首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments are described which measured the effects on grass yield of field traffic, by a tractor and slurry tanker, and of soil loosening. Traffic in spring was found to produce the greatest reduction in grass yield. Yield reduction following this traffic was mainly limited to first harvest, with the extent of the reduction being dependent on the number of machinery passes within the same wheel tracks and on the degree of damage caused. Soil loosening was found significantly to reduce grass yield at the subsequent harvest.  相似文献   

2.
An experiment was conducted to evaluate the effect of residual sodium carbonates (RSC) of irrigation water on the growth and yield of sugarcane grown on sierozem light textured alkaline soil with sodic ground water and to study the performance of some promising sugarcane genotypes under these conditions. Treatments consisted of five levels of irrigations water viz RSC 2.8, 6.5, 12 me l−1 and RSC 6.5 and 12.0 me l−1 fully amended with gypsum. Plant and ratoon crops of eight genotypes of sugarcane were harvested. Cane yield and yield attributing characters like cane height, number of internodes per cane and number of millable canes were recorded. Juice quality viz percent juice extraction, percent sucrose, and commercial cane sugar (CCS%) in juice were determined at the harvest of crop. For both plant and ratoon crops, the average cane yield of all the genotypes of sugarcane and cane yield attributing characters decreased significantly with the increase in RSC of irrigation water to 6.5 and 12.0 me l−1 (35% and 51% decline in the average cane yield for plant crop). For ratoon crop, the corresponding decrease in the average cane yield was less than the plant crop (only 14% and 21%). Amending RSC with gypsum increased the yield in all genotypes. The cane yield of various genotypes obtained under amended RSC with gypsum treatments were almost equal to the yield obtained under RSC 2.8 me l−1 treatment (89% to 92% average cane yield for plant crop and 93% to 96% for ratoon crop). The effect of RSC of irrigation was variable for different genotypes (for example, for the plant crop of CoH 97, 65% and 76% and for CoH 108, 9% and 20% decline in the cane yield was observed with the application of high RSC irrigation water). As compared to plant crop, the ratoon crop of all genotypes recorded higher average cane yield and lesser decline in the cane yield with the application of high RSC irrigation water. Average juice extraction % decreased from 40.5% to 35.8%, and sugar yield decreased significantly (5.61 to 2.91 t ha−1 for plant crop and 6.18 to 5.38 t ha−1 for ratoon crop) with the increase in RSC of irrigation water, and amending RSC with gypsum increased the juice extraction % and sugar yield per unit area.  相似文献   

3.
The wheat- (Triticum aestivum L.) and corn- (Zea mays L.) rotation system is important for food security in Northwest China. Grain yield and water-use efficiency [WUE: grain yield/estimated evapotranspiration (ET)] were recorded during a 24-year fertilization trial in Pingliang (Gansu, China). Mean yields of wheat for the 16 years, starting in 1981, ranged from 1.29 Mg ha−1 for unfertilized plots (CK) to 4.71 Mg ha−1 for plots that received manure (M) annually with nitrogen (N) and phosphorus (P) fertilizers (MNP). Corn yields for the 6 years, starting in 1979, averaged 2.29 and 5.61 Mg ha−1 for the same respective treatments. Whether the years were dry, normal or wet, average grain yields and WUEs for both crops were consistently highest in the MNP and lowest in the CK treatment, and were always lower in the N than in the M treatment and in all others treatments that received N along with P fertilizers. More importantly, WUEs for MNP and for straw along with N annually and P every second year (SNP) were always higher than the other fertilized treatments in dry years. Compared to yield data, coefficients of variance (CV) for WUEs were consistently low for all treatments, suggesting that WUEs were relatively stable from year to year. Yields and WUEs declined over time, except in the CK and MNP treatments for wheat. Declined yields of wheat for the N and M treatments were comparable, and the decline for the NP treatment was similar to that for the SNP treatment. Likewise, corn yields and WUEs declined for all treatments. Grain yields were significantly correlated with ET, with slopes ranging from 0.5 to 1.27 kg m−3 for wheat and from 1.15 to 2.03 kg m−3 for corn. Balanced fertilization and long-term addition of organic material to soil should be encouraged in this region to maximize the use of stored soil water, arrest grain yields decline, and ensure sustainable productivity using this intensive cereal cropping system.  相似文献   

