首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
颗粒肥料离散元仿真边界参数系统化研究   总被引:3,自引:0,他引:3  
离散元边界参数对仿真精确性具有重要的影响。为提高离散元仿真精度,以大颗粒尿素颗粒为研究对象,利用Plackett-Burman休止角仿真试验进行了重要边界参数的筛选,确定影响显著的参数依次为尿素颗粒间滚动摩擦因数、颗粒间静摩擦因数和颗粒与ABS板间静摩擦因数,且3种边界参数影响尿素颗粒堆积特性,休止角随着3种边界参数的增大而增大。利用自制静摩擦因数测量仪和虚拟仿真标定方法分别对颗粒与ABS板间的静摩擦因数、颗粒间静摩擦因数和颗粒间滚动摩擦因数进行研究,并对确定值进行了堆积过程的仿真和试验验证,仿真休止角与实际试验休止角相对误差仅为0.36%,不同含水率下的实际试验休止角与标定参数下的仿真休止角相对误差均不大于3.25%,表明仿真确定的边界参数和仿真模型的有效性。  相似文献   

2.
为确定最优包衣玉米种子离散元仿真接触参数组合,以真实试验和不同参数组合下仿真得到的包衣玉米种子休止角和堆积角的误差为响应值,标定包衣玉米种子离散元仿真参数。采用经典力学理论建立量化描述散体颗粒的运动力学方程,通过分析力学方程确定主要接触参数。通过Central Composite试验建立模型参数与响应值之间的多元二次回归方程,利用遗传算法NSCA-Ⅱ对多元二次方程进行多目标优化,获得最佳包衣玉米种子离散元模型接触参数组合:种间静摩擦因数为0.432、种间滚动摩擦因数为0.082、种间碰撞恢复系数为0.178。结合台架试验和仿真试验,通过斜面滑动试验,得到马齿形玉米种子与有机玻璃间静摩擦因数为0.116 4。验证试验得到堆积角仿真试验结果为27.83°,与实测落种测得堆积角数值之间的误差为1.76%,结果表明,标定的包衣玉米种子离散元模型接触参数准确可靠,可用于离散元仿真试验。  相似文献   

3.
果荚初期饲料油菜茎秆离散元接触模型参数标定   总被引:2,自引:0,他引:2  
针对饲料油菜与不同材料的接触参数实测难度大、机械化收获离散元仿真模拟缺乏接触模型参数的问题,以果荚初期饲料油菜为对象,基于EDEM开展了饲料油菜茎秆颗粒离散元接触模型参数标定。测定了果荚初期饲用油菜茎秆本征参数,茎秆平均直径为20.4mm,密度为809kg/m3,茎秆弹性模量、剪切模量和泊松比平均值分别为115.73MPa、47.04MPa和0.23;以休止角为评价指标,应用Hertz-Mindlin基本模型和圆筒提升堆积法开展了饲料油菜茎秆颗粒堆积的虚拟二水平因子试验,结果表明饲料油菜茎秆与钢之间的碰撞恢复系数和滚动摩擦因数以及茎秆之间的碰撞恢复系数对休止角的影响较小,其值分别为0.60、0.10和0.60;通过最陡爬坡试验和响应面分析,确定了饲料油菜茎秆颗粒间静摩擦因数、滚动摩擦因数和饲料油菜茎秆-钢静摩擦因数的取值范围,建立了颗粒休止角的回归模型,以实测休止角与仿真试验休止角之间相对误差最小进行响应面分析和优化求解,确定其参数值分别为0.36、0.03和0.23。在接触参数最优组合条件下,根据回归模型计算得出的休止角理论值与实测值误差为2.15%,仿真试验得出休止角模拟值与实测值误差为1.83%,表明标定方法正确,标定参数准确。研究可为饲料油菜机械化收获过程的离散元仿真分析提供基本参数。  相似文献   

4.
为寻求最优苜蓿种子离散元模型接触参数组合,设计了一种可同时测定物料休止角与堆积角的装置,并提出测定方法,将实际试验与仿真试验相结合,以苜蓿种子休止角和堆积角的实测值与仿真值误差为指标,对苜蓿种子模型参数进行标定。通过Plackett-Burman试验筛选出对指标影响显著的接触参数,采用响应曲面法(RSM)建立显著性参数与指标之间的二阶数学模型,采用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)进行多目标寻优计算,获取最优苜蓿种子离散元模型接触参数组合,即种间碰撞恢复系数为0.47,种间静摩擦因数为0.24,种间滚动摩擦因数为0.08。采用槽轮式排种器进行了试验验证,结果表明,在不同排种轮转速条件下,苜蓿种子质量流率实测值和仿真值的平均相对误差为2.89%,该苜蓿种子离散元模型和接触参数能够满足离散元仿真试验要求,基于RSM和NSGA-Ⅱ的多目标优化方法具有科学性和可行性。  相似文献   

