首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, leguminous crops like Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides, and Pueraria phaseoloides. grown as soil cover individually in the interspaces of a 19‐yr‐old coconut plantation in S. Andaman (India) were assessed for their influence on various microbial indices (microbial biomass C, biomass N, basal respiration, ergosterol, levels of ATP, AMP, ADP) in soils (0–50 cm) collected from these plots after 10 years. The effects of these cover crops on . CO2 (metabolic quotient), adenylate energy charge (AEC), and the ratios of various soil microbial properties viz., biomass C : soil organic C, biomass C : N, biomass N : total N, ergosterol : biomass C, and ATP : biomass C were also examined. Cover cropping markedly enhanced the levels of organic matter and microbial activity in soils after the 10‐yr‐period. Microbial biomass C and N, basal respiration, . CO2, ergosterol and levels of ATP, AMP, ADP in the cover‐cropped plots significantly exceeded the corresponding values in the control plot. While the biomass C : N ratio tended to decrease, the ratios of biomass N : total N, ergosterol : biomass C, and ATP : biomass C increased significantly due to cover cropping. Greater ergosterol : biomass C ratio in the cover‐cropped plots indicated a decomposition pathway dominated by fungi, and high . CO2 levels in these plots indicated a decrease in substrate use efficiency probably due to the dominance of fungi. The AEC levels ranged from 0.80 to 0.83 in the cover‐cropped plots, thereby reflecting greater microbial proliferation and activity. The ratios of various microbial and chemical properties could be assigned to three different factors by principal components analysis. The first factor (PC1) with strong loadings of ATP : biomass C ratio, AEC, and . CO2 reflected the specific metabolic activity of soil microbes. The ratios of ergosterol : biomass C, soil organic C : total N, and biomass N : total N formed the second factor (PC2) indicating a decomposition pathway dominated by fungi. The biomass C : N and biomass C : soil organic C ratios formed the third principal component (PC3), reflecting soil organic matter availability in relation to nutrient availability. Overall, the study suggested that Pueraria phaseoloides. or Atylosia scarabaeoides were better suited as cover crops for the humid tropics due to their positive contribution to soil organic C, N, and microbial activity.  相似文献   

2.
Soil samples were taken at 0—10 cm and 10—20 cm depth from 7 clay‐marsh sites used as grassland close to Nordenham in the north of Lower Saxony, Germany. The sites had been contaminated by deposition of heavy metals from industrial exhausts, the level of contamination varying according to their distances from a lead factory. The soils were analyzed to assess the depth‐specific effects of NH4NO3 extractable and total amounts of Zn, Pb, and Cu on basal respiration, adenylates, ergosterol, and biomass C estimated by fumigation extraction (FE) and substrate‐induced respiration (SIR). Most of the chemical and biological properties studied decreased with depth, but depth‐specific differences in the relationships between these properties rarely occurred. The biomass C/soil organic C ratio was at a relatively high level, but most consistently reflected pollution as a decrease with increasing heavy metal load, independently of the method used for biomass C estimation. However, the SIR estimates were on average 44 % lower than those of FE, mainly due to pH effects. The metabolic quotient SIR‐qCO2 increased with increasing NH4NO3 extractable and total heavy metal contents, but also with decreasing pH, whereas the FE‐qCO2 remained unaffected by heavy metals and pH. The ATP/FE‐biomass C ratio was on average 8.2 μmol g—1 and negatively affected by soil pH, but also by total Zn, NH4NO3 extractable Zn and Cu. The ergosterol/FE‐biomass C ratio was on average 0.29 %, i.e. at a very low level, and increased with increasing heavy metal content. This indicates a change in the community structure towards fungi.  相似文献   