4.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

5.
In this work we tested the influence of different solutions of a hydrophobic polymer named Guilspare®, applied to the soil surface to reduce soil evaporation, on the soil water status, soil temperature, crop performance and weed emergence. Two tests were carried out on a farm of the Guadalquivir river valley, southwest Spain, one with a maize crop and the other with bare soil. In the test with maize, we evaluated the effect of applying a solution of 2% v/v of Guilspare® in water, at the rate of 3 l m−2, on the crop performance and weed emergence. On both the treated and the untreated control plots, three rates of irrigation were applied, namely 100, 75 and 50% of the locally determined optimal irrigation depth to cover the crop needs for an optimum development and yield. For the case of 50% of the irrigation dose, the performance of the crop treated with the polymer (T50) was much better than that of the untreated control plot (C50). The crop height and green leaf area index for T50 were nearly as good as for the C100 control plants receiving 100% of the irrigation dose. The T50 crop was 73% of the yield of the treated and fully irrigated T100 crop, while the C50 yield was only 38% of the C100 yield. The treated crop reached the different phenological stages quicker than the untreated crop. The polymer was effective in reducing weed emergence. In the test with bare soil, 0.8% v/v of Guilspare® in water, at the rate of 1 l m−2, kept levels of water content in the soil as high as other solutions with greater amounts both of polymer and water. The average soil water content during the irrigation period in this lower treatment was 34 and 53% higher at depths of 0.15 and 0.25 m, respectively, than in the untreated plots. No influence of the polymer on soil temperature was observed. Results from additional measurements on weed emergence and hydraulic conductivity of the soil surface showed that the polymer was still effective 7 months after application. In fact, the hydraulic conductivity in the range near saturation was 44% greater in the treated plots than in the untreated ones, and the number of weeds was 27% lower.  相似文献   

6.
Fertilization is an important cause of groundwater contamination with nitrate in agricultural soils. The objectives of the present work were: (i) to quantify the nitrate leaching in two fertilized and irrigated soils of the Pampas Region, Argentina; (ii) to test the ability of the NLEAP model to predict residual and leached nitrate in those soils. The soils were a Typic Hapludoll and a Typic Argiudoll. The treatments were: natural grassland never ploughed or fertilized; maize with a short history of fertilization; maize with a long history of fertilization; irrigated maize with a long history of fertilization. Both sites were sampled after harvest in two consecutive years to a 3 m depth. Residual nitrate and potential losses below 150 cm were estimated by NLEAP model. The average amount of nitrate (NO3-N), including values of all treatments, in the upper layer (0–1.5 m) was 128 kg NO3-N ha−1 in the first sampling date and was consistently lower in the second sampling date (38 kg NO3-N ha−1). In the deeper layer (1.5–3 m) these values were 80 and 28 kg NO3-N ha−1 for the first and second sampling date, respectively. Differences between the non-fertilized and the fertilized treatments were significantly smaller in the second sampling date. Obtained results suggest that the rainfall previous to the first sampling was not enough to displace nitrate below 3 m depth. The afterwards heavy rainfall leached nitrate previously accumulated in the soil. Complementary irrigation did not affect nitrate movements. Simulated residual and leached nitrate showed a high correlation with observed values. Nitrate leaching was more associated to rainfall regime and crop yields than to soil type. Simulated residual and leached nitrate showed a high correlation with measured values in both soils, which suggests that NLEAP was appropriate to predict soil nitrate leaching under the studied conditions.  相似文献   