5.
为探究枸杞离散元仿真边界参数的最优组合,提高离散单元仿真方法研究枸杞与采收机械作用机理的准确性,提升后续枸杞机械采收设备的研发效率及机械作业性能,选取EDEM中“Hertz-Mindlin with Johnson-Kendall-Roberts”凝聚力接触模型,通过物理试验测量枸杞堆积角、枸杞-钢板静摩擦因数、枸杞-钢板碰撞恢复系数。在物理试验的基础上,采用基于EDEMpy的仿真试验方法对枸杞的接触参数进行试验研究,以枸杞颗粒的静摩擦因数、滚动摩擦因数、碰撞恢复系数、表面能JKR为影响因素,以堆积角为目标进行多因素试验,并建立回归模型。试验结果表明:对枸杞仿真堆积角影响显著的参数为枸杞-枸杞静摩擦因数、枸杞-枸杞滚动摩擦因数、表面能JKR。以实际堆积角为目标值,对回归模型进行优化分析,得到显著性参数最优组合值分别为:枸杞-枸杞静摩擦因数0.506,枸杞-枸杞滚动摩擦因数0.064,表面能JKR0.048,该组合下的仿真堆积角平均值为28.82°,与实际堆积角的偏差小于4%,边界参数标定结果可靠。研究结果可为枸杞离散元模型边界参数的选取提供参考。  相似文献   

6.
为获得酒用高粱种子离散元仿真参数,以仁怀市大坝镇地区的茅梁糯2号高粱种子为研究对象,完成了物性参数的测量种子-尼龙、种子-ABS及种子颗粒间接触参数的标定。首先,采用物理试验测出高粱种子的三轴尺寸、密度、泊松比、弹性模量、剪切模量及休止角等参数,且获取高粱种子-尼龙与高粱种子-ABS的静摩擦因数、滚动摩擦因数和碰撞恢复系数;其次,采用Box-Behnken法设计三因素三水平试验,得到高粱种子颗粒间接触参数与休止角的二阶回归模型;最后,以实测休止角29.14°为优化目标值,求得高粱种子颗粒间的碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.422、0.504、0.074,代入EDEM中得到仿真试验结果为28.39°,与实测值的相对误差为2.57%,进一步验证了仿真试验的可靠性和有效性。酒用高粱种子物性参数测定和接触参数标定可为高粱播种机仿真分析及优化设计提供一定参考和依据。  相似文献   

7.
为确定赤芍在移栽过程中的仿真参数以进行离散元仿真试验,以物理试验测量土壤堆积角为基础,选取土壤间的静摩擦因数、滚动摩擦因数、碰撞恢复系数以及土壤的表面能作为试验因素,以土壤堆积角为试验指标,进行四因素三水平离散元仿真试验设计,建立了土壤接触参数与堆积角的回归模型。以实际堆积角值为目标进行了回归模型参数优化。通过实际物理试验完成了赤芍与土壤间的静摩擦系数、碰撞恢复系数、滚动摩擦系数以及碰撞恢复系数的标定。试验结果表明,土壤接触参数近似组合为碰撞恢复系数为0.223、静摩擦因数为0.630、滚动摩擦因数为0.373、土壤表面能为0.340 J/m3,该组合离散元仿真所得土壤堆积角为31.57°,与实际测量结果误差仅为1.2%。赤芍与土壤接触参数为:碰撞恢复系数为0.25、静摩擦因数为0.84、滚动摩擦因数为0.37。研究结果可以为后期移栽离散元仿真分析奠定基础。  相似文献   

