首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacokinetics of florfenicol 30% injectable solution was determined in lactating cows after intravenous, intramammary and intramuscular administration. Serum concentration-time data generated in the present study were analysed by non-compartmental methods based on statistical moment theory. Florfenicol half-life was 176 min, mean residence time 129 min, volume of distribution at steady-state 0.35 L/kg, and total body clearance 2.7 mL/min·kg after intravenous administration at 20 mg/kg. The absorption after intramuscular administration appeared slow and the kinetic parameters and the serum concentration vs. time curve were characteristic of absorption rate-dependent elimination. The absorption after intramammary administration of florfenicol at 20 mg/kg was good (53.9%) and resulted in serum concentrations with apparent clinical significance. The intramammary administration resulted in serum florfenicol concentrations that were significantly higher than the respective serum concentrations following Intravenous administration 4 h after administration and thereafter. Florfenicol absorption was faster from the mammary gland than from the muscle. The maximum serum concentrations ( C max) were 6.9 μg/mL at 360 min after intramammary administration and 2.3 μg/mL at 180 min after intramuscular administration. The bioavailability of florfenicol was 54% and 38% after intramammary and intramuscular administration, respectively. The C max in milk was 5.4 μg/mL at 180 min after intravenous and 1.6 μg/mL at 600 min after intramuscular administration.  相似文献   

2.
Flunixin meglumine (FM) was administered either orally as granules or intravenously to six heifers in a two period crossover study. Single doses of 2.2 mg/kg body weight were used. Pharmacokinetic variables were calculated using statistical moment methods. The effect exerted by flunixin was measured as changes in the basal plasma concentration of the main metabolite of prostaglandin (PG) F. After oral FM the arithmetic means of pharmacokinetic variables were: MRT = 12.7 h; MAT = 6.3 h; C max= 0.9 μg/mL; t max= 3.5 h. The bioavailability was 60% and the mean half-life (harmonic mean) was 6.2 h. Oral administration of FM inhibited as effectively as intravenous administration the prostaglandin biosynthesis. The concentration of the PG metabolite decreased almost as rapidly as after intravenous administration. The duration of the effect was prolonged and the PG metabolite concentration was significantly lower between 10 and 30 h after oral than after intravenous administration. The results indicate that oral dosing of flunixin, in the form of granules, can be an alternative to intravenous administration for therapeutic use in cattle.  相似文献   

3.
Six dogs were treated with a single intravenous (i.v.) dose (2 mg/kg) of marbofloxacin, followed by single oral (p.o.) doses of marbofloxacin at 1, 2 and 4 mg/kg, according to a three-way crossover design. The same experimental design was used for the subcutaneous (s.c.) route. In addition, a long-term trial involving eight dogs given oral doses of marbofloxacin at 2, 4 and 6 mg/kg/day for thirteen weeks was carried out. Plasma and urine samples were collected during the first two trials, plasma and skin samples were collected after the second of these trials. Plasma, urine and skin concentrations of marbofloxacin were determined by a reverse phase liquid chromatographic method. Mean pharmacokinetic parameters after i.v. administration were the following: t1/2β=12.4h; Cl B= 0.10 L/h.kg; V area= 1.9 L/kg. The oral bioavailability of marbofloxacin was close to 100% for the three doses. At 2 mg/kg, C max of 1.4 μg/mL was reached at t max of 2.5 h. Mean AUC and C max values had a statistically significant linear relationship with the doses administered. About 40% of the administered dose was excreted in urine as unchanged parent drug. After s.c. administration, the calculated parameters were close to those obtained after oral administration, except t max (about 1 h) which was shorter. The mean skin to plasma concentration ratio after the long-term trial was 1.6, suggesting good tissue penetration of marbofloxacin.  相似文献   

4.
The bioavailability of amprolium (APL) was measured after intravenous (i.v.) and oral (p.o.) administration to chickens. Twelve healthy chickens weighing 1.28–1.41 kg received a dose of 13 mg APL/kg intravenously, and 13 or 26 mg APL/kg orally in both a fasted and a nonfasted condition in a Latin square design. Plasma samples were taken from the subwing vein for determination of APL concentration by HPLC method. The data following intravenous and oral administration were best fitted by 2-compartment and 1-compartment models, respectively, using weighted nonlinear least squares regression. The half-life beta t ½β, volume of distribution ( V d) and total body clearance ( Cl ) after intravenous administration were 0.21 h, 0.12 L/kg and 1.32 L/h.kg, respectively. The elimination half-life ( t ½ Kel) after oral administration was 0.292–0.654 h which is 1.5–3.2 times longer than after intravenous administration, suggesting the presence of a 'flip-flop' phenomenon in chickens. The maximum plasma concentration ( C max) of 13 mg/kg APL administered orally to chickens during fasting was significantly (about four times) higher than that during nonfasting ( P < 0.05). Bioavailability during nonfasting was from 2.3 to 2.6%, and 6.4% during fasting.  相似文献   

