共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
为从分子水平上了解油菜的遗传性,采用SRAP标记,对39份2010—2011年度参加国家区试的油菜品种的遗传多样性进行了分析。结果显示:13对SRAP引物共扩增出314条带,其中,68条带具有多态性,多态率为21.7%,平均每对引物组合的谱带数和多态性带数为24.2条和5.2条。通过UPMGA法进行聚类分析显示,在相似系数0.670处供试材料可被分为(A,B,C,D,E,F)6个簇,其中,A簇包括11份材料,B簇15份材料,C簇6份材料,D簇4份材料,E簇2份材料,F簇1份材料。同一地区或同一育种单位的材料除少数表现出亲缘关系较近外,其余均表现出更丰富的多态性。来自于湖北的10个材料分属于A、B1、B2、D、E、F共6个簇;来自四川的7个材料分属于A、B、C共3个簇。各育种单位的育种材料遗传多样性较之前有所增加。 相似文献
3.
木瓜属品种亲缘关系的SRAP分析 总被引:4,自引:1,他引:4
【目的】探讨木瓜属品种的种源、亲缘关系以及遗传多样性,旨在为木瓜属品种的分类提供科学依据。【方法】利用22个SRAP(sequence-related amplified polymorphism)引物组合对27份品种和5份野生种进行聚类分析、主坐标分析及遗传多样性的评价。【结果】共检测到152个多态性位点,平均每个引物组合6.91个多态性位点,多态性位点百分数为73.08%。聚类分析显示,32份材料可划分为毛叶木瓜种系、西藏木瓜、皱皮木瓜种系、日本木瓜种系4个类群。西藏木瓜与毛叶木瓜种系聚为一支,亲缘关系密切;日本木瓜种系和皱皮木瓜种系聚为另一支,日本木瓜种系与毛叶木瓜种系亲缘关系最远,皱皮木瓜种系位于日本木瓜种系与毛叶木瓜种系之间。遗传多样性分析显示,日本木瓜种系和皱皮木瓜种系的遗传多样性指数高于毛叶木瓜种系,可能与交配、繁殖方式有关。属的水平上,种系间的遗传分化系数GST=0.4969。【结论】SRAP分子标记是研究木瓜属栽培品种遗传关系的有效工具。结合形态特征和SRAP分析结果,花柱基部被毛的状态是鉴定木瓜属栽培品种种源的准确指标之一。C.×superba与皱皮木瓜亲缘关系较近,可作为皱皮木瓜种下的品种群。 相似文献
4.
槭属种质遗传多样性及亲缘关系的SRAP分析 总被引:1,自引:0,他引:1
采用SRAP分子标记分析31份槭属植物材料的遗传多样性及亲缘关系。从90对SRAP引物中筛选出11对引物分别对供试材料基因组DNA进行扩增,共获得186条清晰可辨谱带,其中183条为多态性谱带,多态性位点比率为98.04%,多态性较高。用NTSYS-pc软件计算得到31份槭属植物间相似系数介于0.462和0.849之间,采用UPGMA法在相似系数0.594处将31份材料划分成6大类。根据SRAP聚类结果探讨了供试材料间的亲缘关系及新品种选育前景。 相似文献
5.
利用相关序列扩增多态性(SRAP)分子标记,对咸宁地区的32个桂花(Osmanthus fragrans)品种进行了亲缘关系研究.15对引物共扩增出210个谱带,其中182个为多态性谱带,多态性比率达86.67%;其中银桂品种群的Shannon's信息指数(0.339 3)和遗传多样性指数(0.2164)最高.遗传多样性分析表明供试桂花品种群间的遗传分化系数为57.89%,说明品种群间遗传分化高.根据扩增结果进行聚类分析,在遗传相似系数0.644水平上可将32个桂花品种分为5个类群.供试品种的地理分布与其分类学地位具一定的相关性. 相似文献
6.