8.
采用离散元法对蚕豆与收获机具间的相互作用进行数值仿真研究,实现对蚕豆收获机具关键部件相关参数的设计与优化,以提高研究效率、减少研究成本。为此,通过物理试验对蚕豆基本物性参数、接触力学参数和休止角进行测定,参考物理试验测定结果选取仿真试验参数取值范围。以仿真试验休止角为响应值,由Plackette-Burman(PB)试验得到显著影响休止角的试验参数(蚕豆-蚕豆静摩擦因数、蚕豆-钢板静摩擦因数、蚕豆-钢板滚动摩擦因数),并利用最陡爬坡试验在PB试验基础上得到显著参数的取值范围。采用Box-Behnken(BB)试验在休止角与显著参数之间建立二阶回归模型,以休止角物理试验测定值为目标值,对显著参数进行寻优,获得最优参数组合,即蚕豆-蚕豆静摩擦因数0.25、蚕豆-钢板静摩擦因数0.47、蚕豆-钢板滚动摩擦因数0.35。最后,通过T检验得到P>0.05,表明采用最优参数组合得到的休止角仿真值与实测值相差无几,验证了最优参数组合的可靠性。  相似文献   

9.
为获取土壤离散元仿真模型的土壤颗粒物理参数和接触参数,本文采用试验与仿真相结合的方法,以桑园土壤为例,对土壤颗粒的接触参数进行了仿真标定。首先利用粉体仪、斜面仪、等应变直剪仪等,分析了试验地不同深度土壤的粒径分布,测量了试验地不同深度土壤休止角、滑动摩擦角、剪应力、内聚力、内摩擦角;然后,根据实测土壤粒径分布,利用EDEM软件建立了非等直径土壤球形颗粒模型。在此基础上,以土壤颗粒间及土壤与65Mn钢间的静摩擦因数、滚动摩擦因数、恢复系数为试验因素,土壤休止角、土壤-65Mn钢滑动摩擦角为目标值,建立了基于中心组合试验设计(CCD)方案,并利用Design-Expert软件对仿真试验结果进行了分析,得到了仿真标定的土壤-土壤间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为0.89、0.45和0.43;标定的土壤-65Mn钢间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为1.15、0.05和0.4。利用以上标定的最优参数对桑园土壤进行了休止角与滑动摩擦角仿真试验,试验结果表明,休止角仿真值与试验值相对误差为1.69%,土壤-65Mn钢的滑动摩擦角仿真值与试验值相对误差为2.88%。在此...  相似文献   

10.
穴盘育苗中劣质钵苗会影响后期种苗移栽成活率,现有机械式剔除存在颗粒散落遗漏现象,而气吸式剔除方式则可以很好地弥补这一缺陷。为解析钵苗基质气吸式剔除的机理,本文开展离散元仿真的参数标定试验。选取100 g基质进行粒径分布检测,采用漏斗静置,基于图像处理获取基质两侧实际堆积角,通过Plackett-Burman实验确定影响基质堆积角的4个因素;通过最陡爬坡实验确定显著因素最大响应区域;依据Box-Behnken实验建立二阶回归模型并求解最佳参数组合。结果表明,在不显著因素取中间值时,当基质颗粒-颗粒碰撞恢复系数为0.142、基质颗粒-颗粒滚动摩擦因数为0.097、基质颗粒-不锈钢静摩擦因数为0.223和基质JKR表面能为2.325 J/m2时,所得仿真堆积角φ为33.4°,与实际堆积角θ为34.19°的相对误差为2.31%,满足试验需求,所得标定参数可用于钵苗基质的离散元仿真。  相似文献   

11.
基于离散元的微型马铃薯仿真参数标定   总被引:22,自引:0,他引:22  
为系统全面地研究微型马铃薯种子离散元仿真物性参数,根据其物料特征创建微型薯模型,以此为基础建立微型薯离散元参数获取模型。利用试验测定及仿真模拟相结合的方法对微型薯颗粒离散元参数进行标定和校准,即以先后建立碰撞恢复系数测定模型、微型薯-钢板摩擦因数测定模型、微型薯颗粒间摩擦因数测定模型的方法,在EDEM中建立仿真试验模型并以所标定的相应离散元仿真参数为自变量,以仿真模型所测定的因素为评价指标,通过在仿真模型中改变自变量获取相应的评价指标值,建立曲线拟合方程,将真实试验模型中对各因素所测定的值作为仿真目标值代入拟合方程中得到微型薯离散元仿真参数并进行了仿真试验验证。求得微型薯种子离散元仿真参数:微型薯-钢板碰撞恢复系数为0.523,微型薯颗粒间碰撞恢复系数为0.478,微型薯-钢板静摩擦因数为0.644,微型薯-钢板滚动摩擦因数为0.022 1,微型薯颗粒间静摩擦因数为0.325,微型薯颗粒间滚动摩擦因数为0.030 0。对标定后的微型薯离散元物性参数进行仿真验证试验,结果表明标定后的微型薯仿真颗粒堆积角以及种子分布情况与真实试验条件相吻合,为微型薯相关播种机具设计和优化提供了理论依据。  相似文献   