3.
《Applied soil ecology》2011,47(3):405-412
The nutrient-specific effects of tillage on microbial activity (basal respiration), microbial biomass (C, N, P, S) indices and the fungal cell-membrane component ergosterol were examined in two long-term experiments on loess derived Luvisols. A mouldboard plough (30 cm tillage depth) treatment was compared with a rotary harrow (8 cm tillage depth) treatment over a period of approximately 40 years. The rotary harrow treatment led to a significant 8% increase in the mean stocks of soil organic C, 6% of total N and 4% of total P at 0–30 cm depth compared with the plough treatment, but had no main effect on the stocks of total S. The tillage effects were identical at both sites, but the differences between the sites of the two experiments were usually stronger than those between the two tillage treatments. The rotary harrow treatment led to a significant increase in the mean stocks of microbial biomass C (+18%), N (+25%), and P (+32%) and to a significant decrease in the stocks of ergosterol (−26%) at 0–30 cm depth, but had no main effect on the stocks of microbial biomass S or on the mean basal respiration rate. The mean microbial biomass C/N (6.4) and C/P (25) ratios were not affected by the tillage treatments. In contrast, the microbial biomass C/S ratio was significantly increased from 34 to 43 and the ergosterol-to-microbial biomass C ratio significantly decreased from 0.20% to 0.13% in the rotary harrow in comparison with the plough treatment. The microbial biomass C-to-soil organic C ratio varied around 2.1% in the plough treatment and declined from 2.6% at 0–10 cm depth to 2.0 at 20–30 cm depth in the rotary harrow treatment. The metabolic quotient qCO2 revealed exactly the inverse relationships with depth and treatment to the microbial biomass C-to-soil organic C ratio. Rotary harrow management caused a reduction in the microbial turnover in combination with an improved microbial substrate use efficiency and a lower contribution of saprotrophic fungi to the soil microbial community. This contrasts the view reported elsewhere and points to the need for more information on tillage-induced shifts within the fungal community in arable soils.  相似文献   

4.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

5.
Little information is available about the long‐term effects of deforestation and cultivation on biochemical and microbial properties in wet tropical forest soils. In this study, we evaluated the general and specific biochemical properties of soils under evergreen, semi‐evergreen, and moist deciduous forests and adjacent plantations of coconut, arecanut, and rubber, established by clear felling portions of these forests. We also examined the effects of change in land use on microbial indices and their interrelationships in soils. Significant differences between the sites occurred for the biochemical properties reflecting soil microbial activity. Microbial biomass C, biomass N, soil respiration, N mineralization capacity, ergosterol, levels of adenylates (ATP, AMP, ADP), and activities of dehydrogenase and catalase were, in general, significantly higher under the forests than under the plantations. Likewise, the activities of various hydrolytic enzymes such as acid phosphomonoesterase, phosphodiesterase, casein‐protease, BAA‐protease, β‐glucosidase, CM‐cellulase, invertase, urease, and arylsulfatase were significantly higher in the forest soils which suggested that deforestation and cultivation markedly reduced microbial activity, enzyme synthesis and accumulation due to decreased C turnover and nutrient availability. While the ratios of microbial biomass C : N and microbial biomass C : organic C did not vary significantly between the sites, the ratios of ergosterol : biomass C and ATP : biomass C, qCO2 and AEC (Adenylate Energy Charge) levels were significantly higher in the forest sites indicating high energy requirements of soil microbes at these sites.  相似文献   

6.
Long‐term effects on soil chemical and soil biological properties were analyzed after an 8 y period with addition of biogenic household‐waste compost and shredded shrubs with and without N fertilization to an arable field. The addition of compost and shredded shrubs to soil increased significantly all soil organic matter–related properties. The effects of compost addition on soil chemical properties were in most cases stronger than those of adding shredded shrubs, especially the effects on total N, 0.5 M K2SO4‐extractable Corg and 0.5 M NaHCO3‐extractable phosphate. In the shredded‐shrubs treatments, basal respiration and the contents of soil microbial‐biomass C, biomass N, and fungal ergosterol were significantly increased by 40%, 45%, 67%, and 90%, respectively. In the compost treatment, only microbial‐biomass C and biomass N were significantly increased by 25% and 38%, respectively. Microbial‐biomass P remained unaffected by both organic‐amendment treatments. Nitrogen fertilization had significantly negative effects on the NaHCO3‐extractable P fraction (–22%) and on the basal respiration (–31%), but positive effects on the ergosterol content (+17%).  相似文献   