7.
Cotton is commonly grown in many arid and semi-arid regions of the world having sodic ground waters. A field plot study was, therefore, conducted for 2 years to study the effect of sustained sodic irrigation on yield and fibre quality of two hirustum cotton cultivars (F-505 and F-846) and one arborium cultivar (LD-327). The exchangeable sodium percentage (ESP) of 0–30 cm soil under sustained canal water (CW) irrigation treatment was 3.5 whereas long-term irrigations (for more than 10 years) with sodic waters having residual sodium carbonate (RSC) of 5, 10 and 15 me l−1 resulted in ESP bulid-up of 16.4, 39.6 and 56.2, respectively. These sodic waters were used for irrigation in the respective plots, for both years of the study. High ESP of the soil decreased the growth (in terms of plant height) and yield of all the three cotton cultivars. The rate of decline in plant height at 50, 80 and 140 days of sowing (DAS) was maximum in F-505 and minimum in F-846. Compared with CW treatment, relative seed-cotton yield under 16.4, 39.6 and 56.2 ESP levels obtained with respective sodic water treatments for 2 years were 99, 70 and 69%, respectively in F-846, 101, 46 and 29%, respectively in F-505 and 98, 67 and 49%, respectively in LD-327. Similar trends were observed in case of boll number per square metre and boll weight. The cultivar F-846 produced heavier bolls than the other two cultivars under ESP levels of 56.2 obtained under RSC15 treatment which helped this cultivar to perform relatively better. The harmful effect of sodic waters on fibre quality (2.5% span length, micronaire value and bundle strength) were also not observed in the case of F-846. A slight deterioration in fibre quality was, however, observed in cultivars F-505 and LD-327 at an ESP of 56.2 in the soil.  相似文献   

8.
This study was designed to evaluate the yield response of low-energy precision application (LEPA) and trickle-irrigated cotton grown on a clay-textured soil under the arid Southeast Anatolia Project (GAP) area conditions during the 1999 growing season at Koruklu in Turkey. The effects of four different irrigation levels (100, 75, 50, and 25% of cumulative Class-A pan evaporation on a 6-day basis) for LEPA, and two irrigation intervals (3-day and 6-day) and three different levels (100, 67, and 33% of cumulative Class-A pan evaporation on a 3-day and 6-day basis) for the trickle system on yield were investigated. Water was applied to alternate furrows through the double-ended Fangmeier drag-socks in the LEPA system. Trickle irrigation laterals were laid out on the soil surface at a spacing of 1.40 m. A total of 814 mm of water was applied to the full-irrigation treatments (100%) for both irrigation systems. Seasonal water use ranged from 383 to 854 mm in LEPA treatments; and 456 to 868 mm in trickle treatments. Highest average cotton yield of 5850 kg/ha was obtained from the full-irrigation treatment (100%) in trickle-irrigated plots with 6-day intervals. The highest yield in LEPA plots was obtained in LEPA-100% treatment with an average value of 4750 kg/ha. Seed cotton yields varied from 2660 to 5040 kg/ha and 2310 to 5850 kg/ha in trickle irrigation plots with 3-day and 6-day intervals, respectively, and from 2590 to 4750 kg/ha in LEPA plots. Irrigation levels both in LEPA and trickle-irrigated plots significantly increased yield. However, there was no significant yield difference between 100 and 67% irrigation levels in trickle-irrigated plots. Maximum irrigation water use efficiency (IWUE) and water use efficiency (WUE) were found as 0.813 and 0.741 kg/m3 in trickle-irrigated treatment of 67% with 6-day interval. Both IWUE and WUE values varied with irrigation quantity and frequency. The research results revealed that both the trickle and LEPA irrigation systems could be used successfully for irrigating cotton crop under the arid climatic conditions of the GAP area in Turkey.  相似文献   

9.
Maize (Zea mays L.) is an important food crop for irrigated regions in the world. Its growth and production may be estimated by different crop models in which various relationships between growth and environmental parameters are used. For simulation of maize growth and grain yield, a simulation model was developed (Maize Simulation Model, MSM). Dynamic flow of water, nitrogen (N) movement, and heat flow through the soil were simulated in unsteady state conditions by numerical analysis in soil depth of 0–1.8 m. Hourly potential evapotranspiration [ETp(t)] for maize field was estimated directly by Penman–Monteith method. Hourly potential evaporation [Ep(t)] was estimated based on ETp(t) and canopy shadow projection. Actual evaporation of soil surface was estimated based on its potential value, relative humidity of air, water pressure head and temperature at soil surface layer. Actual transpiration (Ta(t)) was estimated based on soil water content and root distribution at each soil layer. Hourly N uptake by plant was simulated by N mass flow and diffusion processes. Hourly top dry matter production (HDMAj + 1, where j is number of hours after planting) was estimated by hourly corrected intercepted radiation (RSLTj + 1) by plant leaves [determined from leaf area index (LAIj + 1)] with air temperature, the maximum and minimum plant top N concentration and the amounts of nitrogen uptake. The value of LAIj + 1 at each hour was estimated by the accumulated top dry matter production at previous hour using an empirical equation. Maize grain yield was estimated by a relationship between harvest index and seasonal plant top dry matter production. The model was calibrated using data obtained under field conditions by a line source sprinkler irrigation. When the values of water and nitrogen application were optimum, grain yield (moisture content of 15.5%) was 16.2 Mg ha−1. Model was validated using two independent experimental data obtained from other experiments in the Badjgah (Fars province). The experimental results validated the proposed simulation model fairly well.  相似文献   