12.
接触参数影响控释肥颗粒离散元仿真结果。为了精准模拟控释肥颗粒力学行为与运动规律,本文基于离散元法对控释肥颗粒的接触参数进行标定与试验。首先,建立控释肥离散元基础模型,并利用台架和仿真试验相结合的方法,在EDEM中对控释肥颗粒与PVC板之间接触参数进行标定。其次,通过碰撞弹跳试验、斜面滑移试验和斜面滚动试验测得控释肥颗粒与PVC板之间的碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0.539、0.507和0.105。最后,通过堆积试验、最陡爬坡试验和正交旋转组合试验,得到控释肥颗粒间的碰撞恢复系数、静摩擦因数和滚动摩擦因数分别为0.38、0.25和0.09,并通过无底圆筒提升试验和排肥台架试验进行验证。试验结果表明,堆积角实际值与仿真结果的相对误差为1.54%,排肥量实际值与仿真结果4种转速下的相对误差分别为4.38%、4.23%、4.41%、4.36%,所标定的控释肥接触参数精准有效,可为控释肥离散元仿真提供数据和模型支撑。  相似文献   

13.
采用逆向工程技术,在EDEM软件中建立了油茶籽离散元模型;通过物理试验测得油茶籽堆积角为(27.93±1.46)°,以及密度、碰撞恢复系数和油茶籽-钢板间静摩擦因数的参数区间,采用Plackett-Burman Design和最陡爬坡试验筛选显著性因素;以堆积角为响应值,采用响应面(RSM)和机器学习对显著性参数进行优化和对比。结果显示,基于遗传算法(GA)的BP人工神经网络的预测能力与稳定性优于随机森林、支持向量机和BP人工神经网络;采用GA寻优得到油茶籽-油茶籽间静摩擦因数为0.443、油茶籽-钢板间静摩擦因数为0.319、油茶籽-油茶籽间滚动摩擦因数为0.063,测得仿真堆积角为27.63°,与实际堆积角的相对误差为1.09%;采用RSM得到油茶籽-油茶籽间静摩擦因数为0.383、油茶籽-钢板间静摩擦因数为0.335、油茶籽-油茶籽间滚动摩擦因数为0.064,测得仿真堆积角为26.99°,相对误差为3.33%。研究结果表明,在油茶籽参数标定中,GA-BP-GA的参数优化效果优于RSM,并且该研究所建油茶籽模型与参数标定结果可用于离散元仿真。  相似文献   

14.
田辛亮  丛旭  齐江涛  郭慧  李茂  范旭辉 《农业机械学报》2021,52(10):100-108,242
由于黑土区保护性耕作中关键农机部件设计优化过程中缺乏准确的离散元仿真模型参数,在一定程度上制约了机具的优化改进。以黑土区玉米秸秆-土壤混料为研究对象,构建玉米秸秆-土壤混料离散元仿真模型,采用物理试验与EDEM仿真试验相结合的方法,选用Hertz-Mindlin with JKR接触模型进行离散元仿真接触参数标定。首先,采用圆筒提升的方法确定玉米秸秆-土壤混料的实际堆积角,利用Design-Expert软件中Plackett-Burman试验筛选出对堆积角有显著影响的参数为:土壤-土壤滚动摩擦因数、土壤-钢静摩擦因数、秸秆-土壤滚动摩擦因数、土壤JKR表面能;进一步通过最陡爬坡试验确定4个参数的最优取值范围,根据Box-Behnken试验原理以堆积角为响应值,建立堆积角与显著参数的二次回归模型;以实际堆积角为目标,利用软件寻优功能对显著参数进行优化并得到最优参数组合:秸秆-土壤滚动摩擦因数0.16、土壤-土壤滚动摩擦因数0.24、土壤-钢静摩擦因数0.75、土壤JKR表面能0.67J/m2。通过仿真试验对最优参数组合进行对比验证,仿真堆积角与物理试验堆积角相对误差为1.64%。研究结果表明标定的参数真实可靠,可为黑土区玉米秸秆-土壤混料的离散元仿真提供理论参考。  相似文献   