5.
The bioavailability of levamisole in rabbits was determined after subcutaneous and oral administration at three dose levels of 12.5, 16.0 and 20.0 mg/kg. After non-compartmental analysis the mean values obtained were: C max=3.54, 4.51 and 5.39 μg/ml; t max= 12.0, 22.0 and 20.0 min; F = 134.8, 105.4 and 124.1% after subcutaneous administration for each dose, respectively, and C max= 0.71, 1.32 and 1.77 μg/ml; t max= 46.0, 96.0 and 84.0 min; F = 53.0, 62.0 and 80.7% after oral administration. The extent and rate of absorption from the two routes differed significantly, except for t max at the 12.5 mg/kg dose. After compartmental analysis the pharmacokinetics of levamisole was characteristic of a two-compartment open model in 13 rabbits and of a one-compartment open model in two rabbits after subcutaneous administration, while it was two compartmental in nine and one compartmental in six rabbits after oral administration. The ka values were 0.321, 0.145 and 0.145 min-1 after subcutaneous administration and 0.054, 0.023 and 0.027 min1 after oral administration. There were no significant differences between the values of C max, t max and AUC calculated by compartmental and non-compartmental analysis.  相似文献   

6.
The pharmacokinetic properties of norfloxacin were determined in healthy pigs after single intramuscular (i.m.) and intravenous (i.v.) dosage of 8 mg/kg body weight After i.m. and i.v. administration, the plasma concentration-time graph was characteristic of a two-compartment open model. After single i.m. administration, norfloxacin was absorbed rapidly, with a t max of 1.46 ± 0.06 h. The elimination half-life ( t 1/2β) and the mean residence time of norfloxacin in plasma were 4.99 ± 0.28 and 6.05 ± 0.22 h, respectively, after i.m. administration and 3.65 ± 0.16 and 3.34 ± 0.16 h, respectively, after i.v. administration. Intramuscular bioavailability was found to be 53.7 ± 4.4%. Plasma concentrations greater than 0.2 μg/mL were achieved at 20 min and persisted up to 8 h post-administration. Maximal plasma concentration was 1.11 ± 0.03 μg/mL. Statistically significant differences between the two routes of administration were found for the half-lives of both distribution and elimination phases ( t 1/2α, t 1/2β) and apparent volume of distribution (Vd(area)). In pigs, norfloxacin was mainly converted to desethylenenorfloxacln and oxonorfloxacin. Considerable tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were found when norfloxacin was administered intramuscularly (8 mg/kg on 4 consecutive days). The concentration of the parent fluoroquinolone in liver and kidney ranged between 0.015 and 0.017 μg/g on day 12 after the end of dosing.  相似文献   

7.
The intramuscular (i.m.), oral (p.o.), and bath immersion disposition of enrofloxacin were evaluated following administration to a cultured population of red pacu. The half-life for enrofloxacin following i.m. administration was 28.9 h, considerably longer than values calculated for other animals such as dogs, birds, rabbits, and tortoises. The 4 h maximum concentration ( C max) of 1.64 μg/mL following a single 5.0 mg/kg dosing easily exceeds the in vitro minimum inhibitory concentration (MIC) for 20 bacterial organisms known to infect fish. At 48 h post i.m. administration, the mean plasma enrofloxacin concentration was well above the MIC for most gram-negative fish pathogens. The gavage method of oral enrofloxacin administration produced a C max of 0.94 μg/mL at 6–8 h. This C max was well above the reported in vitro MIC. A bath immersion concentration of 2.5 mg/L for 5 h was used in this study. The C max of 0.17 μg/mL was noted on the 2 hour post-treatment plasma sample. Plasma concentrations of enrofloxacin exceeded published in vitro MIC's for most fish bacterial pathogens 72 h after treatment was concluded. Ciprofloxacin, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the red pacu using p.o., i.m., and bath immersion administration. The i.m. route is the most predictable and results in the highest plasma concentrations of the drug.  相似文献   