10.
Crop yield is primarily water-limited in areas of West Asia and North Africa with a Mediterranean climate. Ten years of supplemental irrigation (SI) experiments in northern Syria were conducted to evaluate water–yield relations for bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L.), and optimal irrigation scheduling was proposed for various rainfall conditions. The sensitive growth stages of wheat to water stress were from stem elongation to booting, followed by anthesis, and grain-filling. Water stress to which crop subjected depends on rainfall and its distribution during the growing season; the stress started from early March (stem-elongation stage) or even in seedling stage in a dry year, and from mid-April (anthesis) in an average or wet year. Crop yield linearly increased with increase in evapotranspiration (ET), with an increase of 160 kg for bread wheat and of 116 kg for durum wheat per 10 mm increase of ET above the threshold of 200 mm. Water-use efficiency (WUE) with a yield ≥3 t ha−1 was ca. 60% higher than that with yield <3 t ha−1; this emphasises the importance of that to achieve effective use of water, optimal water supply and relatively high yields need to be ensured. Quadratic crop production functions with the total applied water were developed and used to estimate the levels of irrigation water for maximizing yield, net profit and levels to which the crops could be under-irrigated without reducing income below that which would be earned for full SI under limited water resources. The analysis suggested that irrigation scenarios for maximizing crop yield and/or the net profit under limited land resource conditions should not be recommended. The SI scenarios for maximizing the profit under limited water resource conditions or for a targeted yield of 4–5 t ha−1 were recommended for sustainable utilization of water resources and higher WUE. The time of irrigation was also suggested on the basis of crop sensitivity index to water stress taking rainfall probability and available soil water into account.  相似文献   

11.
Vast rainfed rice area (12 million ha) of eastern India remains fallow after rainy season rice due to lack of appropriate water and crop management strategies inspite of having favourable natural resources, human labourers and good market prospects. In this study, a short duration crop, maize, was tried as test crop with different levels of irrigation during winter season after rainy season rice to increase productivity and cropping intensity of rainfed rice area of the region. Maize hybrid of 120 days duration was grown with phenology based irrigation scheduling viz., one irrigation at early vegetative stage, one irrigation at tassel initiation, two irrigation at tassel initiation + grain filling, three irrigation at early vegetative + tassel initiation + grain filling and four irrigation at early vegetative + tassel initiation + silking + grain-filling stages. Study revealed that one irrigation at tassel initiation stage was more beneficial than that of at early vegetative stage. Upto three irrigation, water use efficiency (WUE) was increased linearly with increased number of irrigation. With four irrigations, the yield was higher, but WUE was lower than that of three irrigations, which might be due to increased water application resulted in increase crop water use without a corresponding increase of yield for the crop with four irrigations. The crop coefficients (Kc) at different stages of the crop were derived after computing actual water use using field water balance approach. The crop coefficients of 0.42–0.47, 0.90–0.97, 1.25–1.33, and 0.58–0.61 were derived at initial, development, mid and late season, respectively with three to four irrigation. Study showed that leaf area index (LAI) was significantly correlated with Kc values with the R2 values of 0.93. When LAI exceeded 3.0, the Kc value was 1. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