15.
基于注入截面法的颗粒饲料离散元模型参数标定   总被引:6,自引:0,他引:6  
采用离散元法进行颗粒饲料后喷涂、冷却、输送、仓储、饲喂等关键环节的工作过程仿真分析时,需要建立颗粒饲料离散元模型并通过测定休止角来标定离散元参数,用以测定休止角的传统装置与方法,存在样品用量多、测定繁琐的情况。本文提出了一种基于注入截面法的休止角测定装置与方法,通过颗粒堆积体截面的轮廓线直接获取休止角,从而进行休止角的模拟与测定。建立与颗粒饲料形态相近的离散元模型,借用GEMM(Generic EDEM material model database)数据库获得离散元模型参数范围。以滑动摩擦因数X1、碰撞恢复系数X2和滚动摩擦因数X3为试验因素,以颗粒饲料堆积休止角Y1为评价指标,按照3因素5水平正交旋转组合设计试验方法,利用DesignExpert 8.0.6软件回归分析法和响应面分析法,建立了3个因素以堆积休止角为评价指标的数学模型。以颗粒饲料休止角真实测得值为目标,对回归模型进行寻优,得到优化后的标定参数组合:颗粒饲料间滑动摩擦因数为0.41,碰撞恢复系数为0.53,滚动摩擦因数为0.08。以此优化解进行仿真试验,结果显示预测休止角为29.43°±0.70°,误差为3.1%,休止角仿真和试验在堆积角度和形态上相似度较高。结果表明了基于注入截面法的颗粒饲料离散元建模与休止角测定试验的有效性和可行性。  相似文献   

16.
为了更好地应用离散元法研究燕麦和箭筈豌豆种子的混播过程,提高种子离散元模型的准确性,结合实际试验和仿真试验对仿真参数进行了标定。通过抽样分别测量了燕麦和箭筈豌豆种子的本征参数,并建立了种子离散元模型。采用碰撞试验、斜面滑动试验和斜面滚动试验,分别对燕麦种子和箭筈豌豆种子与ABS塑料板间的碰撞恢复系数、静摩擦因数及滚动摩擦因数进行了标定,得到燕麦和箭筈豌豆种子与ABS塑料板间的碰撞恢复系数分别为0.441、0.435,静摩擦因数分别为0.506、0.454,滚动摩擦因数分别为0.059、0.047。基于堆积试验,利用最陡爬坡试验和二次回归正交旋转组合试验方法,以混合种子堆积角的EDEM仿真值与实际值的相对误差为指标,确定种间碰撞恢复系数、静摩擦因数、滚动摩擦因数分别为0.320、0.327、0.042。利用螺旋排种装置对标定结果进行了验证,得到仿真试验与实际试验的混合种子质量流率平均相对误差为1.76%,燕麦和箭筈豌豆种子的排种质量比平均相对误差为2.03%,验证了仿真试验的可靠性,标定的结果可用于燕麦和箭筈豌豆种子混播过程的离散元仿真试验。  相似文献   

17.
为获取土壤离散元仿真模型的土壤颗粒物理参数和接触参数,本文采用试验与仿真相结合的方法,以桑园土壤为例,对土壤颗粒的接触参数进行了仿真标定。首先利用粉体仪、斜面仪、等应变直剪仪等,分析了试验地不同深度土壤的粒径分布,测量了试验地不同深度土壤休止角、滑动摩擦角、剪应力、内聚力、内摩擦角;然后,根据实测土壤粒径分布,利用EDEM软件建立了非等直径土壤球形颗粒模型。在此基础上,以土壤颗粒间及土壤与65Mn钢间的静摩擦因数、滚动摩擦因数、恢复系数为试验因素,土壤休止角、土壤-65Mn钢滑动摩擦角为目标值,建立了基于中心组合试验设计(CCD)方案,并利用Design-Expert软件对仿真试验结果进行了分析,得到了仿真标定的土壤-土壤间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为0.89、0.45和0.43;标定的土壤-65Mn钢间静摩擦因数、滚动摩擦因数和恢复系数的最优值分别为1.15、0.05和0.4。利用以上标定的最优参数对桑园土壤进行了休止角与滑动摩擦角仿真试验,试验结果表明,休止角仿真值与试验值相对误差为1.69%,土壤-65Mn钢的滑动摩擦角仿真值与试验值相对误差为2.88%。在此基础上,依据实测的土壤剪应力,采用试错法,以实测土壤内摩擦角为目标值,优化标定了土壤-土壤颗粒Hertz-Mindlin with Bonding接触模型中的粘结参数,标定法向粘结刚度、切向粘结刚度分别为1×108、5×107N/m3,临界法向应力和临界切向应力均为10kPa,接触半径为1.1倍颗粒半径,直剪仿真得到内摩擦角为30.24°,仿真值与直剪试验内摩擦角平均值相对误差为5.53%。本文提出的土壤颗粒建模方法、标定方法及其所标定的参数值,可用于砂质壤土桑园耕作机械触土部件与土壤相互作用的离散元仿真分析及其结构优化。  相似文献   