7.
The leguminous cover crops Atylosia scarabaeoides (L.) Benth., Centrosema pubescens Benth., and Pueraria phaseoloides (Roxb.) Benth., were grown in the interspaces of a 19 y–old coconut plantation and incorporated into the soil at the end of the monsoon season every year. At the end of the 12th year, soils from different depths were collected and analyzed for various microbial indices and their interrelationships. The objectives were to assess the effects of long‐term cover cropping on microbial biomass and microbial‐community structure successively down the soil profile. In general, total N (TN), organic C (OC), inorganic N, extractable P, and the levels of biological substrates viz., dissolved organic C (DOC) and N (DON), labile organic N (LON), and light‐fraction organic matter (LFOM) C and N decreased with depth at all the sites. Among sites, the cover‐cropped (CC) sites possessed significantly greater levels of TN, OC, DOC, DON, and LON compared to the control. Consequently, microbial biomass C (MBC), N (MBN), and P (MBP), CO2 evolution, and ATP levels, in general, decreased with depth at all sites and were also significantly higher in the CC sites. Among the ratios of various microbial indices, the ratio of MBC to OC and metabolic quotient (qCO2) declined with depth. Higher MBC‐to‐OC ratios and large qCO2 levels in the surface soils could be ascribed to greater levels of readily degradable C content and indicated short turnover times of the microbial biomass. In contrast, the ratios of MBC to MBN and MBC to MBP increased with depth due to low N/P availability and relatively higher C availability in the subsoils. Cover cropping tended to enhance the ratios of MBC to OC, MBC to MBN, MBC to MBP, and ergosterol to MBC and decreased the ATP‐to‐MBC ratio at all depths. The relatively lower ATP‐to‐MBC ratios in the CC site, especially in the subsoil indicated microbial‐community structure possibly dominated by fungi. By converting the ergosterol content to fungal biomass, it was observed that fungi constituted 52%–63% of total biomass C at the CC site, but only 33%–40% of total biomass C at the control site. Overall, the study indicated that leguminous cover crops like P. phaseoloides or A. scarabaeoides significantly enhanced the levels of OC, N and microbial activity in the soils, even down to 50 cm soil depth.  相似文献   

8.
During re‐conversion of short‐rotation poplar tree plantations back to arable land use, large amounts of tree residues must be incorporated into soil. A 90‐d pot experiment with and without N addition was carried out after mixing the same amounts of chaffed poplar root residues into the pots at 0–5 cm or at 0–20 cm depth. The objective was to investigate whether shallow mixing has positive effects on maize growth, reduces poplar root residue decomposition, and changes the microbial community structure towards fungi. Aboveground maize yield was strongly reduced after mixing of poplar root residues at 0–20 cm depth without N fertilization, but was not affected if mixed at 0–5 cm depth. Neither the mixing nor N fertilization had significant effects on root residue decomposition, estimated as recovered particulate organic matter. The total increase in microbial biomass C and biomass N was strongest after homogenous mixing of root residues at 0–20 cm, but remained unaffected by N fertilization. In contrast, the total amount of ergosterol remained unaffected by the mixing treatments, but responded positively to N fertilization. Shallow incorporation of poplar root residues did not affect the microbial biomass C/N ratio but disproportionately increased the fungal ergosterol to microbial biomass C ratio. Shallow incorporation of poplar root residues seems to reduce the demand for N fertilization of following crops, which should be further tested in field experiments.  相似文献   

9.
Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient (qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0–24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org (r = 0.99) and between the MB and the clay content (r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3–6.6 and 1.2–9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88–96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.  相似文献   