SRAP标记技术是基于内含子、启动子3’端含AATT核心和开放阅读框的编码区富含GC的序列规律进行随机扩增而获得DNA多态性的。由于不同的生物个体其基因组的内含子、启动子与外显子的间隔长度不同,因而扩增出的DNA指纹图谱也就产生了多态性。SRAP标记是近年来发展起来的一种DNA多态性分子标记, 以其操作简便快速、成本低、可信度高、易于测序等特点倍受关注。在短短的几年时间内,此标记已在马铃薯、水稻、苹果、柑橘类果树、樱桃、梅子、油菜、大蒜、芹菜和棉花等植物中实验应用,显示出良好的应用效果。本文综述了SRAP标记技术原理特点和在蔬菜遗传多样性研究领域初步应用情况。 相似文献
7.
利用SRAP分子标记对贵州南部地区8个野生兜兰的遗传多样性进行分析,从合成的360对引物中筛选出8对多态性丰富、重复性好且扩增条带清晰的引物分别对野生兜兰DNA进行扩增,建立野生兜兰最适的PCR扩增反应体系,并利用UPGMA法对野生兜兰进行亲缘关系的聚类分析。结果表明:PCR反应共扩增出152个条带,其中多态性条带122条,多态性位点百分率为80.26%;平均观察等位基因数(Na)为1.763 2,平均有效等位基因数(Ne)为1.506 1,Nei′s基因多样性指数(H)为0.287 9,Shannon信息指数(I)为0.424 1;供试材料的遗传相似性系数变化范围为0.513~0.756,以相似系数0.67为阀值,将不同来源野生兜兰分为3组,研究显示兜兰基于SRAP分子标记的聚类分析与形态学分类结果一致。 相似文献
8.
【目的】研究广西糯玉米地方品种的遗传多样性,初步划分类群,为其改良和创新利用提供参考。【方法】利用SRAP分子标记技术对广西49个糯玉米地方品种进行遗传多样性分析及杂种优势群划分。【结果】49份糯玉米地方品种被划分为5个类群,广西特别是广西西部和北部糯玉米地方品种具有丰富的遗传多样性;百色和河池地区大部分地方品种被划分在同一类群,这些糯玉米地方品种具有较强的区域性,即同一地区大部分糯玉米地方品种亲缘关系较近,且相邻的百色和河池地区的大部分糯玉米地方品种亲缘关系也较近。【结论】广西糯玉米地方品种具有较丰富的遗传多样性,且这些地方品种的遗传类群与地理来源和地理环境有较大关系。 相似文献
9.
[目的]研究广西糯玉米地方品种的遗传多样性,初步划分类群,为其改良和创新利用提供参考.[方法]利用SRAP分子标记技术对广西49个糯玉米地方品种进行遗传多样性分析及杂种优势群划分.[结果]49份糯玉米地方品种被划分为5个类群,广西特别是广西西部和北部糯玉米地方品种具有丰富的遗传多样性;百色和河池地区大部分地方品种被划分在同一类群,这些糯玉米地方品种具有较强的区域性,即同一地区大部分糯玉米地方品种亲缘关系较近,且相邻的百色和河池地区的大部分糯玉米地方品种亲缘关系也较近.[结论]广西糯玉米地方品种具有较丰富的遗传多样性,且这些地方品种的遗传类群与地理来源和地理环境有较大关系. 相似文献
10.
11.
利用SRAP分子标记对42份春兰品种及1份多花兰、1份春剑及3份杂交兰进行遗传多样性分析。筛选出的15对引物组合共扩增出185个位点,其中多态性位点184个,平均每对引物组合产生12.27个多态性位点。引物组合Me8-Em16的Nei’s基因多样性数H(0.3993)、shannon信息指数I值(0.5794)和有效等位基因数Ne(1.7280)都是最高值。47份材料的遗传相似系数变化范围为0.63~0.80,UPGMA 聚类分析表明,在遗传相似系数为0.662处,将47份材料划分成五大类群.本研究较好地揭示了47份材料亲缘关系的远近,为春兰各品种间的分类和杂交亲本的选择提供重要理论依据。 相似文献
12.