8.
Hens were given single intravenous or oral doses (30 mg/kg body weight) of metronidazole and the plasma concentrations of the drug were determined by high-performance liquid chromatography (HPLC) at intervals from 10 min to 24 h after drug administration. Pharmacokinetic variables were calculated by the Lagrange algorithm technique. The elimination half-life ( t 1/2β) after the intravenous injection was 4.2 ± 0.5 h, the volume of distribution ( V d(ss)) 1.1±0.2 L/kg and the total body clearance ( Cl B) 131.2 ± 20 mL/h.kg. Oral bioavailability of the metronidazole was 78 ± 16%. The plasma maximum concentration ( C max) 31.9 ± 2.3 μg/mL was reached 2 h after the oral administration and the oral elimination half-life ( t 1/2β) was 4.7 ± 0.2 h. The binding of metronidazole to proteins in hen plasma was very low (less than 3%). Whole body autoradiography of [3H] metronidazole in hens and quails showed an even distribution of labelled material in various tissues at short survival intervals (1-4 h) after oral or intravenous administration. A high labelling was seen in the contents of the small and large intestines. In the laying quails a labelling was also seen in the albumen and in a ring in the periphery of the yolk at long survival intervals. Our results show that a concentration twofold above the MIC is maintained in the plasma of hens for at least 12 h at an oral dose of 30 mg/kg metronidazole.  相似文献   

9.
Abo-El-Sooud, K., Goudah, A. Influence of Pasteurella multocida infection on the pharmacokinetic behavior of marbofloxacin after intravenous and intramuscular administrations in rabbits. J. vet. Pharmacol. Therap. 33 , 63–68.
The pharmacokinetic behavior of marbofloxacin was studied in healthy ( n  = 12) and Pasteurella multocida infected rabbits ( n  = 12) after single intravenous (i.v.) and intramuscular (i.m.) administrations. Six rabbits in each group (control and diseased) were given a single dose of 2 mg/kg body weight (bw) of marbofloxacin intravenously. The other six rabbits in each group were given the same dose of the drug intramuscularly. The concentration of marbofloxacin in plasma was determined using high-performance liquid chromatography. The plasma concentrations were higher in diseased rabbits than in healthy rabbits following both routes of injections. Following i.v. administration, the values of the elimination half-life ( t 1/2β), and area under the curve were significantly higher, whereas total body clearance was significantly lower in diseased rabbits. After i.m. administration, the elimination half-life ( t 1/2el), mean residence time, and maximum plasma concentration ( C max) were higher in diseased rabbits (5.33 h, 7.35 h and 2.24 μg/mL) than in healthy rabbits (4.33 h, 6.81 h and 1.81 μg/mL, respectively). Marbofloxacin was bound to the extent of 26 ± 1.3% and 23 ± 1.6% to plasma protein of healthy and diseased rabbits, respectively. The C max /MIC (minimum inhibitory concentration) and AUC/MIC ratios were significantly higher in diseased rabbits (28 and 189 h) than in healthy rabbits (23 and 157 h), indicating the favorable pharmacodynamic characteristics of the drug in diseased rabbits.  相似文献   

10.
Laber, G. Investigation of pharmacokinetic parameters of tiamulin after intramuscular and subcutaneous administration in normal dogs. J. vet. Pharmacol. Therap. 11 , 45–49.
Kinetic variables for tiamulin in the normal dog have been determined. Serum concentrations of tiamulin were compared after intramuscular (i.m.) and subcutaneous (s.c.) administration of a single dose of tiamulin. Following a single i.m. dose of 10 mg/kg body weight, the compound was calculated to have a Cmax= 0.61 ± 0.15 μg/ml, a T max= 6 h and a t ½= 4.7 ± 1.4 h. Tiamulin showed dose-dependent pharmacokinetics when given as a single s.c. dose of either 10 mg or 25 mg/kg body weight. For the lower dose, the values Cmax= 1.55 ± 0.11 μg/ml, T max= 8 h and 1 max= 4.28 ± 0.18 h were obtained. For the higher dose C max= 3.14 ± 0.04 μg/ml, T max= 8 h and t ½= 12.4 ± 3.4 h were calculated. When tiamulin was administered subcutaneously at a dose rate of 10 mg/kg body weight, higher and better maintained serum levels were achieved than those following i.m. administration. After repeated s.c. doses no significant accumulation of tiamulin occurred. Assuming that a continuous effective serum concentration is necessary throughout the course of therapy, these data would indicate that tiamulin should be given every 24 h.  相似文献   