18.
为准确地建立土壤的离散元模型,获取土壤离散元仿真中的仿真参数,以真实的土壤直剪切试验,与堆积试验来获取土壤的泊松比、堆积角。以堆积角为响应值,基于响应面优化,标定土壤离散元的相关参数。采用Design Expert软件依次设计Plackett-Burman试验、最陡爬坡试验与Box-Behnken试验得到土壤的最优参数组合。选用堆积角为目标对回归模型进行优化,得到了一组最优解。最终获取土壤的内摩擦角19°,泊松比为0.40,土壤的内聚力9.06,土壤接触模型JKR表面能为3.927 J/m~2、土壤—土壤恢复系数为0.332、土壤—土壤静摩擦因数为0.719,实际堆积角试验与最优解仿真堆积角试验相比较结果表明,两者在堆积角角度以及堆积角形态上有较高的相似性。证明了本次仿真标定的可行性,为后续农业机械离散元仿真奠定基础。  相似文献   

19.
基于JKR粘结模型的蚯蚓粪基质离散元法参数标定   总被引:8,自引:0,他引:8  
为确定不同含水率下蚯蚓粪基质的多种参数,提出了通过测定基质含水率,预测休止角,通过休止角合理推测其他参数的思路,并提出了一种散体休止角测定方法。以休止角作为参照,基于JKR粘结模型,使用离散元参数标定的方法,从与蚯蚓粪基质颗粒有关的10个参数中,筛选出颗粒间静摩擦因数、颗粒间滚动摩擦因数和JKR表面能3个对休止角影响显著的参数,建立了休止角与这3个显著参数之间的二次多项式回归模型。试验结果表明,该模型可以根据休止角预测蚯蚓粪基质参数,根据预测得到的参数建立离散元模型,休止角仿真结果与实际试验结果较为接近,差异分别为1.53%和0.22%。同时测定了不同含水率下蚯蚓粪基质的休止角,建立了休止角与含水率之间的关系模型。研究结果可为其他类似散体物料休止角的测定提供参考,并提供了一种通过测定易于测定的参数(如含水率)来推导其他难测参数的思路。  相似文献   

20.
针对研究播种机覆土装置作业过程中种沟土壤及种子微观运动规律时,缺乏准确可靠的种沟土壤-种子-覆土装置三者互作离散元模型的问题,以含水率为(15.7±0.25)%的黏土为研究对象,基于EDEM软件对相关参数及模型进行标定。建立覆土装置与种沟土壤互作模型,通过Plackett-Burman试验,以覆土作业牵引阻力为响应值,筛选出对牵引阻力影响敏感的参数为土壤-土壤滚动摩擦因数、土壤-65Mn静摩擦因数、临界法向应力、临界切向应力,通过最陡爬坡试验确定各敏感参数的取值范围,通过Box-Behnken试验优化得出土壤-土壤滚动摩擦因数、土壤-65Mn静摩擦因数、临界法向应力、临界切向应力分别为0.15、0.31、18.45 kPa、18.58 kPa。以大豆种子为例,建立了种沟土壤与种子互作离散元模型,以种沟土壤与大豆种子碰撞恢复系数、静摩擦因数、滚动摩擦因数为试验因素,以仿真堆积角为评价指标,通过Box-Behnken试验优化得出各试验因素取值分别为0.57、0.33、0.08。建立了种沟土壤-种子-覆土装置三者互作离散元模型,并开展了试验验证。结果表明,牵引阻力仿真值与实测值相对误差平均值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号