首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangroves offer a number of ecosystem goods and services, including carbon (C) storage. As a carbon pool, mangroves could be a source of CO2 emissions as a result of human activities such as deforestation and forest degradation. Conversely, mangroves may act as a CO2 sink through biomass accumulation. This study aimed to determine carbon stocks, harvest removals and productivity of mangrove forests of mainland Tanzania. Nine species were recorded in mainland Tanzania, among them Avicennia marina (Forssk.) Vierh., Rhizophora mucronata Lam. (31%) and Ceriops tagal (Perr.) C.B.Rob. (20%) were dominant. The aboveground, dead wood, belowground and total carbon were 33.5 ± 5.8 Mg C ha?1, 1.2 ± 1.1 (2% of total carbon), 30.0 ± 4.5 Mg C ha?1 (46% of total carbon) and 64.7 ± 8.4 Mg C ha?1 at 95% confidence level, respectively. Carbon harvest removals accounted for loss of about 4% of standing total carbon stocks annually. Results on the productivity of mangrove forests (using data from permanent sample plots monitored for four years [1995-1998]) showed an overall carbon increment of 5.6 Mg C ha?1 y?1 (aboveground carbon), 4.1 C ha?1 y?1 (belowground carbon) and 9.7 C ha?1 y?1 (total carbon) at 23%, 32% and 27% levels of uncertainty, respectively. Both natural death and tree cutting/harvest removals resulted in significant decline of annual carbon productivity. Findings from this study demonstrate that mangroves store large quantities of carbon and are more productive than other dominant forest formations in southern Africa. Both their deforestation and forest degradation, therefore, is likely to contribute to large quantities of emission and loss of carbon sink functionality. Therefore, mangroves need to be managed sustainably.  相似文献   

2.
Forest floor carbon stocks, which include different components of litter, hemic and sapric materials, have not been empirically quantified in tropical montane forest, although they influence soil carbon (C) pools. To date, the contribution of arbuscular mycorrhizae in C sequestration potentials in tropical montane forests have not been clearly investigated. This study determined the amount of C stocks in the different decomposing layers of forest floor, mainly litter, hemic and sapric materials. The abundance of arbuscular mycorrhizal root colonisation differed among forest floor fractions. Forest floor was measured for depth, area density, dry mass and carbon fraction separately in Sungai Kial Forest Reserve, Pahang, Malaysia to calculate C stocks. Percentages of root colonisation in the hemic and sapric materials were investigated. The results showed that forest floor C stocks were significantly higher in hemic (5 Mg C ha?1) and sapric (7.7 Mg C ha?1) compared with the litter fragments (1.5 Mg C ha?1). Mycorrhizal root colonisation was significantly higher (75%) in the toeslope compared with the summit area in the hemic materials. Segregation of forest floor layers provided greater accuracy in forest floor C stocks reporting.  相似文献   

3.
Tree removal in Latin American coffee agroforestry systems has been widespread due to complex and interacting factors that include fluctuating international markets, government-supported agricultural policies, and climate change. Despite shade tree removal and land conversion risks, there is currently no widespread policy incentive encouraging the maintenance of shade trees for the benefit of carbon sequestration. In facilitation of such incentives, an understanding of the capacity of coffee agroforests to store carbon relative to tropical forests must be developed. Drawing on ecological inventories conducted in 2007 and 2010 in the Lake Atitlán region of Guatemala, this research examines the carbon pools of smallholder coffee agroforests (CAFs) as they compare to a mixed dry forest (MDF) system. Data from 61 plots, covering a total area of 2.24 ha, was used to assess the aboveground, coarse root, and soil carbon reservoirs of the two land-use systems. Results of this research demonstrate the total carbon stocks of CAFs to range from 74.0 to 259.0 Megagrams (Mg)?C ha?1 with a mean of 127.6?±?6.6 (SE)?Mg?C ha?1. The average carbon stocks of CAFs was significantly lower than estimated for the MDF (198.7?±?32.1?Mg?C?ha?1); however, individual tree and soil pools were not significantly different suggesting that agroforest shade trees play an important role in facilitating carbon sequestration and soil conservation. This research demonstrates the need for conservation-based initiatives which recognize the carbon sequestration benefits of coffee agroforests alongside natural forest systems.  相似文献   