10.
The aim of this work was to investigate the effect of converting native savanna to Eucalyptus grandis forest on soil microbial biomass in tropics. Soil samples were collected from three sites: undisturbed native savanna (savanna), the site of a 1‐year‐old E. grandis forest (1 y), and the site of a 2‐year‐old E. grandis forest (2 y). Soil microbial biomass C (MBC), basal respiration, substrate induced respiration (SIR), soil organic carbon (SOC), microbial, and respiratory quotients were evaluated in soil samples collected from 0–20 cm depth. One year converted forest caused a significant reduction in MBC, SIR, and microbial quotient (about 70, 65 and 75 per cent, respectively). However, after 2 years of E. grandis forest growth, there was recovery of these variables. Soil basal respiration and respiratory quotient were significantly higher in 1 y forest (about 4 and 14 times, respectively) than in savanna. The results showed a significant decrease, after 2 years, in soil respiration and respiratory quotient, suggesting a recovery of soil microorganisms as time passes. In the short term, our results showed negative changes in soil microbial biomass following the conversion of native savanna to E. grandis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Ecological soil functions are protected in Germany. Thus, for the sustainable use of urban soil resources data on the function of soils to serve as a habitat are required. Soil microbial biomass and activities were studied in two surface horizons in two consecutive years at nine sites in Stuttgart, Germany, differing in land use. Microbial biomass (chloroform‐fumigation extraction, substrate‐induced respiration) and microbial activities (potential N mineralization, potential ammonium oxidation, and enzyme activities of dehydrogenase, urease, arylsulfatase, and phosphatase) were determined in 2001 and 2002. DIN/ISO standard methods were applied as far as they were available. Furthermore, soil chemical properties were determined in the 2001‐samples. Large differences in chemical and microbiological properties among surface horizons were found. Concentrations of microbial biomass and microbial activities were, however, often comparable to agricultural or forest surface soils. The lowest microbial biomass and activities were observed at a highly disturbed railway area where vegetation was missing and total organic C (TOC) had been altered by anthropogenic organic particles. In contrast, microorganisms were promoted at vegetated sites and where organic impurities were negligible. As TOC was altered by obscure organic matter, total N (TN) and not TOC closely correlated with soil microbiological properties. Biomass and activity generally decreased with depth, but mixing of organic matter resulted in more uniform depth distribution of microbial properties in one garden soil. In 2002, microbial biomass and activity were often lower compared to 2001, but interpretation of this difference hampered as the number of samples taken was probably not sufficient to address the spatial variability in soil properties. Additional studies are needed to develop simple and cost‐effective procedures for the evaluation of ecological quality of urban soils by combined efforts of city planners and soil scientists.  相似文献   

12.
Within different land‐use systems such as agriculture, forestry, and fallow, the different morphology and physiology of the plants, together with their specific management, lead to a system‐typical set of ecological conditions in the soil. The response of total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities involved in C and N cycling to different soil management was investigated in a sandy soil at a field study at Riesa, Northeastern Germany. The management systems included agricultural management (AM), succession fallow (SF), and forest management (FM). Samples of the mineral soil (0—5, 5—10, and 10—30 cm) were taken in spring 1999 and analyzed for their contents on organic C, total N, NH4+‐N and NO3‐N, KCl‐extractable organic C and N fractions (Corg(KCl) and Norg(KCl)), microbial biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With the exception of Norg(KCl), all investigated C and N pools showed a clear relationship to the land‐use system that was most pronounced in the 0—5 cm profile increment. SF resulted in greater contents of readily available C (Corg(KCl)), NH4+‐N, microbial biomass C and N, and enzyme activities in the uppermost 5 cm of the soil compared to all other systems studied. These differences were significant at P ≤ 0.05 to P ≤ 0.001. Comparably high Cmic:Corg ratios of 2.4 to 3.9 % in the SF plot imply a faster C and N turnover than in AM and FM plots. Forest management led to 1.5‐ to 2‐fold larger organic C contents compared to SF and AM plots, respectively. High organic C contents were coupled with low microbial biomass C (78 μg g—1) and N contents (10.7 μg g—1), extremely low Cmic : Corg ratios (0.2—0.6 %) and low β‐glucosidase (81 μg PN g—1 h—1) and L‐asparaginase (7.3 μg NH4‐N g—1 2 h—1) activities. These results indicate a severe inhibition of mineralization processes in soils under locust stands. Under agricultural management, chemical and biological parameters expressed medium values with exception for NO3‐N contents which were significantly higher than in SF and FM plots (P ≤ 0.005) and increased with increasing soil depth. Nevertheless, the depth gradient found for all studied parameters was most pronounced in soils under SF. Microbial biomass C and N were correlated to β‐glucosidase and L‐asparaginase activity (r ≥ 0.63; P ≤ 0.001). Furthermore, microbial biomass and enzyme activities were related to the amounts of readily mineralizable organic C (i.e. Corg(KCl)) with r ≥ 0.41 (P ≤ 0.01), suggesting that (1) KCl‐extractable organic C compounds from field‐fresh prepared soils represent an important C source for soil microbial populations, and (2) that microbial biomass is an important source for enzymes in soil. The Norg(KCl) pool is not necessarily related to the size of microbial biomass C and N and enzyme activities in soil.<?show $6#>  相似文献   