11.
Sodium meclofenamate is a non-steroidal anti-inflammatory drug with anaphylactic protective activity in cattle. The objectives of this study were to describe the pharmacokinetic behaviour of sodium meclofenamate after intravenous and oral administration to sheep and to determine the influence of closure of the reticular groove on the bioavailability of the drug. Sodium meclofenamate was administered by the intravenous (2.2 mg/kg) and oral (20 mg/kg) routes to sheep (n = 6). During the oral study the reticular groove was closed by intravenous administration of lysine vasopressin (0.3 IU/kg) or left open (saline solution). The closure of the reticular groove was assessed by determination of the blood glucose curves after oral administration of a glucose solution. After intravenous administration of meclofenamate, the distribution and elimination half-lives of the drug were 7.2 min and 542 min respectively, Vss was 1.68 L/kg and ClB was 2.47 mL/min kg. Two different patterns of the plasma concentration curves were observed after oral administration of sodium meclofenamate. When the reticular groove was closed, two peaks were observed ( t max-2 12-15 min, C max-1 3.30-24.01 μg/mL; and t max-2', 52.50-75 min, C max-2' 6.45-11.08 μg/mL).  相似文献   

12.
Wang, R., Yuan, L.G., He, L.M., Zhu, L.X., Luo, X.Y., Zhang, C.Y., Yu, J.J., Fang, B.H., Liu, Y.H. Pharmacokinetics and bioavailability of valnemulin in broiler chickens. J. vet. Pharmacol. Therap. 34 , 247–251. The objective of this study was to investigate the pharmacokinetics and bioavailability of valnemulin in broiler chickens after intravenous (i.v.), intramuscular (i.m.) and oral administrations of 10 mg/kg body weight (bw). Plasma samples were analyzed by high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS). Pharmacokinetic characterization was performed by non‐compartmental analysis using WinNonlin program. After intravenous administration, distribution was wide with the volume of distribution based on terminal phase(Vz) of 4.27 ± 0.99 L /kg. Mean valnemulin t1/2β(h), Clβ(L /h /kg), Vss (L /kg) and AUC(0–∞)(μg·h /mL) values were 2.85, 0.99, 2.72 and 10.34, respectively. After intramuscular administration, valnemulin was rapidly absorbed with a Cmax of 2.2 μg/mL achieved at 0.43 h (tmax), and the absolute bioavailability (F) was 88.81%; and for the oral route the same parameters were 0.66 ± 0.15 μg/mL, 1.54 ± 0.27 h and 74.42%. A multiple‐peak phenomenon was present after oral administration. The plasma profile of valnemulin exhibited a secondary peak during 2–6 h and a tertiary peak at 32 h. The favorable PK behavior, such as the wide distribution, slow elimination and acceptable bioavailability indicated that it is likely to be effective in chickens.  相似文献   

13.
Pharmacokinetics of cefoperazone in horses   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailabilty of cefoperazone (CPZ) were studied following intravenous (IV) and intramuscular (IM) administration of single doses (30 mg/kg) to horses. Concentrations in serum, urine and synovial fluid samples were measured following IV administration. CPZ concentrations in serum, synovial fluid and spongy bone samples were measured following IM administration. After IV administration a rapid distribution phase ( t 1/2(α):4.22 ± 2.73 min) was followed by a slower elimination phase ( t 1/2(β) 0.77 ± 0.19 h). The apparent volume of distribution was 0.68 ± 0.10 L/kg. Mean synovial fluid peak concentration was 5.76 ± 0.74 μg/mL. After IM administration a bioavailability of 42.00±5.33% was obtained. Half-life of absorption was 2.51 ± 0.72 min and t 1/2(β) was 1.52±0.15 h. The mean synovial fluid and spongy bone peak concentrations at 2 h after IM administration were 2.91±0.85 μg/mL and 5.56±0.70 μg/mL, respectively.  相似文献   