4.
Forests contain the world's largest terrestrial carbon stocks, but in seasonally dry environments stock stability can be compromised if burned by wildfire, emitting carbon back to the atmosphere. Treatments to reduce wildfire severity can reduce emissions, but with an immediate cost of reducing carbon stocks. In this study we examine the tradeoffs in carbon stock reduction and wildfire emissions in 19 fuels-treated and -untreated forests burned in twelve wildfires. The fuels treatment, a commonly used thinning ‘from below’ and removal of activity fuels, removed an average of 50.3 Mg C ha−1 or 34% of live tree carbon stocks. Wildfire emissions averaged 29.7 and 67.8 Mg C ha−1 in fuels treated and untreated forests, respectively. The total carbon (fuels treatment plus wildfire emission) removed from treated sites was 119% of the carbon emitted from the untreated/burned sites. However, with only 3% tree survival following wildfire, untreated forests averaged only 7.8 Mg C ha−1 in live trees with an average quadratic mean tree diameter of 21 cm. In contrast, treated forest averaged 100.5 Mg C ha−1 with a live tree quadratic mean diameter of 44 cm. In untreated forests 70% of the remaining total ecosystem carbon shifted to decomposing stocks after the wildfire, compared to 19% in the fuels-treated forest. In wildfire burned forest, fuels treatments have a higher immediate carbon ‘cost’, but in the long-term may benefit from lower decomposition emissions and higher carbon storage.  相似文献   

5.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

6.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

7.
The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

8.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

9.
There are many uncertainties in the estimation of forest car- bon sequestration in China, especially in Liaoning Province where vari- ous forest inventory data have not been fully utilized. By using forest inventory data, we estimated forest vegetation carbon stock of Liaoning Province between 1993 and 2005. Results showed that forest biomass carbon stock increased from 68.91 Tg C in 1993 to 97.51 Tg C in 2005, whereas mean carbon density increased from 18.48 Mg·ha -1 C to 22.33 Mg·ha -1 C. The carbon stora...  相似文献   

10.
Abstract

The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

11.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

12.
Ecosystem-level assessments of carbon (C) stocks of agroforestry systems are scarce. We quantified the ecosystem-level C stocks of one agroforestry-based oil palm production system (AFSP) and one agroforestry-based oil palm and cacao production system (AFSP+C) in eastern Amazonia. We quantified the stocks of C in four pools: aboveground live biomass, litter, roots, and soil. We evaluated the distribution of litter, roots, and soil C stocks in the oil palm management zones and in the area planted with cacao and other agroforestry species. The ecosystem-C stock was higher in AFSP+C (116.7 ± 1.5 Mg C ha?1) than in AFSP (99.1 ± 3.1 Mg C ha?1). The total litter-C stock was higher in AFSP+C (3.27 ± 0.01 Mg C ha?1) than in AFSP (2.26 ± 0.06 Mg C ha?1). Total root and soil C stocks (0–30 cm) did not differ between agroforestry systems. Ecosystem-C stocks varied between agroforestry systems due to differences in both aboveground and belowground stocks. In general, the belowground-C stocks varied spatially in response to the management in the oil palm and non-oil palm strips; these results have important implications for the monitoring of ecosystem-level C dynamics and the refinement of soil management.  相似文献   

13.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

14.
We studied the effects of different cutting intensities (0%, 5–10%, 15%, and 20% basal area removal) on stand growth, structure, and net carbon storage in spruce–fir (Picea jezoensis (Sieb. et Zucc.) Carr.–Abies nephrolepis (Trautv.) Maxim.) and broadleaf mixed forests on Changbai Mountain (Northeast China) over 19 years. At this site, inventory-based low-intensity selection cutting was used to maintain a continuous forest canopy. After two cutting events, results showed significant differences in growth, structure, and carbon storage among cutting intensities. When increasing cutting intensity, the growth rate of average diameter, basal area, and volume significantly increased, with the highest increment rates found in the plots with 20% basal area removal. Tree diameters for all plots showed a roughly inverse J-shaped distribution before cutting and a left-skewed unimodal distribution after two cuttings. Volume ratio (the relative amount of volume contained in different diameter classes) for small (6–14 cm), medium (14–26 cm), large (26–36 cm), and very large (>38 cm) diameters remained unchanged in the plots with 5 and 10% basal area removal, but the volume ratio of large and very large diameters increased in the plots with 15 and 20% basal area removal, reaching approximately a 1:2:3:4 ratio in the plots with 20% basal area removal after two selection cuttings. Net carbon storage increased when increasing cutting intensity, reaching maximum storage in the plots with 20% basal area removal (cutting intensity and net C storage increase: 0%, 7.21 Mg C ha?1, 5–10%: 11.68 Mg C ha?1, 15%: 21.41 Mg C ha?1, 20%: 26.47 Mg C ha?1). Therefore, our results show the potential of low-intensity selection cutting to meet demands of both timber production and maintenance of forest cover for biodiversity values.  相似文献   

15.
《Southern Forests》2013,75(3):235-245
Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha?1 (SD 21.3) and mean topsoil (0–20 cm depth) SOC stock was 42.2 Mg C ha?1 (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p < 0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p < 0.001) and AGC and Shannon index (r = 0.375, p < 0.05). The correlation between AGC and SOC was weak (r = 0.17, p < 0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.  相似文献   