13.
为了探讨不同生长年限的人工刺槐(Robinnia pseudoacacia)林对土壤中氮素组成与微生物活性的影响及机理,本文采用"时空互代"法进行野外选点调查和采样,对典型黄土丘陵区陕西省安塞纸坊沟小流域不同林龄(10 a、15 a、30 a、38 a)人工刺槐林和撂荒地3个土层(0~10 cm、10~30 cm和30~60 cm)中的全氮、铵态氮、硝态氮、有机氮、微生物生物量碳和磷、基础呼吸及基本理化性质进行了研究。结果表明:人工刺槐林地土壤微生物生物量碳、磷含量和微生物熵都显著高于撂荒地(P<0.05)。随着人工刺槐林生长年限的增加,各层土壤铵态氮、硝态氮和有机氮含量均逐渐增加,其中有机氮的增加最显著;土壤微生物生物量碳、磷含量显著增加;微生物熵显著增大而呼吸熵显著减小;土壤有机碳、速效磷含量总体上显著增加(P<0.05);容重和碳氮比则呈下降趋势。随着土层深度的增加,氮素、有机碳、速效磷和微生物生物量碳、磷含量显著减小(P<0.05);容重和pH显著增加。土壤微生物生物量碳、磷和呼吸熵均与有机氮、全氮、硝态氮显著正相关(P<0.05)。分析发现,刺槐的生长促使土壤中微生物可利用碳增加,提高了碳的利用率,使土壤微生物量碳、磷含量增加;微生物活性的提高反过来促进了土壤氮素含量的提高,土壤中有机氮含量显著增加。与10 a生刺槐林相比,30 a生林地土壤表层的全氮含量明显增加,氮素肥力由7级(0.40 g.kg 1)上升为5级(0.87 g.kg 1)水平。  相似文献   

14.
Hydrochars and biochars are products of the carbonization of biomass in different conversion processes. Both are considered suitable soil amendments, though they differ greatly in chemical and physical composition (e.g., aromaticity, inner surface area) due to the different production processes (pyrolysis, hydrothermal carbonization), thus affecting their degradability in soil. Depending on the type, char application may provide soil microorganisms with more (hydrochars) or less (biochars) accessible C sources, thus resulting in the incorporation of nitrogen (N) into microbial biomass. A soil‐incubation experiment was conducted for 8 weeks to determine the relationship between mineral‐N concentration in the soil solution and microbial‐biomass development as well as soil respiration. An arable topsoil was amended with two hydrochars from feedstocks with different total N contents. Biochars from the same feedstocks were used for comparison. Both char amendments significantly decreased mineral‐N concentration and promoted microbial biomass compared to the nonamended control, but the effects were much stronger for hydrochar. Hydrochar application increased soil respiration significantly during the first week of incubation, simultaneous with the strongest decrease in mineral‐N concentration in the soil and an increase in microbial biomass. The amount of N detected in the microbial biomass in the hydrochar treatments accounted for the mineral N “lost” from the soil during incubation. This shows that microbial immobilization is the main sink for decreasing mineral‐N concentrations after hydrochar application. However, this does not apply to biochar, since the amount of N recovered in microorganisms was much lower than the decrease in soil mineral‐N concentration. Our results demonstrate that while both chars are suitable soil amendments, their properties need to be considered to match the application purpose (C sequestration, organic fertilizer).  相似文献   