14.
The pharmacokinetics of indomethacin (1mg/kg) was determined in six adult sheep after intravenous (i.v.) and intramuscular (i.m.) injection. Plasma concentrations were maintained within the therapeutic range (0.3–3.0 μg/mL) from 5 to 50 min after i.v. and from 5 to 60–90 min after i.m. administration. After two trials, indomethacin best fitted an open two-compartment model. The mean (±SD) volumes of distribution at steady state ( V dss) were 4.10 ± 1.40 and 4.21 ± 1.93 L/kg and the mean clearance values ( C lB) were 0.17 ± 0.06 and 0.22 ± 0.12 L/h.kg for i.v. and i.m. routes, respectively. The elimination phase half-lives did not show any significant difference between routes of injection ( t ½β = 17.4 ± 4.6 and 21.25 ± 4.44 h, i.v. and i.m. respectively). After i.m. administration, plasma maximum concentration ( C max =  1.10 ± 0.68 μg/mL) was reached 10 min after dosing; the absorption phase was fast ( K ab = 26 ± 18 h-1) and short ( t ½ab = 2.33 ± 1.51 min) and the mean bioavailability was 91.0 ± 32.8%, although there was considerable interanimal variation. In some individuals, bioavailability was higher than 100%. This fact combined with the slower elimination phase after i.m. than after i.v. administration, could be related with enterohepatic recycling.  相似文献   

15.
Oral l -thyroxine ( l -T4) supplementation is used to replace thyroid hormone concentrations in dogs with hypothyroidism. The pharmacokinetics of l -T4 following administration of a solution (Leventa®) was investigated in healthy dogs. l -T4 was absorbed fairly rapidly ( t max 3 h). A mean bioavailability of 22% was calculated following a single oral administration of 40 μg l -T4/kg body weight. Repeated oral administration at the same dose for 14 consecutive days did not lead to any accumulation of T4 in serum. After intravenous administration of l -T4, a serum half-life of 11.6 h was calculated. Food intake concomitant with l -T4 oral administration delayed l -T4 absorption and decreased its rate and extent by about 45%. The relative bioavailability of l -T4 following administration of a tablet formulation was about 50% of that of the l -T4 solution. The pharmacokinetic properties of liquid l -T4 after oral administration support the use of a dose rate of 20 μg/kg once daily, as a starting dose for replacement therapy in dogs with hypothyroidism.  相似文献   

16.
The pharmacokinetic properties of pradofloxacin and doxycycline were investigated in serum, saliva, and tear fluid of cats. In a crossover study design, six cats were treated orally with a single dose of pradofloxacin (Veraflox® Oral Suspension 2.5%) and doxycycline (Ronaxan® 100 mg) at 5 mg/kg body weight. Following administration, samples of serum, saliva, and tear fluid were taken in regular intervals over a period of 24 h and analysed by turbulent flow chromatography/tandem mass spectrometry. All values are given as mean ± SD. Pradofloxacin reached a mean maximum serum concentration ( C max) of 1.1 ± 0.5 μg/mL after 1.8 ± 1.3 h ( t max). In saliva and tear fluid, mean C max was 6.3 ± 7.0 and 13.4 ± 20.9 μg/mL, respectively, and mean t max was 0.5 ± 0 and 0.8 ± 0.3 h, respectively. Doxycycline reached a mean C max in serum of 4.0 ± 0.8 μg/mL after 4.3 ± 3.2 h. Whilst only at two time-points doxycycline concentrations close to the limit of quantification were determined in tear fluid, no detectable levels were found in saliva. The high concentrations of pradofloxacin in saliva and tear fluid are promising to apply pradofloxacin for the treatment of conjunctivitis and upper respiratory tract infections in cats. As doxycycline is barely secreted into these fluids after oral application the mechanisms of its clinical efficacy remain unclear.  相似文献   

17.
Pharmacokinetics and bioavailability of doxycycline in turkeys   总被引:1,自引:0,他引:1  
The pharmacokinetic parameters of doxycycline (DOX) were determined in 3 day, 3-, 6- and 12-week-old fasted turkeys, after a single intravenous (i.v.) dose of 25 mg doxycycline. HCl/kg body weight. Doxycycline disposition fitted an open two-compartment model. The mean (± SD) elimination half-life was 10.6 ± 0.7, 10.8 ± 1.5, 7.9 ± 1.4 and 10.0 ± 0.9 h in 3 day, 3-, 6- and 12-week-old turkeys, respectively. Mean (± SD) total body clearance was 0.19 (± 0.01), 0.27 (± 0.03), 0.11 (± 0.03) and 0.06 (± 0.01) L/h.kg in 3 day, 3-, 6- and 12-week-old turkeys, respectively. The steady-state volume of distribution was 1.77 (± 0.2), 2.1 (± 0.2), 0.7 (± 0.4) and 0.5 (± 0.2) L/kg in turkeys of the above mentioned ages, respectively. The AUC value significantly increased with the age of the turkeys. An oral doxycycline solution at a single dose of 25 mg/kg of body weight was administered to 3 day, 3-, 6- and 12-week-old turkeys. The maximal plasma concentrations in fasted turkeys were 3.8, 5.6, 7.4 and 5.7 μg/mL, with t max values of 4.7, 1.5, 2.8 and 5.4 h, for the different ages, respectively. In fed turkeys the C max values were 2.5, 6.1, 4.8 and 3.0 μg/mL, with t max values of 4.2, 5.3, 4.5 and 7.5 h, respectively. The absolute bioavailability in fasted turkeys varied between 25.0 ± 9.0% (for 12-week-old birds) and 63.5 ± 7.1% (for 3-week-old birds). The relative bioavailability varied between 40.0 ± 13.0% (for 12-week-old birds) and 83.7 ± 14.3% (for 3-week-old birds).  相似文献   

