mass, and soil texture; and the model was used to estimate SWRC with the estimated results being compared to experimental data for verification. The derived fractal model was in a power-law form, similar to the Brooks-Corey and Campbell empirical functions. Experimental data of particle size distribution (PSD), texture, and soil water retention for 10 soils collected at different places in China were used to estimate the fractal dimension of SWRC and the mass fractal dimension. The fractal dimension of SWRC and the mass fractal dimension were linearly related. Also, both of the fractal dimensions were dependent on soil texture, i.e., clay and sand contents. Expressions were proposed to quantify the relationships. Based on the relationships, four methods were used to determine the fractal dimension of SWRC and the model was applied to estimate soil water content at a wide range of tension values. The estimated results compared well with the measured data having relative errors less than 10% for over 60% of the measurements. Thus, this model, estimating the fractal dimension using soil textural data, offered an alternative for predicting SWRC.  相似文献   

20.
Adsorption isotherms of nitrogen at 80 K were measured on thermally modified peat soils. The isotherms were used to evaluate the surface fractal dimension from the Frenkel‐Halsey‐Hill equation. We also tested if surface characteristics were correlated to the water holding capacity index, which characterizes the degree of the secondary transformation of peat soils. In most cases the thermal treatment lowered the value of the surface fractal dimension, i.e. diminished the roughness of the part of the surface that adsorbs nitrogen molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号