15.
The prediction accuracy of visible and near‐infrared (Vis‐NIR) spectroscopy for soil chemical and biological parameters has been variable and the reasons for this are not completely understood. Objectives were (1) to explore the predictability of a series of chemical and biological properties for three different soil populations and—based on these heterogeneous data sets—(2) to analyze possible predictive mechanisms statistically. A number of 422 samples from three arable soils in Germany (a sandy Haplic Cambisol and two silty Haplic Luvisols) of different long‐term experiments were sampled, their chemical and biological properties determined and their reflectance spectra in the Vis‐NIR region recorded after shock‐freezing followed by freeze‐drying. Cross‐validation was carried out for the entire population as well as for each population from the respective sites. For the entire population, excellent prediction accuracies were found for the contents of soil organic C (SOC) and total P. The contents of total N and microbial biomass C and pH were predicted with good accuracy. However, prediction accuracy for the other properties was less: content of total S was predicted approximately quantitatively, whereas Vis‐NIR spectroscopy could only differentiate between high and low values for the contents of microbial N, ergosterol, and the ratio of ergosterol to microbial biomass C. Contents of microbial biomass P and S, basal respiration, and qCO2 could not be predicted. Prediction accuracies were greatest for the entire population and the Luvisol at Garte, followed by the Luvisol at Hohes Feld, whereas the accuracy for the sandy Cambisol was poor. The poor accuracy for the sandy Cambisol may have been due to only smaller correlations between the measured properties and the SOC content compared to the Luvisols or due to a general poor prediction performance for sandy soils. Another reason for the poor accuracy may have been the smaller range of contents in the sandy soil. Overall, the data indicated that the accuracy of predictions of soil properties depends largely on the population investigated. For the entire population, the usefulness of Vis‐NIR for the number of chemical and biological soil properties was evident by markedly greater correlation coefficients (measured against Vis‐NIR predicted) compared to the Pearson correlation coefficients of the measured properties against the SOC content. However, the cross‐validation results are valid only for the closed population used in this study.  相似文献   

16.
The effects of agricultural land use on organic matter content and related soil microbial and physical properties were compared with those under undisturbed native grassland in KwaZulu-Natal, South Africa. Two separate farms situated on Oxisols were used and both contained fields with continuous long-term (>20 y) cropping histories. At site 1, soil organic C content in the surface 30 cm followed the order permanent kikuyu pasture > annual ryegrass pasture > native grassland > sugarcane > maize under conventional tillage (CT). At site 2, organic C in the surface 30 cm decreased in the order kikuyu pasture > native grassland > annual ryegrass pasture > maize under zero tillage (ZT) > maize CT. Organic C, microbial biomass C, percentage organic C present as organic C, basal respiration and aggregate stability were substantially greater in the surface 5 cm under maize ZT than maize CT but this trend tended to be reversed in the 10- to 30-cm layer. In the undisturbed sites (e.g. native grassland and kikuyu pasture) the metabolic quotient increased with depth. By contrast, under maize CT and sugarcane there was no significant stratification of organic C, yet there was a sharp decrease in the metabolic quotient with depth. Aggregate stability was high under both native grassland and kikuyu pasture and it remained high to 40 cm depth under the deep-rooted kikuyu pasture. Although soil organic C content was similar under maize CT and sugarcane, values for microbial biomass C, percentage of organic present as microbial biomass, basal respiration and aggregate stability were lower, and those for metabolic quotient and bulk density were higher, under sugarcane. This was attributed to the fallow nature of the soil in the interrows of sugarcane fields. It was concluded that the loss of organic matter, microbial activity and aggregate stability is potentially problematic under maize CT, sugarcane and annual pasture and measures that improve organic matter status should be considered.  相似文献   

17.
Samples from the bio-dynamic, bio-organic, and conventional trial, Therwil, Switzerland, were analyzed with the aim of determining the effects of organic land use management on the energy metabolism of the soil microbial biomass and on the fraction of microbial residues. The contents of adenylates, adenosine triphosphate (ATP), glucosamine, muramic acid, and galactosamine were significantly largest in the biodynamic organic farming (BYODIN) treatment and significantly lowest in the conventional farming treatment with inorganic fertilization (CONMIN). In contrast, the ergosterol-to-ATP ratio and fungal C-to-bacterial C ratios were significantly lowest in the BYODIN treatment and significantly largest in the CONMIN treatment. No clear treatment effects were observed for the ergosterol content and the adenylate energy charge (AEC), the ATP-to-microbial biomass C ratio and the ergosterol-to-fungal C ratio. Ergosterol, an indicator for saprotrophic fungal biomass, and fungal residues were significantly correlated. The microbial biomass carbon-to-nitrogen ratio showed a negative relationship with the AEC and strong positive relationships with the ratios ergosterol-to-microbial biomass C, ergosterol-to-ATP and fungal C-to-bacterial C. In conclusion, the long-term application of farmyard manure in combination with organic farming practices led to an increased accumulation of bacterial residues.  相似文献   