12.
Frequent fertigation of crops is often advocated in the technical and popular literature, but there is limited evidence of the benefits of high-frequency fertigation. Field experiments were conducted on an Indo-American Hybrid var., Creole Red, of onion crop during three winter seasons of 1999–2000 through 2001–2002 in coarse-textured soil of Delhi under the semi-arid region of India. Three irrigation levels of 60, 80 and 100% of the crop evapotranspiration (ET) and four fertigation frequencies of daily, alternate day, weekly and monthly comprised the fertigation treatment. Analysis of soil samples indicated considerable influence of fertigation frequency on NO3-N distribution in soil profile. NO3-N in lower soil profiles (30.0–60.0 cm soil depth) was marginally affected in daily, alternate day and weekly fertigation. However, fluctuations of NO3-N content in 0.0–15.0, 15.0–30.0, 30.0–45.0 and 45.0–60.0 cm soil depth was more in monthly fertigation frequency. The level of soil NO3-N after the crop season shows that more NO3-N leached through the soil profile in monthly fertigation frequency. Amounts of irrigation water applied in three irrigation treatments proved to be too small to cause significant differences in the content of NO3-N leached beyond rooting depth of onion. Yield of onion was not significantly affected in daily, alternate day and weekly fertigation, though there was a trend of lower yields with monthly fertigation. The highest yield was recorded in daily fertigation (28.74 t ha−1) followed by alternate day fertigation (28.4 t ha−1). Lowest yield was recorded in monthly fertigation frequency (21.4 t ha−1). Application of 56.4 cm irrigation water and 3.4 kg ha−1 urea per fertigation (daily) resulted in highest yield of onion with less leaching of NO3-N.  相似文献   

13.
Kuttanad, the low-lying tract in Kerala State of south-west India, is a place where drainage problems have caused the agricultural production to remain low. The problem is more severe in the acid sulphate soils of Kuttanad. Besides the problems inherent to acid sulphate soils, the area also experiences problems of flooding, lack of fresh water and intrusion of saline water from the Arabian Sea. A subsurface drainage system consisting of 10 cm diameter clay tiles, each of 60 cm length, was installed at a depth of 1 m with two different spacings of 15 and 30 m for evaluating its influence in improving soil quality and crop production. Many of the critical crop growth parameters in the subsurface drained area, particularly the grain yield and 100 grain weight, were significantly superior to that of the ill-drained areas. Drain spacings up to 30 m was found to significantly improve the productivity of the area. The overall increase in rice yield due to subsurface drainage was 1.36 t/ha. It was also found that subsurface drainage could remove the chemical heterogeneity of soil which is the root cause for patchy crop growth and uneven ripening of rice crop in the area. Acidity in the subsurface drained area was always lower throughout the cropping season. The salinity in the soil could be controlled considerably by subsurface drainage. The iron transformations were not serious enough to cause concern for rice cultivation when subsurface drainage was adopted. Accumulation of sulphates in insoluble form occurred during drainage due to the oxidation of pyrite. Subsurface drainage was also very efficient in leaching sodium, calcium and magnesium. Chloride content in soil decreased drastically during drainage.  相似文献   

14.
The temporal stability of soil water content patterns may have profound implications for precision agriculture in general and water management in particular. Spatio-temporal variability in soil water was assessed over four fields in a two-year potato (Solanum tuberosum L.) and barley (Hordeum vulgare L.) rotation to determine the potato yield implications and the potential for precision water management based on a stable spatial pattern of soil water. A hammer-driven time domain reflectometry probe was used to measure soil water content repeatedly along 10 transects. Irrigated, un-irrigated, and late irrigated treatments were employed. The temporally stable soil water pattern was mapped and compared with elevation and soil particle size classifications. A temporal stability model explained 47% of the observed variability in soil water content. An additional 20% of the variability was attributed to random measurement error. Calibrated in 2002, the model predicted water content (root mean square error of 0.05 m3 m−3) along transects in 2003 from a single measurement at the field edge. Field-scale trends and extended (>100 m) wet and dry segments were observed along transects. Coarser particle size class soils were generally drier. Potato yield increased linearly with water content in un-irrigated areas. Yield was comparatively high in the drier areas for the irrigated treatment but was highly variable and frequently poor in the wetter areas. For the late-irrigated treatment, a strong yield response to added water was evident in the dry areas; however, the yield response was neutral to negative in the wetter areas. Knowledge of the underlying stable soil water distribution could provide a useful basis for precision water management.  相似文献   