选取适宜海南地区生长的34份果桑资源,通过可靠的SRAP分子标记技术,进行果桑种质的遗传多样性分析研究,探索果桑种质之间的亲缘关系。结果表明:从100对SRAP引物组合中筛选获得16对扩增多态性高的引物组合,共扩增清晰的条带108条,其中多态性条带93条,平均多态性比率为86.11%,平均每对引物组合扩增6.75条。针对遗传多样性指数进行分析,结果表明,观测等位基因数(Na)为1.8704,有效等位基因数(Ne)为 1.5200,Nei''s 基因多样性指数(H)为 0.3022,Shannon''s 信息指数(I)为 0.4510。统计遗传相似系数为0.491~0.954,表明34份果桑种质之间遗传多样性比较高。根据UPGMA 聚类分析图,在遗传相似系数为0.32处,供试34份果桑种质可归属为五大类群,其中第Ⅰ类群27 份,占 79.41%,包括大部分果桑供试材料;第Ⅱ类群3 份种质,占8.82%,分别为嘉陵30号、云桑2号、本地桑HNQZ01;第Ⅲ类群和第Ⅳ类群各1份种质,分别为红宝石和长果桑,分别占 2.94%;第Ⅴ类群包括 2份种质,分别为香金葚、长相思,占5.88%。研究结果将为果桑种质资源的鉴定、评价及优良品种选育提供科学依据。 相似文献
13.
红麻种质资源SRAP指纹图谱构建及遗传多样性分析 总被引:3,自引:0,他引:3
利用SRAP标记构建51份红麻种质资源的指纹图谱。12对SRAP引物共扩增出167条清晰的谱带,其中165条具有多态性,多态性比率(PPB)为98.8%。51份材料间Nei’s基因多态性(Gene diversity)为0.616 6,平均多态性信息量(PIC)达0.584 2。材料间遗传多样性高,遗传距离较远,亲缘关系较远。SRAP聚类分析结果表明,51份红麻种质资源被聚为5个类群。亲缘关系树状图在分子水平上清晰揭示了红麻种质资源间的亲缘关系,为红麻育种和杂交亲本的选育提供了理论依据,为红麻品种鉴定、遗传改良和分子标记辅助育种奠定了分子生物学基础。 相似文献
14.
【研究目的】研究西瓜材料之间的亲缘关系及其分类,为进一步利用和创新材料、培育新的品种提供依据;【方法】采用SRAP技术对64份西瓜种质资源的遗传多样性进行了研究;【结果】从700多个引物组合中筛选出了51个条带清晰、多态性高的引物组合来分析供试材料,共产生431条扩增带,其中243条带具有多态性,多态性频率平均为56.4%,除去非洲野生型57号材料,其它材料间多态率为39.4%。将243条多态性SRAP条带,利用NTSYS软件计算了64个材料间的遗传相似系数,其变化范围为0.47~0.97,除非洲野生型材料57号等4个差异较大的材料,其它材料间变化范围仅为0.87~0.97;【结论】说明目前西瓜育种的大多数材料间同源性较高,遗传分化较小,其遗传基础非常狭窄。该研究结果对利用特殊种质、合理选择杂交亲本具有一定的参考价值。 相似文献
15.
基于SRAP标记的烟草种质资源遗传多样性分析 总被引:1,自引:0,他引:1
为从分子水平上揭示烟草种质资源的遗传背景和亲缘关系,采用SRAP分子标记方法,对烟草属5个种共134份种质进行了遗传多样性与亲缘关系分析.结果表明:从228对SRAP引物中筛选出15对多态性、稳定性好的引物,15对引物在134个材料上共获得241条多态性条带,多态性比例为81.7%.134份材料间的遗传距离为0.0213~0.5802,遗传多样性较丰富.在遗传相似系数为0.57时,被聚为5个大类群,相同栽培类型的烟草并未明显的聚为一类.可较好地从分子水平反映这些烟草品种(系)间的遗传背景和亲缘关系. 相似文献
16.
[目的]对40份亚麻种质资源进行分类。[方法]通过RAPD技术分析,利用类平均法(UPGMA)进行了聚类分析。[结果]从供试材料中筛选出11条具有多态性的RAPD引物。RAPD引物共扩增到71条清晰的多态性条带,多态性比率为88.8%。对标记结果进行了UPGMA聚类分析,聚类结果表明地理位置相近的品种聚为一类。[结论]为大批量亚麻种质资源的鉴定和分类以及资源的有效利用提供了理论依据。 相似文献
17.