18.
The purpose of this study was to determine the pharmacokinetics and physicochemical characteristics of orbifloxacin in the horse. Six healthy adult horses were administered oral and intravenous orbifloxacin at a dose of 2.5 mg/kg. Plasma samples were collected and analyzed by high-pressure liquid chromatography with ultraviolet detection. Plasma protein binding and lipophilicity were determined in vitro . Following i.v. administration, orbifloxacin had a terminal half-life ( t 1/2) of 5.08 h and a volume of distribution (Vd(ss)) of 1.58 L/kg. Following oral administration, the average maximum plasma concentration ( C max) was 1.25  μ g/mL with a t 1/2 of 3.42 h. Systemic bioavailability was 68.35%. Plasma protein binding was 20.64%. The octanol:water partition coefficient (pH 7.4) was 0.2 ± 0.11. No adverse reactions were noted during this study. Dosage regimens were determined from the pharmacokinetic–pharmacodynamic parameters established for fluoroquinolone antibiotics. For susceptible bacteria, an oral dose of approximately 5 mg/kg once daily will produce plasma concentrations within the suggested range. This dose is suggested for further studies on the clinical efficacy of orbifloxacin for treatment of susceptible bacterial infections in the horse.  相似文献   

19.
Plasma concentrations of doramectin in 40 cattle dosed by subcutaneous (sc) or intramuscular (i.m.) injection (200 μg/kg) were compared to assess the bioequivalence of the two routes of administration. Peak concentration ( C max), and areas under the concentration curve ( AUC0– ) were determined from plasma concentrations. Animals treated by the sc route showed a mean AUC0– of 457 ± 66 ng±day/mL (± SD) and a mean C max of 27.8 ± 7.9 ng/mL. Results from the i.m. treatment group showed a mean AUC 0– of 475 ± 82 ng-day/mL and a mean C max of 33.1 ± 9.0 ng/mL Absorption constants ( k a) determined by modelling were 0.542 ± 0.336 day-1after sc administration and 0.710 ± 0.357 day-1after i.m. administration. The 90% confidence limits on the difference between mean AUC 0– values for the sc and i.m. groups fell within 20% of the mean value for the subcutaneous group. C max was somewhat greater for the i.m. route. The 90% confidence limits on the difference in mean In ( T max+1) also fell within 20% of the mean sc value. Based on this analysis, bioequivalence of the sc and i.m. formulation has been established.  相似文献   

20.
Pharmacokinetics of ofloxacin, a fluoroquinolone antimicrobial agent, was determined in broiler chickens after intravenous or oral administration of a single dose (10 mg/kg). Ofloxacin concentrations in plasma were determined using a high-performance liquid chromatography assay. Plasma concentration profiles were analyzed by the noncompartmental method. Elimination half-life and mean residence time of ofloxacin in plasma were 4.46 and 5.48 h after intravenous administration and 5.85 and 7.43 h, respectively, after oral administration. Maximal plasma concentration of 3.65 microg/mL was achieved at 1.25 h after oral administration. Apparent volume of distribution of 1.76 and 2.16 L/kg and total body clearance of 4.96 and 4.5 mL/min/kg were obtained following intravenous and oral administration, respectively. The oral bioavailability of ofloxacin was 110.01%. Ofloxacin was found to be more rapidly absorbed, widely distributed and more quickly eliminated than other fluoroquinolones in broilers. Based on these kinetic parameters, a dosage of 10 mg/kg given orally every 24 h can be recommended for the treatment of bacterial infections with MIC90 < 0.3 microg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号