15.
The effect of irrigation frequency on soil water distribution, potato root distribution, potato tuber yield and water use efficiency was studied in 2001 and 2002 field experiments. Treatments consisted of six different drip irrigation frequencies: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days), with total drip irrigation water equal for the different frequencies. The results indicated that drip irrigation frequency did affect soil water distribution, depending on potato growing stage, soil depth and distance from the emitter. Under treatment N1, soil matric potential (ψm) Variations at depths of 70 and 90 cm showed a larger wetted soil range than was initially expected. Potato root growth was also affected by drip irrigation frequency to some extent: the higher the frequency, the higher was the root length density (RLD) in 0–60 cm soil layer and the lower was the root length density (RWD) in 0–10 cm soil layer. On the other hand, potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency. High frequency irrigation enhanced potato tuber growth and water use efficiency (WUE). Reducing irrigation frequency from N1 to N8 resulted in significant yield reductions by 33.4 and 29.1% in 2001 and 2002, respectively. For total ET, little difference was found among the different irrigation frequency treatments.  相似文献   

16.
Deep percolation and nitrate leaching are important considerations in the design of sprinkler systems. Field experiments were therefore conducted to investigate the influence of nonuniformity of sprinkler irrigation on deep percolation and spatial distributions of nitrogen and crop yield during the growing season of winter wheat at an experiment station in Beijing, China. Three experimental plots of a sandy clay loam soil in the 0–40 cm depth interval and a loamy clay soil below 40 cm were irrigated with a sprinkler irrigation system that had a seasonal averaged Christiansen irrigation uniformity coefficient (CU) varying from 72 to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system. The corresponding seasonal averaged CU for fertigation varied from 71 to 85%. Daily observation of matrix water potentials in the root zone showed that little deep percolation occurred. Consequently, the effect of sprinkler uniformity on deep percolation was minor during the irrigation season for the soil tested. Intensive gravimetric soil core samplings were conducted several times during the irrigation season in a grid of 5 m × 5 m for each plot to determine the spatial and temporal variation of NH4-N and NO3-N contents. Soil NH4-N and NO3-N exhibited high spatial variability in depth and time during the irrigation season with CU values ranging from 23 to 97% and the coefficient of variation ranging from 0.04 to 1.06. A higher uniformity of sprinkler fertigation produced a more uniform distribution of NH4-N, but the distribution of NO3-N was not related to fertigation. Rather it was related to the spatial variability of NO3-N before fertigation began. At harvest, the distribution of dry matter above ground, nitrogen uptake, and yield were measured and the results indicated that sprinkler fertigation uniformity had insignificant effects on the parameters mentioned above. Field experimental results obtained from this study suggest that sprinkler irrigation if properly managed can be used as an efficient and environment-friendly method of applying water and fertilizers.  相似文献   

17.
《Agricultural Systems》2007,94(1-3):1-24
Site-specific nutrient management (SSNM) provides a field-specific approach for dynamically applying nutrients to rice as and when needed. This approach advocates optimal use of indigenous nutrients originating from soil, plant residues, manures, and irrigation water. Fertilizers are then applied in a timely fashion to overcome the deficit in nutrients between the total demand by rice to achieve a yield target and the supply from indigenous sources. We estimated environmental impact of SSNM and evaluated economic benefits in farmers’ fields in southern India, the Philippines, and southern Vietnam for two cropping seasons in 2002–2003. On-farm research comparing SSNM and the farmers’ fertilizer practice showed increased yield with SSNM for the three locations, even with reduced fertilizer N rates in some cases. SSNM increased partial factor productivity (kg grain kg−1 fertilizer N) when fertilizer N use efficiency with the farmers’ fertilizer practice was relatively low such as at locations in Vietnam and the Philippines. Use of on-farm data with the DNDC model revealed lower percentage of total N losses from applied fertilizers with SSNM during an annual cycle of cropping and fallows. At the location in India, SSNM showed the potential of obtaining higher yields with increased fertilizer N use while maintaining low N2O emissions. SSNM in the Philippines and Vietnam showed greater yields with less fertilizer N through improved fertilizer use efficiency, which could reduce N2O emissions and global warming. Use of SSNM never resulted in increased emissions of N2O per unit of grain yield, and in environments where higher yield could be obtained with less fertilizer N, the use of SSNM could result in reduced N2O emissions per unit of grain yield. For the economic analysis, data were generated through focus group discussions (FGD) with farmers practicing SSNM and with other farmers not practicing SSNM. Based on FGD, the seasonal increase in yield of farmers solely due to use of SSNM averaged 0.2 Mg ha−1 in southern Vietnam, 0.3 Mg ha−1 in the Philippines, and 0.8 Mg ha−1 in southern India. Farmers practicing SSNM at the study site in India used less pesticide. The added net annual benefit due to use of SSNM was 34 US$ ha−1 year−1 in Vietnam, 106 US$ ha−1 year−1 in the Philippines, and 168 US$ ha−1 year−1 in India. The increased benefit with SSNM was attributed to increased yield rather than reduced costs of inputs.  相似文献   