18.
This paper studies the effect of large- and small-scale changes of soil temperature and humidity on soil microbial biomass C and N, ergosterol, carbon utilization potential, organic and inorganic N and rate of C and N mineralization at 25°C. Large-scale variations are identified with seasonal changes in temperature and humidity. To simulate small-scale changes, soil temperature and humidity were manipulated in the field. The treatment resulted in damping of temperature fluctuations and a decrease of soil humidity.The majority of the studied variables exhibit pronounced seasonality, showing a clear-cut distinction between summer (July–August) and winter (December). In summer, C mineralization rate and carbon utilization potential was high but microbial and fungal biomass (ergosterol) was low.C and N mineralization rate and microbial and fungal biomass were only affected by sampling date, demonstrating that gross parameters of biomass and activity of microorganisms are not affected by small-scale changes in temperature and humidity. In contrast, variables relating to N availability (organic N, NH4+ and NO3, microbial biomass N) and carbon utilization potential of the microbial community were highly affected by small-scale changes in soil abiotic conditions. The results suggest that changes in N dynamics induced by small-scale changes of temperature and humidity are caused by shifts in the structure of the microbial community rather than by variations in microbial biomass.  相似文献   

19.
Cycloheximide inhibits specifically the ribosomal protein synthesis of eukaryotic cells, i.e. the metabolism of soil fungi. We measured cycloheximide effects on adenylates in 20 different soils (0-10 cm depth) from arable, grass and forest land with a large variety of soil properties. The aims were (1) to assess the interactions between cycloheximide effects and soil properties and (2) to prove the relationship between cycloheximide effects on ATP and the ergosterol-to-microbial biomass C ratio, which is an indicator for the fungal proportion of the total microbial biomass. The adenylates ATP, ADP and AMP were measured 6 h after adding either 10 mg cycloheximide per gram soil in combination with 24 mg talcum per gram soil or 24 mg talcum per gram soil solely. The medians of the relative increases in AMP and ADP were 45 and 25% and the medians of the relative decreases in ATP and adenylates were −36 and −12%. These changes in adenylate composition lead to a cycloheximide-induced relative decrease in the adenylate energy charge level of 15%. The relative decrease in ATP content after cycloheximide addition was significantly correlated with the ATP-to-microbial biomass C ratio, but not with the ergosterol-to-microbial biomass C ratio. The absolute increase in ADP and the absolute decrease in ATP were affected by the clay content according to principal component analysis. The reduction of the ATP-to-microbial biomass C ratio indicates that this ratio had the potential of being an important ecotoxicological indicator of direct toxic effects of organic pollutants on soil microorganisms.  相似文献   

20.
盆栽和大田试验表明,作物根系显著影响土壤微生物体氮的含量。在田间试验条件下,根际土壤微生物体氮比非根际土壤平均高出N54.7μg/g;盆栽试验中,根际土壤微生物体氮平均含量为N77.1±13.6μg/g,而非根际土壤为N65.2±17.0μg/g,差异达显著水平,根际微生物体氮含量为非际根际土壤的1.10~2.04倍。施肥能明显增加土壤微生物体氮含量,但影响程度因肥料种类而不同。秸秆和富含有机物质的厩肥对土壤微生物体氮的影响远大于化学肥料,而且土壤微生物体氮含量随秸秆施用量增加而增加。在红油土上进行的20年长期田间定位试验结果表明,对不施肥和施氮磷处理,0—20cm土层的微生物体氮分别是N102.2和110.4μg/g;在施氮磷的基础上,每公顷配施新鲜玉米秸秆9375kg、18750kg、37500kg和厩肥37500kg时,相应土层微生物体氮分别是N147.5、163.2、286.4和265.3μg/g。培养条件下,当有效能源物质缺乏时,微生物对NH4+-N的同化固定能力远大于NO3--N,但在加入有效能源物质葡萄糖后,微生物对2种形态氮的固定量大幅度增加,且对2种形态氮的固定量趋于一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号