应用SRAP标记研究木薯种质资源的遗传多样性 总被引:3,自引:0,他引:3
采用31对SRAP引物对80份木薯种质,包括本所从南美、泰国和非洲引进的76份木薯种质,以及华南系列的4个木薯品种,进行遗传多样性分析,获得207个扩增位点,其中多态性位点201个,平均多态性水平为97.1%,每对引物检测等位基因3~11个,平均为6.7个,扩增产物的片段大小范围在250~1 750 bp之间。根据品系间的遗传相似系数,利用UPGMA法进行聚类分析,以遗传相似系数0.635为阈值,将80个木薯品系分为4类群,分别包含38,6,33和3个品系。群体的基因杂合度为0.3 201,遗传多样性指数为0.4 766;群体内的平均多样性指数为0.2762,遗传分化系数为0.2181,基因流系数为1.7 921。实验结果表明,引进的国外资源丰富了我国木薯种质库,拓宽了中国木薯遗传育种的物质基础。 相似文献
18.
野生狗牙根种质资源SRAP与SSR的遗传多样性 总被引:2,自引:0,他引:2
【目的】为指导种质资源的引进和利用及选育优质狗牙根新品种提供科学依据。【方法】采用SRAP和SSR两种分子标记方法相结合,对52份野生狗牙根材料进行遗传多样性分析。【结果】①利用4个表型差异显著的野生狗牙根对SRAP的150对引物组合及SSR的200对引物组合进行扩增,分别筛选出有效引物组合各18对,SRAP和SSR扩增总条带分别为236和346条,多态性条带206和255条,平均每对引物扩增出多态性条带各11.4和14.17条,多态性位点百分率分别为87.29%和73.70%;②两种标记结合进行聚类分析,当GS=0.68时,可将所有供试材料分成5个组群;当GS=0.78时,可将第V个组群分成6个小组,大部分来自相同或相似生态地理环境的材料聚为一类;③基于聚类分析,可将供试材料分为8个生态地理类群,据各类群间的Nei氏遗传一致度和遗传距离的无偏估计值表明,生态地理环境相似的地理类群遗传距离较小;④SRAP和SSR标记之间具有显著的相关性,且相关性较高。【结论】野生狗牙根有丰富的遗传多样性,其聚类和生态地理环境有一定的相关性。 相似文献
19.
国外引进亚麻种质资源遗传多样性分析 总被引:1,自引:0,他引:1
【目的】 分析国外引进亚麻种质资源遗传多样性,为栽培亚麻育种亲本选择和种质创新提供依据。【方法】 以144份亚麻种质为材料,利用24个农艺性状对种质资源进行遗传多样性分析、相关性分析、主成分分析和聚类分析。【结果】 144份材料13个质量性状和11个数量性状的遗传多样性指数变幅在0.37~1.20和1.97~2.09,平均为0.83和2.03,表现为较高的遗传多样性。引进亚麻种质资源数量性状变异系数在6.22%~40.74%,其中蒴果数、千粒重、工艺长度的变异系数均较高,这些产量相关性状在亚麻育种中有较大的选择空间。各农艺性状相关性分析中,“高度因子”与“分枝因子”、“种子大小因子”呈显著负相关,株高与蒴果数未呈显著相关性,兼用亚麻株高、工艺长度、分枝数、蒴果数均较高从而对株高和蒴果数相关性造成干扰。9个主成分(PC1-PC9)解释约73.57%的表型变异,前2个主成分约占32.31%。PC1代表“油用亚麻特征性状因子”,PC2代表“纤用亚麻特征性状因子”。利用24个农艺性状将144份亚麻材料聚为纤用和油用两个群体。【结论】 国外引进亚麻种质资源具有较高的遗传多样性,形态学标记最先将纤用亚麻和油用亚麻区分开,亚麻驯化过程中产量相关性状受到主要选择。 相似文献