18.
The Penman–Monteith (P–M) model with a variable surface canopy resistance (rc) was evaluated to estimate latent heat flux (LE) or crop evapotranspiration (ET) over a furrow-irrigated tomato crop under different soil water status and atmospheric conditions. The hourly values of rc were computed as a function of environmental variables (air temperature, vapor pressure deficit, net radiation, and soil heat flux) and a normalized soil water factor (F), which varies between 0 (wilting point, θWP) and 1 (field capacity, θFC). The Food and Agricultural Organization (FAO-56) method was also evaluated to calculate daily ET based on the reference evapotranspiration, crop coefficient and water stress coefficient. The performance of the P–M model and FAO-56 method were evaluated using LE values obtained from the Bowen ratio system. On a 20 min time interval, the P–M model estimated daytime variation of LE with a standard error of the estimate (SEE) of 46 Wm−2 and an absolute relative error (ARE) of 3.6%. Thus, daily performance of the P–M model was good under soil water content ranging from 118 to 83 mm (θFC and θWP being 125 and 69 mm, respectively) and LAI ranging from 1.3 to 3.0. For this validation period, the calculated values of rc and F ranged between 20 and 114 s m−1 and between 0.87 and 0.25, respectively. In this case, the P–M model was able to predict daily ET with a SEE of 0.44 mm h−1 (1.1 MJ m−2 d−1) and an ARE of 3.9%. Furthermore, the FAO-PM model computed daily ET with SEE and ARE values of 1.1 mm h−1 (2.8 MJ m−2 d−1) and 5.2%, respectively.  相似文献   

19.
Optimizing irrigation scheduling for winter wheat in the North China Plain   总被引:1,自引:0,他引:1  
In the North China Plain (NCP), more than 70% of irrigation water resources are used for winter wheat (Triticum aestivum L.). A crucial target of groundwater conservation and sustainable crop production is to develop water-saving agriculture, particularly for winter wheat. The purpose of this study was to optimize irrigation scheduling for high wheat yield and water use efficiency (WUE). Field experiments were conducted for three growing seasons at the Wuqiao Experiment Station of China Agriculture University. Eleven, four and six irrigation treatments, consisting of frequency of irrigation (zero to four times) and timing (at raising, jointing, booting, flowering and milking stage), were employed for 1994/95, 1995/96 and 1996/97 seasons, respectively. Available water content (AWC), rain events, soil water use (SWU), evapotranspiration (ET) and grain yield were recorded, and water use efficiency (WUE) and irrigation water use efficiency (IWUE) were calculated.The results showed that after a 75-mm pre-sowing irrigation, soil water content and AWC in the root zone of a 2-m soil profile during sowing were 31.1% (or 90.7% of field capacity) and 16.1%, respectively. Rainfall events were variable and showed a limited impact on AWC. The AWC decreased significantly with the growth of wheat. At the jointing stage no water deficits occurred for all treatments, at the flowering stage water deficits were found only in the rain-fed treatment, and at harvest all treatments had moderate to severe soil water deficits. The SWU in the 2-m soil profile was negatively related to the irrigation water volume, i.e. applying 75 mm irrigation reduced SWU by 28.2 mm. Regression analyses showed that relationships between ET and grain yield or WUE could be described by quadratic functions. Grain yield and WUE reached their maximum values of 7423 kg/ha and 1.645 kg/m3 at the ET rate of 509 and 382 mm, respectively. IWUE was negatively correlated with irrigated water volume. From the above results, three irrigation schedules: (1) pre-sowing irrigation only, (2) pre-sowing irrigation + irrigation at jointing or booting stage, and (3) pre-sowing irrigation + irrigations at jointing and flowering stages were identified and recommended for practical winter wheat production in the NCP.  相似文献   

20.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号