16.
We estimated forest biomass carbon storage and carbon density from 1949 to 2008 based on nine consecutive forest inventories in Henan Province,China.According to the definitions of the forest inventory,Henan forests were categorized into five groups: forest stands,economic forests,bamboo forests,open forests,and shrub forests.We estimated biomass carbon in forest stands for each inventory period by using the continuous biomass expansion factor method.We used the mean biomass density method to estimate carbon stocks in economic,bamboo,open and shrub forests.Over the 60-year period,total forest vegetation carbon storage increased from34.6 Tg(1 Tg = 1×10~(12)g) in 1949 to 80.4 Tg in 2008,a net vegetation carbon increase of 45.8 Tg.By stand type,increases were 39.8 Tg in forest stands,5.5 Tg in economic forests,0.6 Tg in bamboo forests,and-0.1 Tg in open forests combine shrub forests.Carbon storageincreased at an average annual rate of 0.8 Tg carbon over the study period.Carbon was mainly stored in young and middle-aged forests,which together accounted for 70–88%of the total forest carbon storage in different inventory periods.Broad-leaved forest was the main contributor to forest carbon sequestration.From 1998 to 2008,during implementation of national afforestation and reforestation programs,the carbon storage of planted forest increased sharply from 3.9 to 37.9 Tg.Our results show that with the growth of young planted forest,Henan Province forests realized large gains in carbon sequestration over a 60-year period that was characterized in part by a nation-wide tree planting program.  相似文献   

17.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

18.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

19.
ABSTRACT

This paper examined the potential of dry north western woodlands of Ethiopia (Adi Goshu, Lemlem Terara, and Gemed) for carbon stocks. Allometry equations were used to determine the aboveground, belowground, and dead woods biomasses; litter and herbaceous biomasses were determined using direct harvesting method. The result showed the estimated mean carbon stocks of the aboveground, belowground, and the dead wood biomass for the Untapped Boswellia Papyrifera Woodland (UW) in Lemlem Terara site were significantly higher (P < 0.05) than that of the Adi Goshu site. In the Gemed site, the mean Herb Biomass Carbon (HBC) stock was 1.2 Mg ha?1, which is significantly highest (P < 0.05) than the other two study sites (Lemlem Terara, 0.42 Mg ha?1 and Adi Goshu, 0.45 Mg ha?1) for the Tapped Boswellia Papyrifera Woodland (TW). In UW, the mean soil carbon stock of the Lemlem Terara site (58.19 Mg ha?1) was significantly (P < 0.05) higher than that of Adi Goshu (33.61 Mg ha?1). In the case of the total carbon stocks in UW stratum, for the Adi Goshu site, the carbon stock was estimated to be about 55.26 Mg ha?1 while 96.74 Mg ha?1 for Lemlem Terara. Therefore, Carbon stock in different carbon pools (aboveground and belowground biomass, dead wood, litter, herbaceous biomass, and soil) has a potential to decrease the rate of enrichment of atmospheric concentration of carbon dioxide.  相似文献   

20.
Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO_2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent eastern Asia.Earlier studies have depended on remote sensing,ecosystem modeling,carbon fluxes,or single period forest surveys to estimate carbon sequestration capacities,and the results vary significantly.This study was designed to utilize multi-period forest survey data to explore spatial-dynamics of biomass storage in subtropical forests of China.Jiangxi province,a region with over 60% subtropical forest cover,was selected as the case study site and is located in central east China.Based on forest inventory data 1984-2013,and the stock-difference and biomass expansion factor methods,the carbon storage and density,of arboreal forests,economic forests,bamboo forests,woodlands and shrubberies were estimated.The results show that carbon storage increased from 159.1 Tg C in 1988 to 276.1 TgC in 2013,making up 3.1-3.8% of carbon stored throughout China.Among the four types of forests,the amount of carbon stored was as follows:arboreal forest economic forest bamboo forest woodland and shrubbery.Arboreal forests accounted for 64.0-79.4% of the total.Forest carbon density increased from 21.2 Mg C ha~(-1) in 1984 to26.2 Mg C ha~(-1) in 2013,equal to 61.2-70.2% of the average carbon density of China's forests in the same period.Forest carbon storage in Jiangxi will reach 355.5 Tg C and 535.8 Tg C in 2020 and 2030,respectively,and forest carbon density is predicted to be 31.9 Mg C ha~(~-1)and 46.4 Mg C ha~(-1),respectively.As one of the few studies using multi-period data tracking biomass dynamics in Jiangxi province,the findings of this study may be used as a reference for other research.Using Jiangxi as a case study underlies the fact that subtropical forests in China have great carbon sequestration potential and have fundamental significance to offset global environmental change effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号